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Abstract

We study the map which sends a pair of real polynomials (f0, f1)
into their Wronski determinant W (f0, f1). This map is closely related
to a linear projection from a Grassmannian GR(m,m+ 2) to the real
projective space RP2m . We show that the degree of this projection is
±u((m+1)/2) where u is the m-th Catalan number. One application
of this result is to the problem of describing all real rational functions
of given degree m + 1 with prescribed 2m critical points. A related
question of control theory is also discussed.

1 Introduction

A recent result [3] says that if all critical points of a rational function are
real then the function itself can be made real by postcomposition with a
fractional-linear transformation. In the present paper we study the structure
of the set of real rational functions whose critical points coincide with a given
set symmetric with respect to the real axis.

We first recall what is known in general about rational functions with
prescribed critical points. Two rational functions f and g will be called
equivalent,

f ∼ g if f = ` ◦ g, where ` is a fractional-linear transformation. (1)

∗Both authors are supported by NSF.
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Equivalent rational functions have the same critical points. We will see that
for a given set of 2m points in the complex plane there are finitely many
classes of rational functions of degree m+ 1 having these critical points.

If f = f2/f1 is a non-constant rational function, then f ′ = W (f1, f2)/f 2
1 ,

where

W (f1, f2) =

∣∣∣∣ f1 f2

f ′1 f ′2

∣∣∣∣
is the Wronski determinant. The equivalence relation (1) on rational func-
tions corresponds1 to the following equivalence relation on pairs of polyno-
mials:

(f1, f2) ∼ (g1, g2) if (f1, f2) = (g1, g2)A, where A ∈ GL(2,C).

Notice that equivalent pairs of polynomials have proportional Wronski
determinants. This suggests that the map (f1, f2) 7→ W (f1, f2) should be
considered as a map from a Grassmann variety to a projective space.

We recall the relevant definitions, referring for the general background to
[7, 8]. Let F be one of the fields R (real numbers) or C (complex numbers).
We denote by GF = GF(m,m + 2), m ≥ 2, the Grassmannian, that is the
set of all linear subspaces of dimension m in Fm+2 . Such subspaces can be
described as row spaces of m× (m + 2) matrices K of maximal rank. Two
such matrices K1 and K2 define the same element of GF if K1 = UK2 ,
where U ∈ GL(m,F). So GF is an algebraic manifold over F of dimension
2m. The Plücker coordinates of a point in GF represented by a matrix K are
the full size minors of K . This defines an embedding of GF to a projective
space FPN , where

N =

(
m+ 2
m

)
− 1 = m(m + 3)/2.

We usually identify GF with its image under this embedding, which is called
a Grassmann variety. It is a smooth algebraic variety in FPN .

Let S ⊂ FPN be a projective subspace disjoint from GF , and dimF S =
N − dimGF − 1 = (m + 1)(m − 2)/2. We consider the central projection
πS : FPN\S → FP2m, and its restriction to GF ,

φS = πS|GF
: GF → FP2m. (2)

1The correspondence between non-constant rational functions and pairs of non-
proportional polynomials is not bijective because a polynomial pair may have a common
factor of positive degree.
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Then φS is a finite regular map of projective varieties.
The following result goes back to Schubert (1886). For a modern proof,

see [6] or [8, XIV, 7].

Theorem A When F = C, the degree of φS is u(m+ 1), where

u(d) =
1

d

(
2d− 2
d− 1

)
is the d-th Catalan number. (3)

When F = C, the degree of φS is independent of S , and equals the
number of intersections of GC with a generic projective subspace L ⊂ CPN

of codimension 2m. It is called the degree of GC .
Now we show that the map (f1, f2) 7→ W (f1, f2) defines a projection of

the form (2) with a special choice of center S .
To explain our choice of the center of projection S0 , we consider the

2× (m + 2) matrix of polynomials

E(z) =

(
F (z)
F ′(z)

)
=

(
zm+1 zm . . . 1

(m + 1)zm mzm−1 . . . 0

)
. (4)

For a fixed z , the row space of this matrix represents the tangent line to
the rational normal curve F : FP1 → FPm+1 at the point F (z). The space
Poly2m

F of all non-zero polynomials p ∈ F[z] of degree at most 2m, up to
proportionality, will be identified with FP2m (the coefficients of polynomials
serving as homogeneous coordinates). Now we define the map φ : GF →
FP2m using the representation of GF by m× (m + 2) matrices K :

K 7→ φ(K) = det

(
E(z)
K

)
∈ Poly2m

F . (5)

It is clear that φ is well defined: changing K to UK, U ∈ GL(m,F), will
result in multiplication of the polynomial φ(K) by detU . Furthermore, this
map φ , when expressed in terms of Plücker coordinates, coincides with the
restriction to GF of a projection of the form πS as in (2), with some center
which we will call S0 . We do not need the explicit equations of S0 , but they
can be easily obtained by expanding the determinant in (5) with respect to
the last m rows, and collecting the terms with the same powers of z .

We can interpret the polynomial φ(K) in (5) as a Wronskian determinant
of a pair of polynomials. To see this, we first consider the “big cell” of the
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Grassmannian GF , which is represented by the matrices K whose rightmost
minor is different from zero. We can normalize K to make the rightmost
m×m submatrix the unit matrix. If the remaining (leftmost) two columns
of K are (ki,j), 1 ≤ i ≤ m, j = 1, 2, then

φ(K) = f1,Kf
′
2,K − f ′1,Kf2,K = W (f1,K , f2,K),

where
f1,K(z) = zm+1 − k1,1z

m−1 − . . .− km,1, and
f2,K(z) = zm − k1,2z

m−1 − . . .− km,2.
(6)

Now we consider all pairs of non-proportional polynomials of degree at most
m + 1, modulo the following equivalence relation: (f1, f2) ∼ (g1, g2) if
(f1, f2) = (g1, g2)V, where V ∈ GL(2,F). The equivalence classes para-
metrize the Grassmannian GF . Coefficients of two polynomials correspond
to the coefficients of two linear forms which define a subspace of codimension
2, that is a point of GF . Then φ becomes the Wronski map, which assigns
to the equivalence class of a pair of polynomials the Wronskian determinant
of this pair, modulo proportionality.

Remark. Notice that the Wronski map sends the big cell X of the Grass-
mannian into the big cell Y of the projective space consisting of those poly-
nomials whose degree is exactly 2m. Moreover, it sends the complement
GF\X into FP2m\Y .

So, for our special choice of the center of projection S0 , the projection
map restricted to the Grassmannian GF becomes the Wronski map. This
interpretation of the Wronski map as a projection comes from [6], where the
following corollary from Theorem A was obtained

Theorem B For a given set of 2m points in the complex plane there exist
at most u(m + 1) classes of rational functions of degree m + 1 with these
critical points, with equality for a generic set of 2m points.

Now we turn to the case F = R . We recall the definition of degree of
a smooth map f : X → Y of real manifolds of equal dimensions. Suppose
that X is orientable, and fix an orientation of X . We choose a regular value
y ∈ Y of f , which exists by Sard’s theorem, and define

deg f = ±
∑

x∈f−1(y)

sgn det f ′(x), (7)
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using local coordinates in X consistent with the orientation, and any local
coordinate at y . The degree deg f is defined up to sign which depends on
the choice of orientations. The absolute value of degree is independent of the
choice of local coordinates, and, in the case of connected Y , of the regular
value y .

Using the Remark above, we define the degree of the Wronski map2 as
the degree of its restriction to the big cell X of the Grassmannian.

The main result of this paper is

Theorem 1.1 When m is odd, the degree of the Wronski map is

±u((m+ 1)/2),

where u is the Catalan number defined in (3).

If (f1, f2) is a pair of coprime polynomials, then zeros of W (f1, f2) co-
incide with finite critical points of f2/f1 . Notice that GR ⊂ GC can be
represented by pairs of real polynomials, and to each such pair corresponds a
real rational function. Thus Theorem 1 can be restated in terms of rational
functions:

Corollary 1.2 Let X be a set of 2m points in general position in C , sym-
metric with respect to R. Then the number k of equivalence classes of real
rational functions of degree m+1 whose critical sets coincide with X satisfies

0 ≤ k ≤ u(m+ 1) if m is even, and (8)

u((m+ 1)/2) ≤ k ≤ u(m+ 1) if m is odd. (9)

Upper estimates in (8) and (9) follow from Theorem B. These upper esti-
mates are best possible for every m ≥ 2 (see [11] or remark after Proposition
2.3). For every even m the lower estimate in (8) is best possible as examples
in [4] show (see also Example 2.5 below).

The lower estimate in (9) is also best possible:

Example 1.3 For every odd m, there exist real polynomials y ∈ Poly2m
R

which are regular values of the Wronski map φ in (5), such that the cardi-
nality of φ−1(y) is u((m+ 1)/2).

2Topological degree can be defined for arbitrary projections (2) without using special
properties of the Wronski map.
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The proof of Theorem 1.1 occupies sections 2–3. In section 2 we state the
relevant results about rational functions from [3], describe Examples 1.3 and
2.5, and prove Propositions 2.13-2.15 necessary for Theorem 1.1. In section 3
we compute the degree of the real Wronski map. This is done by computing
the signs of Jacobian determinants in (7) with a special choice of the regular
values w ∈ RP2m which correspond to very degenerate rational functions.
A crucial ingredient is the information that these Jacobian determinants are
different from zero. This is provided by Proposition 2.15.

Finally, in section 4 we interpret Theorem 1.1 in terms of control theory.
We thank S. Fomin and R. Stanley for their remarks on combinatorics.

2 Rational functions with critical points on a

circle

We fix an integer d ≥ 3, which is related to the number m of the Introduction
by

d = m+ 1. (10)

In [3] we established the following fact.

Proposition 2.1 Given 2d − 2 points on a circle C , there exist precisely
u(d) classes of equivalence of rational functions of degree d with these critical
points, and mapping C into circles. 2

Here and in what follows a “circle” means a circle on the Riemann sphere
C = CP1 . The number u(d) was defined in (3) and the equivalence relation
on rational functions in (1). From Theorem A and Proposition 2.1 we obtain

Corollary 2.2 If q is a polynomial of degree 2d−2, whose zeros are simple
and belong to a circle, then the Wronski map GC → CP2d−2 is unramified
over q .

Remark. The main purpose of this section is to extend Corollary 2.2 to
some cases when q has multiple zeros (Proposition 2.15).

Proof of Corollary 2.2. Denote the roots of q by x1, . . . , x2d−2 . Applying
Proposition 2.1 we obtain u(d) classes of equivalence of rational functions
of degree d whose critical points are x1, . . . , x2d−2 . If f = f2/f1 is such a
function, we have W (f1, f2) = cq, where c is a constant. Thus q has u(d)
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preimages under the Wronski map. On the other hand, by Theorem A, u(d)
is the maximal number of complex preimages under this map. It follows that
φ is unramified over q . 2

From Proposition 2.1 and Theorem A we derived in [3]

Proposition 2.3 If all critical points of a rational function f belong to a
circle C then f(C) is contained in a circle. 2

Proposition 2.1 implies that the upper estimates (8) and (9) of Corollary
1.2 are best possible. An application of Proposition 2.3 is

Proposition 2.4 Let d ≥ 4 be an even integer, and d− 2 real points

xd−2 < xd−3 < . . . < x1 < 0

are given. Consider two sets of rational functions:

A: The set of all real rational functions g of degree d/2 with critical points
at x1, . . . , xd−2 , and

B : The set of all real rational functions f of degree d with critical points
0,∞ and {±√xj : 1 ≤ j ≤ d− 2}.

Then there is a bijective correspondence between A and B , given by f(z) =
g(z2). This correspondence respects the equivalence relation (1).

Proof. If g ∈ A and f(z) = g(z2), then evidently f ∈ B .
Suppose now that f ∈ B . As f is real, we have

f(z) = f(z). (11)

Applying Proposition 2.3 with C = iR , we conclude that f(iR) ⊂ C ′ ,
where C ′ is a circle. By (11), C ′ is symmetric with respect to R . Every
such circle C ′ is either perpendicular to R or coincides with it. As 0 is
a critical point of f , and f(R) ⊂ R , the second possibility occurs, and
f(iR) ⊂ R. This implies that f(−z) = f(z). Combining this with (11), we
obtain f(z) = f(−z) = f(−z). Thus f is even, so f(z) = g(z2), where
g ∈ B . 2

Construction of Example 1.3. We take

y(z) = z

d−2∏
k=1

(z2 + k2), (12)
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or any other real polynomial y of degree 2d− 3, with all zeros on the imag-
inary axis and simple, and y(0) = 0. Suppose that (f1, f2) is a pair of real
polynomials such that

W (f1, f2) = y. (13)

Then f = f2/f1 is a function of the set B . By Proposition 2.4, the number of
equivalence classes of functions in B is the same as the number of equivalence
classes of functions in A, and the last number is u(d/2) by Proposition 2.1
with C = R . Corollary 2.2 implies that the Wronski map is unramified over
y . 2

Besides Propositions 2.1 and 2.3 themselves we need some elements of
their proof from [3], so we recall the relevant definitions and results here.

We fix an oriented circle C ⊂ C until the end of this section.
If z1 and z2 are two points on C , the arc from z1 to z2 , following orien-

tation of C , will be denoted by (z1, z2). We also fix a point v0 ∈ C .
Let R(d) be the set of all non-constant rational functions of degree at

most d , with complex coefficients, and having the properties that all critical
points belong to C , v0 is a simple critical point, and there are at least 3
critical points. By Proposition 2.3, for f ∈ R(d), f(C) is a subset of a circle
C ′ . Consider the full preimage Γ(f) = f−1(C ′) ⊂ C . The net of f is defined
as the pair γ(f) = (Γ(f), v0). The point v0 and the oriented circle C will
be called the reference point and the reference circle of the net γ(f).

Evidently, equivalent functions have equal nets. The set Γ(f) is a one-
dimensional, real-algebraic subvariety of C , whose singular points coincide
with the critical points of f . The set Γ = Γ(f) defines a cellular decom-
position of C , whose 2-dimensional cells (faces) are components of C\Γ, 0-
dimensional cells (vertices) are the singular points of Γ, and 1-dimensional
cells are components of Γ\{vertices} . The set Γ is the 1-skeleton of this
decomposition. Each face of the cellular decomposition is mapped by f

homeomorphically onto one of the two components of C\C ′ . The net of
a function defines the corresponding cellular decomposition uniquely, so we
will permit ourselves such expressions as “a face of the net”, “a vertex of the
net” and so on. The following properties of γ(f) = (Γ, v0), f ∈ R(d), are
evident:

(i) Γ is symmetric with respect to C ,
(ii) C ⊂ Γ,
(iii) all vertices of Γ belong to C , and there are at least 3 of them,
(iv) an even number ≥ 4 of edges meet at every vertex,
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(v) v0 is a vertex, and 4 edges meet at v0 .
A simple application of the nets is

Example 2.5 If d is odd, there exists a real polynomial of degree 2d − 2,
which is not a Wronskian determinant of any pair of real polynomials.

Construction. Take p(z) = z2d−2 − 1 (or any other real polynomial of
degree 2d − 2, with 2d − 2 roots on a circle centered on the real axis, two
of these roots real). Suppose that (f1, f2) is a pair of real polynomials such
that W (f1, f2) = p. Then f = f2/f1 is a real rational function of degree
d , whose critical points coincide with the roots of unity of degree 2d − 2.
By Proposition 2.3, f maps the unit circle into some circle C ′ , and C ′ is
symmetric with respect to the real axis. Then the net γ(f) = (f−1(C ′), 1)
is also symmetric with respect to the real axis, and it has vertices exactly at
the roots of unity of degree 2d − 2. It is easy to see that a net with such
properties cannot exist for odd d (for a formal proof, see [4]). 2

In the rest of this section we will establish three propositions 2.13, 2.14
and 2.15, needed in the next section for the proof of Theorem 1.1.

Given an oriented circle C and a point v0 ∈ C , a net γ = (Γ, v0) (with
no reference to a function) is defined as a pair, consisting of the 1-skeleton
Γ of a cellular decomposition of the Riemann sphere, having properties (i)-
(iv), and the reference point v0 satisfying (v). Two nets γ1 = (Γ1, v0) and
γ2 = (Γ2, v0) (with the same oriented reference circle C ) are called equivalent,
if there exists a homeomorphism h : C → C, preserving orientation of C
and of C , leaving the point v0 fixed, commuting with reflection with respect
to C , and having the property h(Γ1) = Γ2. The equivalence class of a net γ
will be denoted by [γ].

Every net has an even number of faces, one half of this number is called the
degree of a net. For rational functions f ∈ R(d) we have deg γ(f) = deg f . A
net is called degenerate if some vertices have order greater than 4. Otherwise
it is called non-degenerate. For a rational function f ∈ R(d), the net γ(f)
is degenerate iff f has multiple critical points. In [3] we considered only
non-degenerate nets.

For each net, we define certain distinguished elements in the following way.
Let v1 be the vertex following v0 on C , according to the orientation of C .
Let D be that component of C\C , whose positively oriented boundary is C .
There is a unique face G0 in D , whose boundary contains at least 3 vertices,
v0 and v1 among them. Let v−1 be the vertex preceding v0 on ∂G0 . So when
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tracing ∂G0 according to its positive orientation, we encounter v−1, v0, v1 in
this order. We also introduce two edges of γ on ∂G0 : e1 = [v0, v1] and
e−1 = [v−1, v0]. Of these two edges, one belongs to C , another does not.
For every net γ satisfying (i)-(v), there is a unique choice of distinguished
elements D,G0, v−1, v0, v1, e1 and e−1 .

The edges of γ in D are called chords of γ . For example, of the 4 edges
incident to v0 , one is a chord, and two are arcs of C .

Now we recall the notion of a labeling of a non-degenerate net γ from [3].
Let E be the set of edges of γ , Q the set of faces of γ in D , and s : C→ C
the reflection with respect to C . A labeling of γ is a function p : E → R≥0 ,
satisfying the following conditions

p(s(e)) = p(e) for every e ∈ E, (14)∑
e⊂∂G

p(e) = 2π for every G ∈ Q, (15)

and
p(e−1) = p(e1) = 2π/3, (16)

where e−1 and e1 are the distinguished edges of γ .
The set of all labelings of γ is identified with a closed convex polytope

Lγ in the affine subspace A of R4d−4 described by equations (14), (15), (16).
The dimension of A and Lγ is 2d − 5. The polytope Lγ depends only on
the equivalence class of γ .

A labeling is called non-degenerate if p(e) > 0 for all e, otherwise it is
called degenerate. Non-degenerate labelings correspond to the interior Lγ of
Lγ with respect to A.

The following construction was used in [3, section 3].
Suppose that p is a labeling of a non-degenerate net γ . Let Z(p) be

the union of closures of edges of γ whose labels are zero, and D(p) the
component of C\Z(p), containing G0 . Put B = C\D(p) and introduce the
following equivalence relation on C : x ∼ y if x and y belong to the same
component of B . Let Y = C/ ∼ be the factor space, and w : C → Y the
projection map. Since D(p) is connected, every component of C\D(p) is
contractible, hence Y is a topological sphere, so we can identify it with the
Riemann sphere. The reflection s : C → C is an involution which leaves
every point of C fixed. Since every component of B contains a vertex, it
intersects C . It follows that each component of B is symmetric with respect
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to C . So Y also has an involution, such that w splits the involutions. This
means that the identification of Y with C can be made in such a way that

w ◦ s = s ◦ w, w(C) = C w(v0) = v0,

and w preserves orientation of both C and C .
The image γ′ = w(γ) of our net γ can be a degenerate net or a net of

smaller degree than γ . We say that γ′ is obtained by collapse of γ according
to p. If the labeling p is non-degenerate, then γ′ = γ .

Lemma 2.6 Suppose that a degenerate net γ′ of degree d was obtained by
collapse of a non-degenerate net γ of the same degree d. Then γ′ determines
γ uniquely.

Proof. As in [3], we associate to each net γ two rooted trees S(γ) and
Ŝ(γ) embedded into the closed disc D . The first tree S(γ) is the dual graph
of the cellular decomposition of D defined by γ . The vertices qG of S(γ)
correspond to faces G of γ in D , and two vertices of S(γ) are connected by
an edge τe of S(γ) if the corresponding faces of γ have a common boundary
edge e. The root q0 of S(γ) corresponds to the distinguished face G0 of γ .

v0 v0

G0 G0

Fig. 2. Collapse of a net. The trees S are shown in dotted lines.

The other rooted tree Ŝ(γ) is obtained by the following extension of S(γ):
for each edge e ⊂ C of γ , a vertex qe and an edge τe are added to S(γ), such
that τe connects qe to qG , where G is the face of γ in D with e ∈ ∂G. The
edge τ1 of Ŝ(γ), corresponding to the edge e1 of γ , is called the distinguished
edge of Ŝ(γ). It may belong to S(γ) or not.
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It is easy to see that the triple (S(γ), Ŝ(γ), τ1), modulo orientation pre-
serving homeomorphisms of D , defines the equivalence class of the net γ

completely. Indeed, the trees S(γ) ⊂ Ŝ(γ) define the cellular decomposi-
tion of D , and τ1 defines the edge e1 of this decomposition. Of the two
extremities of e1 , the one which precedes the other on C , is v0 .

For a non-degenerate net γ , the dual graph S(γ) defines its extension
Ŝ(γ) completely: for each vertex q of S(γ) of order k , exactly k new edges
incident to q are added, one in each space between the old edges.

The procedure of collapse of a non-degenerate net described above has a
simple interpretation in terms of the tree Ŝ : we first delete some edges, and
then retain the component of the root, deleting all other components, if any.
Our assumption that both γ and γ′ are of the same degree d means that
S(γ) = S(γ′). As γ is non-degenerate, S(γ) uniquely defines Ŝ(γ). Since
v0(γ′) is of order 4, the distinguished edge e1(γ) does not disappear after
collapse, so τ1(γ) = τ1(γ′), and this proves Lemma 2.6. 2

Now we recall the main technical result from [3]. Fix a non-degenerate
net γ of degree d , and denote its vertices by v0, v1, . . . , v2d−3 , where the
enumeration is consistent with the orientation of C . The vertex v−1 defined
above coincides with some vN , where N depends on γ and satisfies 3 ≤
N ≤ 2d − 3. We associate to γ the convex polytope of its labelings Lγ ,
defined in (14)–(16), and another convex polytope Σγ of critical sequences,
of the same dimension 2d − 5 as Lγ . To define a critical sequence, we first
fix three points z−1, z0, z1 on C , enumerated according to the orientation of
C . A critical sequence is a map c from the set V of vertices of γ to C ,
which preserves the non-strict cyclic order, and satisfies

c(v−1) = z−1, c(v0) = z0, c(v1) = z1. (17)

Choosing the spherical lengths of the arcs lj = (c(vj), c(vj+1)) ⊂ C as coor-
dinates, we obtain an embedding of the space of critical sequences to the hy-
peroctant R2d−2

≥0 . The image of this embedding is the polytope Σγ ⊂ R2d−2
≥0 ,

defined by three linear equations, resulting from (17).
The polytope Σγ depends only on the equivalence class of γ , and the

choice of z−1, z0, z1 in (17). A critical sequence of a function f ∈ R(d) of
degree d is defined as the sequence of vertices of γ(f), starting from v0 ,
going on according to the orientation of C , where each vertex is repeated
according to the multiplicity of the corresponding critical point of f .
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In [3, section 3], for each non-degenerate net γ of degree d , we defined a
map

Fγ : Lγ → R(d)× Σγ,

which depends only on the equivalence class of γ and the choice of z−1, z0, z1

in (17). This map Fγ = (Ψγ,Φγ) has the following properties. For p ∈ Σγ ,
the first component f = Ψγ(p) is a rational function of the class R(d), and
the second component c = Φγ(p) is a critical sequence. If deg f = d, then c

is the critical sequence of f . If p is non-degenerate, then deg f = d, and f
has 2d− 2 critical points on C .

Lemma 2.7 [3, section 6]. The map Φγ : Lγ → Σγ is surjective. 2

Lemma 2.8 [3, section 4]. If pj → p is a convergent sequence in Lγ , then
Φγ(pj)→ Φγ(p), and

Ψγ(pj)→ Ψγ(p), uniformly on compact subsets of C\X, (18)

where X is a finite set. 2

Comments. 1. In [3] we used (17) with a special choice of z−1, z0, z1 ,
the cubic roots of unity, but this choice is irrelevant and was made only for
convenience.

2. It is equation (28) and Lemma 4 in [3], which imply (18).
3. When Ψγ(p) is of degree d , the exceptional set X is empty, and

convergence in (18) is uniform on C .

Lemma 2.9 Let γ be a non-degenerate net of degree d, and p ∈ Lγ a
labeling. Suppose that f = Ψγ(p) is of degree d. Then γ(f) is obtained by
collapse of γ according to p. In particular, γ(f) ∼ γ if p is non-degenerate.

2

Lemma 2.9 follows from the explicit construction of Ψγ in [3, section 3]. Lem-
mas 2.8 and 2.9 imply the following. Suppose that pk → p, fk = Ψγ(pk) →
Ψγ(p) = f, and ck = Φγ(pk)→ Φγ(p) = c, where deg f = d . Then for every
edge e = [vi, vj ] of γ we have

c(vi) = c(vj) if and only if p(e) = 0. (19)

Furthermore, deg f = d if and only if p(e) > 0 for all chords e of γ . We
also need a criterion in terms of the labeling p for f = Ψγ(p) to be of degree
d − 1. A chord is called extreme if it connects two consecutive vertices on
the unit circle.
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Lemma 2.10 Let γ be a non-degenerate net of degree d. Then the rational
function Ψγ(p) is of degree d− 1 if and only if there is exactly one chord e

of γ such that p(e) = 0, and this chord is extreme.

Proof. This follows from Lemma 2.9 and the explicit description of col-
lapse. Let γ′ be the result of collapse of γ according to p. Then γ has d
faces in D and γ′ has d− 1 faces. Each chord separates D into two parts.
One of these parts consists of d− 1 faces if and only if the separating chord
is extreme. 2

We also need the following elementary

Lemma 2.11 Let fj → f 6= const be a sequence of rational functions con-
verging uniformly on C with respect to the spherical metric. Let `j be a
sequence of fractional linear transformations, such that `j ◦ fj → g uni-
formly on compact subsets of C\X , where X is a finite set, and g 6= const .
Then `j → `, uniformly in C , where ` is a fractional-linear transformation.

Proof. Consider a disc Y ⊂ C, where the convergence gj = `j ◦ fj → g

is uniform, and let Z = f(Y ). As f 6= const, Z is open, and we can choose
a disc Z ′ ⊂ Z , which contains no critical values of f and fj . Let f−1 be
a branch which sends Z ′ into Y . Then there are branches f−1

j → f−1 on

Z ′ , and we have have `j = gj ◦ f−1
j in Z ′ . Passing to the limit gives `j → `

in Z ′ , where ` is a con-constant meromorphic function in Z ′ . This implies
that the sequence `j is convergent to ` uniformly in C, and that ` is a
fractional-linear transformation. 2

Lemma 2.12 Let f ∈ R(d) be a function of degree d, with simple critical
points. Then f ∼ Ψγ(p), where γ = γ(f) and p ∈ Lγ . If f1 and f2 are two
functions from R(d) with the same simple critical points, and γ(f1) ∼ γ(f2),
then f1 ∼ f2 .

Proof. The total number of equivalence classes of rational functions of
degree d sharing the critical set of f is at most u(d) (by [6] or by Theorem
A). On the other hand, there are u(d) equivalence classes of non-degenerate
nets of degree d [12, Exercise 6.19 n].

We claim that each equivalence class [γ] of these nets gives a rational
function Ψγ(pf,γ) with the same critical points as f , and all these u(d)
functions represent different equivalence classes. Indeed, let c0, . . . , c2d−3 be
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the sequence of critical points of f , enumerated according to the orientation
of C , and c0 = v0 . Given a non-degenerate net γ , we define z0 = c0, z1 = c1,

and z−1 = cN , where N = N(γ) is the integer with the property vN = v−1 ,
the distinguished vertex of γ . The choice of γ and z−1, z0, z1 defines the
map Fγ = (Ψγ,Φγ), where Φγ is surjective according to Lemma 2.7. So for
each γ there exists a labeling pγ,f such that Ψγ(pγ,f) has the same critical
points as f . For different γ , these functions Ψγ(pγ,f ) are non-equivalent by
Lemma 2.9. This proves our claim.

As there are u(d) classes of nets of degree d , it follows that f ∼ Ψγ(pf,γ)
for some γ and pf,γ ∈ Lγ . By Lemma 2.9, γ(f) ∼ γ , so the class [γ] is
uniquely defined by f . Furthermore, pf,γ is uniquely defined by f , other-
wise there would be more than u(d) equivalence classes of rational functions
sharing the same critical set of f . 2

To state the next three Propositions, it is convenient to define the fol-
lowing subclass R0(d) ⊂ R(d). It consists of rational functions f of degree
exactly d , having at least three critical points, and at least two of them,
z0 = v0 and z1 are simple. Furthermore, we require that the arc (z0, z1) ⊂ C ,
traced from z0 to z1 according to the orientation of C , be free from critical
points of f .

Proposition 2.13 Every f ∈ R0(d) can be represented as f = ` ◦ Ψγ(p),
where γ is a non-degenerate net of degree d, p ∈ Lγ , and ` is a fractional-
linear transformation. Furthermore, γ(f) is the result of collapse of γ ac-
cording to p.

Proof. If all critical points of f are simple, this follows from Lemma 2.12.
The general case is proved by a perturbation argument.

We suppose, without loss of generality, that all critical points of f are
finite. Let f = f2/f1 be a coprime representation, and q = W (f1, f2). Then
deg q = 2d − 2. We choose a sequence qj → q, j → ∞ of polynomials of
degree 2d− 2, each with 2d− 2 distinct finite roots on C , each qj having a
simple root at zk for k = 0, 1, and such that the arc (z0, z1) is free from the
roots of all qj .

Let us choose rational functions fj ∈ R0(d), such that

fj → f, as j →∞, and φ(fj) = qj, (20)

where φ is the Wronski map (5). Such rational functions fj always exist
because φ is surjective.
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We consider the nets γ(fj), using v0 = z0 as a common reference point
for all nets. As there are only finitely many nets of degree d , we may assume,
by choosing a subsequence, that γ(fj) ∈ [γ] for some fixed net γ . If v1 is the
distinguished vertex of γ(fj), then v1 = z1 , which follows from our definitions
of v1 and of the class R0(d). Consider the distinguished vertex v−1(j) of
γ(fj). By choosing a subsequence, we may assume that v−1(j)→ z−1 , where
z−1 is a point on a closed arc [a, b] ⊂ C , which is disjoint from the closed
arc [z0, z1]. This point z−1 depends on γ . Let χj be the fractional-linear
transformation which sends the triple (z−1, z0, z1) to (v−1(j), z0, z1). This
defines χj uniquely, and clearly χj → id uniformly in C. Put hj = fj ◦ χj .
Then γ(hj) ∼ γ , and the critical sequence of hj satisfies (17). It follows
from Lemma 2.12 that there exist labelings pj ∈ Lγ and fractional-linear
transformations `j , such that

fj ◦ χj = hj = `j ◦ (Ψγ(pj)). (21)

As Lγ is compact, and Ψγ is continuous (in the sense described in Lemma
2.8), we have Ψγ(pj) → Ψγ(p), uniformly on compact subsets of C\X , for
some finite set X , and the limit is non-constant. By Lemma 2.11, `j → `,
and thus

f = ` ◦Ψγ(p). (22)

This proves the first statement of Proposition 2.13. The second statement
follows from Lemma 2.9. 2

Proposition 2.14 Suppose that f and g are two rational functions in R0(d),
sharing their critical points on C . If γ(f) ∼ γ(g), then f ∼ g.

Proof. When critical points are simple, this Proposition follows from
Lemma 2.12. If some of them are multiple, we run the same perturbation
argument as in the proof of Proposition 2.13. Namely, we construct sequences
qj , fj and gj satisfying conditions similar to (20)

fj → f, φ(fj) = qj , and gj → g, φ(gj) = qj , (23)

and γ(fj) ∈ [γ], γ(gj) ∈ [β], for some nets γ and β . As in the proof of (22),
we derive

f ∼ Ψγ(pf ), and g ∼ Ψβ(pg). (24)

It follows that γ and β can be collapsed to the same net γ(f) ∼ γ(g), so by
Lemma 2.6 we conclude that γ ∼ β . Now, as fj and gj have the same critical
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points and equivalent nets, we conclude from Lemma 2.12 that fj ∼ gj , that
is fj = `j ◦ gj , and passing to the limit, we obtain f ∼ g . 2

Proposition 2.15 If f ∈ R0(d), then detφ′(f) 6= 0, where
φ : GC(d− 1, d+ 1)→ CP2m is the Wronski map (5).

Proof. In the case when all critical points are simple, Proposition 2.15 fol-
lows from Corollary 2.2. Otherwise, we use the same perturbation argument
as in the proof of Propositions 2.13 and 2.14. We begin with construction of
a sequence of polynomials qj explained in the proof of Proposition 2.13.

Claim. There exists a neighborhood U of f in GC which contains at most
one preimage of any qj under the Wronski map φ .

We prove this claim by contradiction. Assume that there exist two se-
quences

fj → f, gj → f, φ(fj) = φ(gj) = qj, and fj 6∼ gj (25)

Arguing exactly as in the proof of Proposition 2.14, we conclude that γ(fj) =
γ(gj). Then by Lemma 2.12, fj ∼ gj , which contradicts (25). This contra-
diction proves the claim.

Now we recall that the complex Wronski map φ : GC → CP2m is a finite
regular map. So it has local degree degf (φ) at the point f ∈ GR ⊂ GC ,

which means that there exist a neighborhood U ⊂ CP2m of q = φ(f),
and a neighborhood U ′ ⊂ GC of f , such that every r ∈ U has exactly
degf (φ) preimages in U ′ under φ , counting multiplicity. The multiplicity
of all preimages of qj under φ is one by Corollary 2.2. So our claim above
shows that the local degree degf (φ) = 1, and thus by a well-known result
(see, for example, [7, Ch. 0, 2]), det φ′(f) 6= 0. 2

3 Computation of degree of the real Wronski

map

In this section we work in the class R0(d) with the reference circle C = R
and v0 = z0 < z1 < 0. Consider the subclass B(d) ⊂ R0(d) of real rational
functions f of degree d , whose critical points belong to the segment [−1, 0] ⊂
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R , the leftmost critical point is v0 , and

f(z) = z +O(1), z →∞, and f(0) = 0. (26)

We first verify that every real rational function f whose critical points belong
to [−1, 0] can be normalized to satisfy (26). The arc (R ∪ ∞)\[−1, 0] is
contained in one edge of the net γ(f), so this arc is mapped into R ∪ ∞
injectively. So

f(0) 6= f(∞), (27)

and thus (26) can be achieved by post-composing f with a fractional-linear
transformation.

It follows from (26) that f has a unique representation as f = Q/P ,
where P and Q are real polynomials of the form

P (z) = zd−1 + ad−2z
d−2 + . . .+ a1z + a0,

Q(z) = zd + bd−1z
d−1 + . . .+ b1z.

(28)

We use coefficients of these polynomials as coordinates in B(d), and orient
B(d) by ordering these coordinates:

b1, b2, . . . , bd−1, a0, a1, . . . , ad−2. (29)

The Wronskian determinant W = W (P,Q) equals

W (z) = a0b1 + 2a0b2z + (3a0b3 + a1b2 − a2b1)z2 + . . .

+ ((n+ 1)a0bn+1 + (n− 1)a1bn + . . .+ (1− n)anb1) zn

. . .+ (3ad−3 + ad−2bd−1 − bd−2)z2d−4 + 2ad−2z
2d−3 + z2d−2

= z2d−2 +

2d−3∑
n=0

cnz
n.

Here

cn =
n∑
j=0

(n+ 1− 2j)ajbn−j+1. (30)

It is convenient to extend the finite sequences (aj) and (bj) to all integer
values of j in the natural way: ad−1 = 1, aj = 0 for j ≥ d and j < 0,
bd = 1, bj = 0 for j > d and j ≤ 0. Then

W (z) =
∑
i,j

(j − i)aibjzi+j−1, (31)
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where the summation in the last sum is over all pairs of integers (i, j).
Polynomials P and Q in (28) have no common factor, because their ratio

is of degree d . This implies that all zeros of the Wronskian W belong to
[−1, 0], and thus its coefficients cj are bounded for f ∈ B(d). We claim that
the coefficients aj of P and bj of Q are also bounded for f ∈ B(d).

To prove this claim, consider a rational function g equivalent to f ,

g = f − bd−1 = q/p, where p = P and q = Q− bd−1P , (32)

so that p and q are normalized as in (6) with m = d − 1. It follows from
(28) that

g(z) = z + o(1), z →∞. (33)

The set of real rational functions of degree d satisfying (33), and with critical
points on [−1, 0] will be called B′(d). Equation (32) establishes a homeo-
morphism f 7→ g from B(d) to B′(d).

According to Remark after (6), the Wronski map sends the big cell X
of GR into the big cell Y of Poly2d−2

R , and the complement GR\X into the
complement Poly2d−2

R \Y . As W = φ(g) = φ(f) belongs to a compact subset
of Y , for g ∈ B′(d), and the restriction of the Wronski map φ : X → Y

is proper, we conclude that B′(d) is contained in a compact subset of X ,
which means that the coefficients of p and q are bounded as g ∈ B′(d).

To pass back from g to f , we need to show that bd−1 = −g(0) =
−q(0)/p(0) is bounded. Suppose that it is not. Then there is a sequence
gj = qj/pj , and gj(0) → ∞ . As coefficients of pj and qj are bounded, we
can choose a convergent subsequence gj → g . It is clear that g 6= const, and
g(0) = g(∞) =∞ . Furthermore, g ∈ B(d′) for some d′ ≥ 1, and we obtain
a contradiction with (27). This contradiction proves that g(0) is bounded
for g ∈ B′(d).

This proves our claim that functions P and Q in (28) have bounded
coefficients for f ∈ B(d).

We need the following elementary

Lemma 3.1 Suppose that a ∈ C is a critical point of multiplicity µ of a
rational function Q/P , and ν is the maximal integer such that (z − a)ν

divides both P and Q. Then the Wronskian determinant W (P,Q) has zero
of multiplicity µ+ 2ν at a. 2

We consider a function f = Q/P ∈ B(d), where P and Q are as in (28),
with a0 6= 0. Then zeros of W = W (P,Q) coincide with the critical points
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of f . We list these zeros as

−1 ≤ x2d−2 < x2d−3 < . . . < xk < xk−1 = xk−2 = . . . = 0, (34)

where k = k(f), 1 ≤ k ≤ 2d− 4. In particular, (34) says that 0 is a critical
point of multiplicity k − 1, if k ≥ 2.

Now we perform on f the following operation. We move the critical point
xk to the right, to 0, while keeping all other points xj fixed. We can do it in
such a way that P and Q change continuously. More precisely, for 0 ≤ t ≤ 1,
we consider the family of polynomials

Wt(z) = (z − txk)
∏

j∈{1,...,2d−2}\{k}

(z − xj).

This uniquely defines a continuous family (Pt, Qt) of polynomial pairs of the
form (28), so that W (Pt, Qt) = Wt. Indeed, the map (P,Q) 7→ W (P,Q) is
finite and regular, so the curves can be lifted via this map. This lifting is
unique because φ is unramified over Wt, 0 < t ≤ 1, by Proposition 2.15
(where z0 = x2d−2 and z1 = x2d−3 are used in the definition of the class
R0(d)).

Using Lemma 3.1, we conclude that while 0 < t ≤ 1, the pair remains
irreducible, that is ft = Qt/Pt has degree d . In particular, this implies that
a0 6= 0 for 0 < t ≤ 1, and then, by assumptions (34) about zeros of Wt , 0 is
a critical point of ft of multiplicity k − 1, that is ft has zero of multiplicity
k at 0:

b1 = . . . = bk−1 = 0, bk 6= 0 for 0 < t ≤ 1. (35)

By (30), the first non-zero coefficient at Wt occurs at zk−1 , and this coef-
ficient is a0bk . All zeros of Wt are non-positive, so all its coefficients are
non-negative, and we obtain

a0bk > 0. (36)

Furthermore, Proposition 2.15 implies that detW ′(Pt, Qt) 6= 0 for 0 < t ≤ 1,
where W ′ stands for the Jacobi matrix of the Wronski map defined by (30),
and thus this Jacobi determinant keeps constant sign for 0 < t ≤ 1.

When t = 0, one of the two cases may occur:

Case 1. The pair (P0, Q0) is irreducible. Then by Proposition 2.15,
detW ′(P0, Q0) 6= 0, so the sign of this determinant is constant for all t, 0 ≤
t ≤ 1.

20



Case 2. The pair (P0, Q0) has a common factor. By Lemma 3.1 and (34),
this common factor has to be a power of z , because at all points other than
0, Wt can have only simple zeros. This means that

a0 → 0, as t→ 0, (37)

which is a necessary and sufficient condition for the Case 2 to occur. When
t = 0, W has a zero of order k at 0. Let λ1 and λ2 be the orders of zeros
at 0 for P0 and Q0 , respectively. Then P0 and Q0 have a common factor
zν , where ν = min{λ1, λ2} . We have

λ1 ≥ ν ≥ 1 and λ2 ≥ k. (38)

The first inequality holds because z is a common factor, second because
of (35). The multiplicity of the critical point of f0 = Q0/P0 at 0 is µ =
max{λ1, λ2} −min{λ1, λ2} − 1, so Lemma 3.1 and (38) imply

k = max{λ1, λ2} −min{λ1, λ2} − 1 + 2 min{λ1, λ2} = λ1 + λ2 − 1 ≥ k.

This implies that both inequalities in (38) are in fact equalities, that is λ1 =
ν = 1 and λ2 = k . This means that

a0 = 0, a1 6= 0 and bk 6= 0, for t = 0 in Case 2. (39)

So the common factor of (P0, Q0) is z . Let (P ∗, Q∗) be the reduced pair of
polynomials of degrees (d− 2, d− 1), that is P ∗(z) = P0(z)/z and Q∗(z) =
Q0(z)/z , and W ∗ : B(d − 1) → Poly2d−4

R the corresponding Wronski map.
We prove the following:

sgn det(W ∗)′(P ∗, Q∗) = (−1)d−ksgn detW ′(Pt, Qt), t > 0. (40)

We compare both determinants, using the explicit expression (30) for the
coefficients of W and a similar expression for W ∗ . To describe submatrices

of a matrix ∆, we use notation ∆

(
ik . . . il
jr . . . js

)
for the submatrix formed

by the elements of ∆ in rows (ik, . . . , il) and columns (jr, . . . , js). The
transposed3 Jacobian matrix ∆ = (W ′)T has the following structure:

3It is transposed only for convenience of typesetting.
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c0 c1 c2 . . . ck−1 ck . . .

b1 a0 0 −a2 . . . (2− k)ak−1 (1− k)ak . . .
b2 0 2a0 a1 . . . (4− k)ak−2 (3− k)ak−1 . . .
b3 0 0 3a0 . . . (6− k)ak−3 (5− k)ak−2 . . .
...

...
...

...
. . .

...
...

bk 0 0 0 . . . ka0 (k − 1)a1 . . .
bk+1 0 0 0 . . . 0 (k + 1)a0 . . .
...

...
...

...
...

...
a0 b1 2b2 3b3 . . . kbk (k + 1)bk+1 . . .
a1 0 0 b2 . . . (k − 2)bk−1 (k − 1)bk . . .
a2 0 0 −b1 . . . (k − 4)bk−2 (k − 3)bk−1 . . .
...

...
...

...
...

...

The submatrix ∆

(
b1 . . . bk
c0 . . . ck−1

)
is upper triangular, with

(a0, 2a0, . . . , ka0) on the main diagonal. The submartix ∆

(
a0 . . . ad−2

c0 . . . ck−1

)
has only one non-zero entry, which is kbk 6= 0; this follows from (35) and (39).
Expanding det ∆ consecutively with respect to columns c0, c1, . . . , ck−1 , and
using (37), and (39), we obtain:

det ∆ = k!ak−1
0 bk(−1)d−k det ∆

(
bk, . . . , bd−1, a1, . . . , ad−2

ck, . . . . . . . . . , c2d−3

)
+ k!ak0 det ∆

(
bk+1, . . . , ad−2

ck, . . . , c2d−3

)
. (41)

This matrix ∆∗ = (W ∗)′ is obtained from ∆ by performing the following
operations: a) crossing out the rows b1 and a0 , and columns c0 and c1 , and
b) setting a0 = 0. These rules of obtaining ∆∗ follow from (30) or (31).

Consecutively expanding det ∆∗ with respect to columns c2, . . . , ck−2 , we
obtain

det ∆∗ = (k − 2)!ak−2
1 det ∆∗

(
bk, . . . , ad−2

ck, . . . c2d−3

)
22



= (k − 2)!ak−2
1 det ∆

(
bk, . . . , bd−1, a1, . . . , ad−2

ck, . . . . . . . . . , c2d−3

)
.(42)

Notice that the last determinant in (42) coincides with the determinant in
the first summand in (41).

Applying to (P ∗, Q∗) the same argument which proves (36), we obtain
a1bk > 0. Together with (36) this implies

a0a1 > 0. (43)

The reduced rational function f ∗ = Q∗/P ∗ belongs to the class R0(d − 1)
defined before Proposition 2.13, with C = R , z0 = x2d−3 and z1 = x2d−4 .
So we can apply Proposition 2.15 with d replaced by d− 1. This gives

det ∆∗ 6= 0. (44)

It follows from (44) that the determinant in the first summand in (41) has
non-zero limit as t → 0. In addition, by (39), bk has non-zero limit, while
a0 → 0 as t → 0. Thus, as t → 0, the first summand in (41) is equivalent
to cak−1

0 , where c 6= 0, while the second summand is O(ak0). So the sign of
det ∆ for 0 < t < 1 is the same as the sign of the first summand in (41), and
using (36), (43) we conclude that (40) holds.

Now, using Lemma 2.10, we can tell Case 1 from Case 2 by looking at the
net γ of f . This net is constructed using C = R and v0 = x2d−2 , and has
degree d . According to Proposition 2.13, for 0 < t ≤ 1, ft = Ψγ′(pt), with
a non-degenerate net γ′ of degree d , and some labelings pt ∈ Lγ′ . Passing
to the limit as t → 0, we obtain f0 = Ψγ′(p0). By (19), for t ∈ (0, 1], we
have pt(e) = 0 ⇔ p(e) = 0 for all edges e, except those connecting xk and
xk−1 . If there is only one such edge, it belongs to C , and deg f0 = d by
Lemma 2.10. Otherwise, there is an extreme chord between xk and xk−1

and deg f0 = d − 1. Thus Case 2 occurs if and only if there is an extreme
chord between xk and xk−1 .
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x5

0

x2x3 x1 0

0

x5 x4

Fig. 3. Steps of collapse. Case 2 occurs on the 5-th step with k = 5.

Now we relate sgn detφ′(f) to the net of f . Suppose first that f is a
real rational function f = Q/P , where P and Q are as in (28), and all
critical points x2d−2 < . . . < x1 < 0 are real and simple. The net γ = γ(f)
is defined using the reference circle C = R oriented from left to right, and
the reference point v0 = x2d−2 . Let k be the smallest integer such that γ

24



contains an extreme chord between xk and xk−1 . Then 2 ≤ k ≤ d .
Consider another non-degenerate net γ1 , of degree d−1, which is obtained

from γ by removing two vertices xk and xk−1 , and all five edges incident
to any of these two vertices, and replacing them by a single edge from xk+1

to xk−2 . Let f1 be the real rational function of degree d − 1 with critical
points at the vertices of γ1 , and such that γ(f1) = γ1 . Such function exists
by Proposition 2.3, and it is unique by Proposition 2.14.

We claim that

sgn detφ′(f) = (−1)k+dsgn det(φ∗)′(f1). (45)

To prove the claim, we shift one-by-one the critical points x1, . . . , xk−2 of
both functions f and f1 to the right to 0. Case 1 occurs k − 2 times for
each function. This does not change the sign of the determinants in (45).
Next we shift the critical point xk−1 of f to zero, and this still does not
change the LHS of (45). Finally we move the critical pojnt xk of f to 0,
and this time Case 2 occurs, f becomes reducible, and we obtain a rational
function f ∗ of degree d−1. The net γ(f ∗) is equivalent to γ1 , which follows
from Lemma 2.9. Then by Proposition 2.14, f ∗ = f1 , and equation (40)
implies (45).

To reformulate (45) in a convenient form, we associate to each non-de-
generate net γ a sequence (w0, . . . , w2d−3) of 0’s and 1’s, called a Catalan
sequence, in the following way. Consider the chord starting at a vertex vj ,
0 ≤ j ≤ 2d − 3. Let the other end of this chord be vi . If i > j , we put
wj = 0, and if i < j we put wj = 1. Then inv γ is defined as the number of
inversions in the Catalan sequence, that is inv γ = #{(i, j) : i > j, wi < wj}.
We claim that

sgn detφ′(f) = (−1)inv γ, (46)

Proof of (46). We use induction on d , starting from d = 3.
Consider a function f = Q/P of degree 3, where

P (z) = z2 + a1z + a0, and Q(z) = z3 + b2z
2 + b1z. (47)

Then

W (z) = a0b1 + 2a0b2z + (3a0 + a1b2 − b1)z2 + 2a1z
3 + z4

= c0 + c1z + c2z
2 + c3z

3 + z4,
.

Now we suppose that zeros of W are

x4 < x3 < x2 < x1 = 0.
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This implies that b1 = 0, c0 = 0, but c1, c2 and c3 are positive. In particular,

a0b2 > 0, and a1 > 0. (48)

To write the Jacobian determinant ∆ = detφ′(f), we order the coordinates
as in (29). Then

∆ =

∣∣∣∣∣∣∣∣
a0 0 −1 0
0 2a0 a1 0
0 2b2 3 0
0 0 b2 2

∣∣∣∣∣∣∣∣ = 4a0(3a0 − a1b2).

When x2 → 0, and the limit function has degree 3, we have b2 → 0, while a2
0

has positive limit, so ∆ > 0. Considering the net and its Catalan sequence,
we conclude inv f = 0, so (46) holds for our function f . Similarly, if x2 → 0,
and the limit function has degree 2, we have a0 → 0, and by (48) a0a1b2 > 0,
while a1b2 does not tend to zero, so ∆ < 0. Considering the net and its
Catalan sequence, we conclude that inv f = 1, so (46) holds. This establishes
the base of our induction.

Now suppose that deg f = d , and f1 in (45) satisfies an equation, similar
to (46):

sgn det(φ∗)′(f1) = (−1)inv γ1 , γ1 = γ(f1). (49)

Comparison of nets γ(f) and γ(f1) shows that

inv f = inv f1 + d− k. (50)

Now (45), (49) and (50) imply (46). 2

To complete the proof of Theorem 1.1 we use the following result from
[5, (2.6)].

Lemma 3.2 For even d, we have∑
γ

(−1)inv γ = u(d/2),

where sum is taken over all u(d) non-degenerate nets of degree d. 2

Remarks. One can show directly, using (46), that for all u(d/2) real rational
functions f of degree d from Example 1.3 the sign of detφ′(f) is the same.
This gives an alternative proof of Theorem 1.1, not using Lemma 3.2.
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4 A related problem of control theory

Suppose that a triple of real matrices S = (A,B,C) of sizes n × n, n ×m
and p× n is given. This triple S defines a linear system

ẋ = Ax+Bu,
y = Cx.

(51)

Here x, u and y are functions of time (a real variable) taking their values
in Rn , Rm and Rp , respectively. The values of these functions at a point
t ∈ R are interpreted as the state, input and output of our system at the
moment t.

Behavior of system (51) is completely determined by the transfer function
z 7→ C(zI −A)−1B , which is a function of a complex variable z with values
in the set of p × m matrices. One wishes to control such system (51) by
arranging a feedback, which means sending the output to the input via an
m× p matrix K , which is called a gain matrix:

u = Ky. (52)

Elimination of u and y from (51), (52) gives the closed loop system

ẋ = (A− BKC)x,

whose transfer function has poles at the zeros of the polynomial

ψK(z) = det(zI − A− BKC). (53)

The map K 7→ ψK is called the pole placement map, and the problem of pole
assignment is: given a system S , and a set {z1, . . . , zn} , symmetric with
respect to R , to find real K so that the zeros of ψK are {z1, . . . , zn} . We
refer to the survey [2] for the results on the pole assignment prior to 1980.

We say that for given (m,n, p) the pole placement map is generically
surjective if there is an open dense set U of triples S = (A,B,C) such that
for S ∈ U the pole placement map is surjective. Dimensions count shows
that the condition n ≤ mp is a necessary condition for generic surjectivity.
If complex gain matrices are permitted, this condition is also sufficient, see,
for example [2]. It was proved by X. Wang [13] that for n < mp the real
pole placement map is generically surjective (see also [14, 9]. We consider the
real pole placement map with n = mp. We also assume that our system is
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given in minimal representation [1] which means that its open loop transfer
function C(zI−A)−1B cannot be represented in a similar form with a matrix
A of smaller size.

To understand the structure of the pole placement map, we use a coprime
factorization of the open loop transfer function [1, Assertion 22.6]:

C(zI − A)−1B = D(z)−1N(z), detD(z) = det(zI − A), (54)

where D and N are polynomial matrix-functions of sizes p× p and p×m,
respectively. This factorization associates to our linear system a polynomial
matrix [D(z), N(z)] of size p×(m+p) with the property that the leftmost p×
p minor D(z) has degree n = mp, while all other minors have smaller degree,
and minors of order p have no common zeros. In the opposite direction, for
a given polynomial matrix [D(z), N(z)] with these properties, there exists a
linear system (A,B,C) such that (54) holds.

Using this (54) and the identity det(I − PQ) = det(I − QP ), which is
true for all rectangular matrices of appropriate dimensions, we write

ψK(z) = det(zI −A−BKC) = det(zI − A) det(I − (zI − A)−1BKC)

= det(zI −A) det(I − C(zI −A)−1BK)

= detD(z) det(I −D(z)−1N(z)K) = det(D(z)−N(z)K).

This can be rewritten as

ψK(z) =

∣∣∣∣ D(z) N(z)
K I

∣∣∣∣ . (55)

In the last determinant, the first p rows depend only on the given system,
and the last m rows on the gain matrix. The maximal degree of the p × p
minors of the first p rows of this determinant is called the McMillan degree of
the system S , and it is equal to mp for a generic system with n = mp. Now
we permit arbitrary m× (m+ p) matrices K̂ of maximal rank as the last m
rows of the determinant in (55). A linear system represented by [D(z)N(z)]
is called non-degenerate if ψK̂ 6= 0 for all such K̂ . This property is generic,
that is it holds for an open dense set of systems. Thus for non-degenerate
systems the pole placement map extends to

φS : GR(m,m+ p)→ RPmp, φS(K̂) = [ψK ], (56)

where [.] means the class of proportionality of a polynomial, which is identi-
fied with a point in RPmp , using the coefficients of a polynomial as homoge-
neous coordinates. As we have seen in the Introduction, the map (56) is well
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defined. Applying Laplace’s expansion along the first p rows to the determi-
nant in (55), we conclude that the map φS , when expressed in Plücker coor-
dinates, is nothing but a projection of the Grassmann variety GR(m,m+ p)
into RPmp from some center S . This interpretation of the pole placement
map as a projection comes from [14].

We notice that projections associated with linear systems share the prop-
erty of the Wronski map stated in Remark 1 in the Introduction: φ−1

S (Y ) =
X, where X is the big cell of the Grassmann variety and Y is the big cell
of RPmp . So the maps (56) have well-defined degree. As S varies, the de-
gree can change only when S intersects the Grassmann variety, that is only
when a system becomes degenerate. As the Wronski map corresponds to a
non-degenerate system, we obtain

Corollary 4.1 For every odd integer m there exists an open set U of sys-
tems with m inputs, 2 outputs and state of dimension 2m such that for
systems in U the real pole placement map is surjective. Furthermore, the
pole placement problem for such systems has at least u((m + 1)/2) real so-
lutions for any generic set of 2m poles symmetric with respect to the real
line.

2

References

[1] D. Delchamps, State space and input-output linear systems, Springer,
NY, 1988.

[2] C. Byrnes, Pole assignment by output feedback, in: H. Nijmeijer, J.
Schumacher, eds., Three Decades of Mathematical Systems Theory, Lect.
Notes Contr. Inf. Sci., 135, Springer-Verlag, 1989.

[3] A. Eremenko and A. Gabrielov, Rational functions with real critical
points and the B. and M. Shapiro conjecture in real enumerative ge-
ometry, to appear in Ann. Math. in 2002.

[4] A. Eremenko and A. Gabrielov, New counterexamples to pole placement
by static output feedback, to appear in Linear Algebra and Appl.

[5] J. Fürlinger and J. Hofbauer, q -Catalan numbers, J. Comb. Theory, Ser.
A, 40 (1985) 248–264.

29



[6] L. Goldberg, Catalan numbers and ramified coverings of the sphere, Adv.
Math., 85 (1991) 129–144.

[7] Ph. Griffiths and J. Harris, Principles of algebraic geometry, Willey, NY,
1978.

[8] W. Hodge and D. Pedoe, Methods of algebraic geometry, v. 2, Cambridge
UP, 1953.

[9] J. Rosenthal, J. Schumacher, J. Willems, Generic eigenvalue assignment
by memoryless real output feedback, Systems and Control Letters, 26
(1995), 253–260.

[10] J. Rosenthal, F. Sottile, Some remarks on real and complex output
feedback, Systems Control Lett., 33 (1998), 73–80.

[11] F. Sottile, Special Schubert calculus is real, Electronic Res. Announce-
ments, AMS, 5 (1999) 35–39.

[12] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press,
Cambridge, 1999.

[13] X. Wang, Pole placement by static output feedback, J. Math. Syst.
Estim. Contr., 2 (1992), 205–218.

[14] X. Wang, Grassmannian, central projection, and output feedback pole
assignment of linear systems. IEEE Trans. Automat. Control 41 (1996),
no. 6, 786–794.

[15] J. Willems, W. Hesselink, Generic properties of the pole placement prob-
lem, Proc. IFAC, Helsinki, 1978, 1725-1728.

Purdue University, West Lafayette, Indiana 47907
eremenko@math.purdue.edu
agabriel@math.purdue.edu

30


