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Hierarchical aggregation in percolation model
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Abstract

There is a growing belief that the complex dynamics of seismicity can be better understood by studying the collective behavior

of numerous lithosphere instability sources rather than focusing on the details of each of them. Classical site-percolation is a simple

and tractable model which exhibits such important general features of complex systems as criticality and phase transitions of

second kind. It also illustrates the mechanism of hierarchical aggregation, which is very important for explaining collective

phenomena in material fracture and earthquake nucleation processes. We study the dynamics of a 2D site percolation model on a

square lattice using the hierarchical approach introduced by Gabrielov et al., Phys. Rev. E., 5293–5300, 1999. The key elements of

the approach are the tree representation of clusters and the Horton–Strahler scheme for cluster ranking. Accordingly, the evolution

of percolation model is considered as a hierarchical inverse cascade of cluster aggregation. We analyzed the growth of the

percolation cluster and established the time-dependent rank distribution of its subclusters, as well as corresponding laws for its

mass, rank, and their relationship. We report several phenomena premonitory to the onset of percolation that complement the

traditional power-law increase of the model’s observables. In addition, we have shown that the Tokunaga side-branching constraint

uniquely determines the mass–rank relationship for a general aggregation process (not necessarily originated from the percolation

model). The results can be used for development and improvement of earthquake prediction techniques.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Earthquakes pose an intolerable threat to society; yet

their complex dynamics can hardly be described by a

constitutive set of a few fundamental equations. There

is an increasing belief that predictive understanding of

the behavior of the lithosphere, which generates earth-

quakes, might result if the research focus shifts from an

increasing number of specific sources of lithospheric

instability and deformation to their essential collective
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behavior (Aki, 1995; Keilis-Borok, 1996, 2002; Keilis-

Borok and Soloviev, 2003; Turcotte, 1991, 1997, 2001;

Rundle et al., 2000). During the last two decades,

several general concepts and approaches for studying

collective phenomena have been successfully applied to

various geophysical problems, particularly to describ-

ing the dynamics of seismicity. Among them are the

concepts of phase transition of second kind (Kadanoff,

2000; Rundle et al., 2000) and self-organized criticality

(SOC) (Bak et al., 1998). The latter applies to systems

that are maintained near a critical point: a state with no

natural length scale typically reflected in a power-law

statistics of a system’s observables (think of the power-

law distribution of seismic moments).
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Classical site-percolation model presents probably

the simplest and best studied system that exhibits crit-

icality and experiences (geometrical) phase transition of

second kind (Stauffer and Aharony, 1994). It is widely

used as a toy model for spatially distributed stochastic

processes, such as diffusion in disordered media, forest

fires, gelation, semiconduction, etc. Importantly for our

study, percolation model presents a very transparent

mechanism of the process of hierarchical aggregation,

which is very relevant for the dynamics of seismicity.

An early idea of using hierarchical aggregation for

describing essential properties of material fracture and

earthquake nucleation appeared in the seminal works of

Allegre et al. (1982), and Newman and Knopoff (1982,

1983, 1990), Knopoff and Newman (1983) and has

been actively employed since then (Blanter et al.,

1997a,b; Gabrielov et al., 2000a; Narkunskaya and

Shnirman, 1990; Newman and Gabrielov, 1991; New-

man et al., 1995; Shnirman and Blanter, 2001; Zaliapin

et al., 2003). A recent general review of the theory and

models of kinetics of irreversible aggregation is given

by Leyvraz (2003).

The principal novelty facilitating the recent efforts in

the hierarchical aggregation research is the use of the

Horton–Strahler scheme (Horton, 1945; Strahler, 1957;

Newman et al., 1997) to assign ranks to the elements of

hierarchical structures (cascades), as well as the Toku-

naga classification (Tokunaga, 1978; Newman et al.,

1997), which is used to describe the complex self-

similar branching within those structures. The rediscov-

ery of the Horton–Strahler scheme (see Section 3),

which originated in hydrology and has not been well

known in physical applications, allowed Gabrielov et

al. (1999) to formulate an exactly solvable model for

steady-state approximation to the aggregation process.

Their analytical results were confirmed by extensive

simulations of Morein et al. (2004), who focused on a

steady-state regime in a modified forest-fire model; and

Zaliapin et al. (2004), who applied the hierarchical

description to the classical percolation model. The

Horton–Strahler ranking scheme is shown essential

for building an empirical description and developing

numerical models in various geophysical, biological,

and computational applications (da Costa et al., 2002;

Badii and Politi, 1997; Gabrielov et al., 1999; Morein et

al., 2004; Newman et al., 1997; Toroczkai, 2001; Tur-

cotte et al., 1998). Notably, hierarchical ranks are more

feasible than masses for observations in practice; they

present a convenient bmacroscopicQ measure of cluster

size, and provide a natural alternative to the logarithmic

binning commonly used in analysis of modeled and

observed processes.
In this study we describe the evolution of a perco-

lation model (and, particularly, the percolation cluster)

in terms of hierarchical aggregation of smaller clusters

into larger ones using the Horton–Strahler ranking

scheme. Our goal is three-fold: First, this contributes

to a novel understanding of the percolation phenome-

non as a time-dependent hierarchical inverse cascade

process (Turcotte et al., 1999). Second, this further

validates the analytical modeling approach introduced

by Gabrielov et al. (1999) and developed by Morein et

al. (2004) for a steady-state approximation to a general

aggregation process. Third, this sets a basis for devel-

oping earthquake prediction techniques based on dy-

namical properties of the inverse cascades. A simple

model considered in this work naturally suggests sev-

eral patterns premonitory to the percolation onset; they

could be further tested in this and other models and

observations.

Specifically, we describe the evolution of percolation

model in terms of an inverse cascade of hierarchical

cluster aggregation. We focus on the evolution of the

first spanning cluster in the classical site-percolation

model, and describe it by tracing the consecutive hierar-

chical fusion of smaller clusters into larger ones. Note-

worthy, we are interested not in a final solution of a

percolation state, but in an evolutionary path leading

from the juvenile single-particle clusters to a self-similar

population of clusters of arbitrary large size (limited by

the finiteness of the lattice), the percolation cluster in-

cluded. Thus we depart from the steady-state assumption

of (Gabrielov et al., 1999;Morein et al., 2004; Turcotte et

al., 1999) as well as from the asymptotic focus on the

percolation onset typical for the classical percolation

studies (Stauffer and Aharony, 1994).

Many phenomena encountered in the percolation

model mimic what we see when the phase transitions

of second kind occur. Note however that these phenom-

ena are of purely geometrical and statistical rather than

physical nature. Indeed, the physical percolation theory

is largely predicated in this geometrical model and there

are many empirical links between them; this is why the

percolation model is said to be an example of the

geometrical phase transition of the second kind, and

why its nomenclature emerges from that of the physical

critical phenomena.

2. Model

2.1. Dynamics

We consider the classical 2D site-percolation model

(Stauffer and Aharony, 1994). The model dynamics



Fig. 1. Sample percolation model. The percolation cluster is shown in

black: it connects the top and bottom sides of the grid. Coincident

smaller clusters are shown in gray, empty sites are white.

Fig. 2. Multiple coalescence of clusters. (a) Coalescence of clusters is

materialized by adding to the lattice a new particle N (black) that is a

neighbor to one, two, three, or four existing clusters (numbered gray

sites). The relative frequencies Qk, k =1, 2, 3, 4 of k-coalescences

based on simulations with L=2000 are shown in the figure. The

corresponding tree is constructed as shown in panel (b) (for k =1

and (c) (for k =2). The cases k =3, 4 are analogous to k =2. Note tha

about 95% of coalescences result in merging two clusters. See text fo

details.
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starts with an empty L�L square lattice. At each step a

particle is dropped into a randomly chosen unoccupied

site; thus each site can be either occupied by one and

only one particle or empty. Two sites are considered

neighbors if they share one side; each site on a square

lattice has four neighbors. Cluster is defined as a group

of occupied neighbor sites (Stauffer and Aharony,

1994). Time refers to the steps at which particles drop

onto the lattice. Since we do not have annihilation of

particles, time is formally equivalent to the number of

particles on the lattice. It is convenient to normalize

time by the lattice size L2 so it varies from q =0 at the

start to q =1 when all sites are occupied. During the

system evolution, occupied sites start to aggregate and

clusters begin to form. Once a sufficient number of

particles is accumulated, a percolation cluster is formed

connecting the opposite sides of the lattice vertically

and/or horizontally (Fig. 1). In the limit of an infinite

lattice, the percolation cluster is formed at qcc
0.59274606 (Newman and Ziff, 2001), while for a finite

lattice the critical time qc (L) is smaller (Stauffer and

Aharony, 1994):

qc Lð Þ ¼ qc � cL�3: ð1Þ

2.2. Tree representation of clusters

We represent each cluster by a tree that reflects the

time-dependent formation of a cluster (its history), and

is a subject for quantitative analysis. Specifically, each

one-particle cluster is represented by a trivial tree con-

sisting of a single node. When two clusters merge their

trees are also merged by adding a new node (parent) for

which they become children (and siblings to each other.)

In our model, the coalescence of two or more clusters

can only be materialized by adding to the lattice a new
particle which will be a neighbor to one or more existing

clusters. Fig. 2a illustrates the four possible types of

coalescence; we call k-coalescence a situation when a

newly dropped particle (marked N in the figure) is a

neighbor to exactly k =1, 2, 3 or 4 existing clusters (gray

numbered sites). Numerical simulations on a square

lattice with L=2000 suggest the following relative fre-

quenciesQk of k-coalescences:Q1c0.628,Q2c0.318,

Q3c0.052,Q4c0.002. Fig. 2b,c illustrate how a tree is

formed for different coalescence types. There are two

basic situations: When a new particle is a neighbor to

only one existing cluster, it is considered as an individ-

ual one-particle cluster that is connected to the existing

one. The connecting node of the tree in this case does

not correspond to a particle on the lattice (panel b).

When a new particle is a neighbor to two, three, or

four existing clusters, it is not considered as an individ-

ual cluster. Instead, it corresponds to the connecting

node in the tree (panel c). Thus, the connecting node

in a tree may or may not correspond to a lattice particle

depending on the coalescence type. The branching pa-

rameter (number of children for a given parent) of a tree

for any cluster varies between 2 and 4. Note that both 1-

and 2-coalescences result in merging only two clusters;

accordingly, most of the observed coalescences (about

95% according to our simulations on L=2000 lattice)

involve only two clusters while coalescence of three or

four clusters is a rare event.

The consecutive process of tree formation for a

simple four-particle cluster is illustrated in Fig. 3. To

construct the tree one needs to consider all consecu-

tive coalescences that have formed the cluster, not
)

t

r



Fig. 3. Tree representation of clusters: scheme. The dynamics is from left to right. At first step particle A is dropped onto the lattice and a one-

particle cluster is formed; it is represented by a one-node tree. At second step another one-particle cluster B is formed; it is represented by another

one-node tree. At third step new particle C coalesces with cluster A to form two-particle cluster AC. This cluster is represented by a three-node tree;

note that the connecting node of the tree does not correspond to any particle. At fourth step new particle D connects existing clusters AC and B to

form four-particle cluster ABCD. This cluster corresponds to a five-node tree.
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only its final shape. Therefore, it is clear that the same

tree may correspond to clusters of different shape: Fig.

4a shows two 11-particle clusters that both correspond

to the same tree shown in panel b. Accordingly,

working with trees, we unavoidably narrow the infor-

mation about the cluster population. Notice however

that trees capture an excessively larger amount of

information than mere cluster masses. Summing up,

the time evolution of a cluster is necessary and suffi-

cient to uniquely determine the corresponding tree,

while the inverse is not true. Generally, clusters of

different shape may correspond to the same tree (see

Fig. 5); as well as clusters of the same final shape but

with different formation history may correspond to

different trees (see Fig. 4). The non-uniqueness of

the tree representation of clusters does not affect our

results, and it is beyond the scope of this paper. Next,

we describe the ranking of clusters, presenting a con-

ventional alternative to the logarithmic binning of

cluster masses.
Fig. 4. (a) Non-uniqueness of tree representation. Two different 11-particle

have been dropped according to their alphabet marks; so first was the particle

shown next to the tree nodes.
2.3. Horton–Strahler ranking

The appropriate ordering of trees (clusters) is very

important for meaningful description and analysis of

the model dynamics. The problem of such an ordering

is not trivial since the clusters may grow and coalesce in

a variety of peculiar ways. An advantageous solution to

this problem is given by the Horton–Strahler topolog-

ical classification of ramified patterns (Horton, 1945;

Strahler, 1957; Badii and Politi, 1997; Newman et al.,

1997) illustrated in Fig. 4b: One assigns ranks to the

nodes of a tree, starting from r=1 at leaves (clusters

consisting of one particle.) When two or more clusters

with ranks ri, i=1, ..., nz2, merge together, a new

cluster is formed with the rank (Badii and Politi, 1997):

r ¼ r1 þ 1; if ri ¼ r18i ¼ 1; . . . ; n
max rið Þ; otherwise:

�

The rank of a cluster is that of the root of the

corresponding tree. It is also possible to consider an
clusters that correspond to the same tree shown in panel (b). Particles

A, then B, etc. (b) Horton–Strahler ranking: illustration. The ranks are



Fig. 5. Non-uniqueness of tree representation. Three clusters with the

same final shape but different history of formation are represented by

different hierarchical trees. Particles have been dropped according to

their alphabet marks; so first was the particle A, then B, etc. The

Horton–Strahler ranks are shown next to the tree nodes.

Fig. 6. Mass–rank distribution observed on a 2000�2000 lattice a

percolation. Dots—individual clusters, balls—average mass mr with

in a given rank. Line shows the relation mr ¼ 100:625
� �r�1

c4:2r�1:

Fig. 7. Parameter c of the mass–rank relation mr =c
r � 1 as a function

of time. At percolation c (qc)64.2; the Euclidean limit of Gabrielov

et al. (1999) corresponds to c =3.25, it is reached at qc�q60.14.
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alternative definition of ranks (Newman et al., 1997):

When at least two clusters with rank r coalesce, and

other coalescing clusters have a lower rank, the rank of

a new cluster becomes r +1. Clearly, the two definitions

coincide when only two clusters coalesce. The results

reported in this paper are independent of a particular

definition, since coalescence of more than two clusters

(especially of high ranks) is a rare event.

3. Mass–rank relationship

In this section we analyze the average mass mr of

clusters with a given rank r; this is important for

connecting various mass and rank scaling laws. The

observed mass–rank distribution of clusters at percola-

tion is shown in Fig. 6; it obeys the exponential relation

mr ¼ 10c r�1ð Þ ¼ cr�1; ð2Þ

with cc0.625, c =10cc4.2. Our simulations suggest

that the mass distribution within a given rank is ap-
t

-

proximately lognormal (not shown) with the mean

given by Eq. (2) and a rank-independent standard de-

viation. The steady-state simulations of (Morein et al.,

2004) suggest c =4.325, which is reasonably close to

c =4.2 that we observe at percolation.

The exponential relation of Eq. (2) happens to be

valid over the entire time interval 0bq bqc; the

corresponding dynamics of c (q) is shown in Fig. 7. It

grows with time from about 2.0 at the earliest stages to

4.2 at percolation. This growth reflects the fact that

clusters become more weighty with time due to cou-

pling with the clusters of lower ranks (which does not

change the rank but increases the mass). The growth is



ig. 8. Dynamics of population nr d L
2 of a given rank, r =6, 7, 8 for

=2000. Moment of percolation is depicted by a vertical dashed line.
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not monotonous; it is accompanied by pronounced log-

periodic oscillations which are associated with creation

of new ranks. The log-periodic oscillations that accom-

pany general power-law increase of observed para-

meters have been found in many systems including

hierarchical models of defect development Newman

et al., 1995), biased diffusion on random lattices (Stauf-

fer and Sornette, 1998), diffusion-limited aggregation

(DLA) (Sornette et al., 1996), and others. Log-periodic

oscillations can be naturally explained by the Discrete

Scale Invariance (DSI) (Sornette, 2004), which occurs

in a system whose observables scale only for a discrete

set of values. A famous example of DSI is given by the

Cantor set that possesses a discrete scale symmetry: In

order to superimpose its scaled image onto the original,

one has to stretch it by the discrete factors 3n, n =1, 2, ...,

not a continuous set of values. The Cantor set and

percolation belong to systems with built-in geometrical

hierarchy, leading to DSI. In our particular system, ranks

take only a countable set of values. Creation of new

ranks necessarily disrupt the system in a discontinuous

way resulting in the log-periodicity.

Recall that the models of (Gabrielov et al., 1999;

Morein et al., 2004) use the bfractal correctionQ e to the

cluster shape; this correction affects the rate rij of

cluster coalescence:

rijce�jj�ijLiLj;

where Li is the total boundary size of the clusters of

rank i. The correction e can be expressed as (Gabrielov

et al., 1999)

e ¼ 1ffiffiffi
c

p c� 1

c� 2
;

which, together with results of Fig. 7, shows that in the

percolation model the effective value of e decreases in

time passing the Euclidean limit e=1 (Gabrielov et al.,

1999) at (qc�q)c0.14 and approaching the steady-

state bfractalQ ec0.68 (Morein et al., 2004) at q =qc.

The interval 2bcV4.2 observed during 0bqVqc cor-

responds to l N ez0.68.

4. Cluster size distributions

Time-dependent rank distribution of clusters pro-

vides essential information about the model dynamics.

Also it presents a direct counterpart of the Gutenberg–

Richter law for magnitude distribution in observed

seismicity. The study (Zaliapin et al., 2004) demonstrat-

ed that simple substitution of the mass–rank relation (2)

into well-known laws for the dynamics of cluster

masses (Stauffer and Aharony, 1994) does not provide
a proper description of the time-dependent rank distri-

bution, suggesting an original non-trivial character of a

hierarchical description. In this section we summarize

time-dependent laws for the mass- and rank-distribu-

tions (Stauffer and Aharony, 1994; Zaliapin et al.,

2004), starting with a look at empirical observations.

4.1. Observed dynamics of cluster population

The dynamics of the total number (nr d L
2) of the

clusters of a given rank r is illustrated in Fig. 8 for r =5,

6, 7. The population follows a characteristic bell-shaped

trajectory with the peak prior to percolation. One does

not observe a steady-state behavior in the cluster dy-

namics: The population of each rank steadily develops

to its peak as a result of merging of the clusters of lower

ranks; then it starts decreasing, giving birth to the

clusters of higher ranks. As naturally follows from the

model definition, the peak of the population of a higher

rank comes after the peak of a lower rank. Fig. 9 shows

the population dynamics for the ranks 1V rV11 in

semilogarithmic scale; here one clearly sees the simi-

larity in the dynamics of different ranks. Note that this

figure is remarkably similar to Fig. 7 from (Turcotte et

al., 1999) that shows the dynamics of clusters with

logarithmically binned masses.

Figs. 10 and 11 illustrate the mass and rank distribu-

tion for a system with L=2000 at q =0.29 (dashed line),

and at percolation (dash-dotted line). To smooth out

statistical fluctuations, Fig. 10 shows the number of

clusters with mass equal to or larger than m:P
mVzmnm (qc). The cluster size distribution is promi-

nently transformed during the model development: its

downward bend at the early times is substituted at per-
F

L



Fig. 11. Rank distribution of clusters observed for 2000�2000 lattice

at percolation q =qc (dash-dotted line), q =0.29 (dashed line), and

averaged over the percolation cycle 0bq bqc (solid line). For com-

parison, all curves are normalized to unity at r =1.

Fig. 9. Dynamics of population nr of a given rank, 1V r V11 in

semilogarithmic scale. Moment of percolation is depicted by a vertical

dashed line. (Cf. Fig. 7 from Turcotte et al., 1999).

I. Zaliapin et al. / Tectonophysics 413 (2006) 93–107 99
colation with an almost linear (in bi- or semi-log scale)

shape with a slight upward bend for the largest clusters.

4.2. Time-dependent laws for cluster size distribution

It is known that the time-dependent mass distribu-

tion is described by Stauffer’s two-exponent scaling law

(Stauffer, 1975; Stauffer and Aharony, 1994; Margolina

et al., 1984):

nm qð Þfm�sf0 zð Þ; z ¼ qc � qð Þm1=2 þ z0; ð3Þ

where nm (q) is the number of clusters of mass m per

lattice site at instant q. The Fisher exponent s =187 /
91c2.05 is universal for 2D systems (Fisher, 1967;
Fig. 10. Mass distribution of clusters observed on a 2000�2000

lattice at percolation q =qc (dash-dotted line), q =0.48 (dashed

line), and averaged over 0bq bqc (solid line). To smooth out statis-

tical fluctuations we show the cumulative distribution: ~
P

mVNmnmd .

For comparison, all curves are normalized to unity at m =1.
Stauffer and Aharony, 1994); the function f0 has a bell-

shaped form with maximum to the left of percolation;

and the shift z0 is independent of m.

Considered as a function of m, the two-exponent

scaling explains the power law mass distribution at

percolation (with q0= f0 (z0)):

nm qcð Þfq0m
�s; ð4Þ

it also explains the downward bend for q bqc, clearly

observed in Fig. 10 (dashed line). At the same time, as a

function of q it describes the bell-shaped dynamics of

clusters with given mass m. Eq. (4) suggests the slope

s�1c1.05 for the cumulative mass distribution, while

the observed slope 0.96 is somewhat less than that (see

Fig. 10). This is due to the impact of two concurrent

phenomena: so-called bdeviation from scalingQ at small

m (Hoshen et al., 1979) and finite-size effects at large m

(Margolina et al., 1984; Hoshen et al., 1979) (see

Section 4).

When we switch to the rank description, the two-

exponential scaling is no longer sufficient. As shown in

(Zaliapin et al., 2004), the number nr (q) of clusters of
rank r at instant q is obeying the three-exponent scaling

nr qð Þfg0 zð Þ10�br; z ¼ qc � qð Þh rð Þ þ zV0; ð5Þ

h rð Þ ¼ a110
r1r; zV0 rð Þ ¼ a210

�r2r ð6Þ

with

r1c0:23; r2c0:03; a1c1:54; a2c1:43

and function g0 being approximately Gaussian:

g0 zð Þ ¼ exp � z2=2
� �

:



I. Zaliapin et al. / Tectonophysics 413 (2006) 93–107100
The three-exponent scaling (5) is consistent with an

exponential approximation to the rank distribution at

percolation (with P0=g0 (zV0))

nr qcð Þfp010
�br; bc0:62: ð7Þ

Possible deviations from the pure exponential law at

q bqc (clearly observed in Fig. 11) and dynamics of a

given rank (see Figs. 8 and 9) are described by specific

form of the functions g0 (d ), h (d ), and zV0 (d ). The

function g0 (z) is shown in Fig. 12 where different

symbols depict clusters of different ranks. The collapse

is obvious, confirming the validity of the three-expo-

nent scaling (5) and (6).

In the Stauffer’s scaling (3) for cluster masses, the

time renormalization (qc�q)m1 / 2 collapses the dyna-

mics of mass m clusters onto the master curve f0 (z� z0)

with its only peak shifted by z0 leftward from percola-

tion; the shift z0 is mass independent. Similarly, in the

scaling (5) and (6) for ranks the time renormalization

(qc�q)10r1r collapses the dynamics of rank r clusters

onto the master curve g0 (z� zV0), although the shift

now is rank dependent and is given by 10r2r.

4.3. Averaged scaling

In applications, it is often impossible to measure the

size distribution of system elements at a given time

instant. Moreover, sometimes the instantaneous size

distribution does not exist at all; this is indeed the

case for the systems described by marked point pro-

cesses widely used to model seismicity, volcano activ-

ity, starquakes, etc. (Daley and Vere-Jones, 2003). In

such situations one uses the averaged measurements.
Fig. 12. Three-exponent scaling for rank dynamics. The master

Gaussians g0 (z) for different ranks collapse when using the renorma-

lization given by Eqs. (5) and (6).
For instance, the famed Gutenberg–Richter law (Guten-

berg and Richter, 1954; Turcotte, 1997; Ben-Zion,

2003) that gives exponential approximation to the size

distribution of earthquakes (via their magnitudes) is

valid only after appropriate averaging over a suitable

spatio-temporal domain. This explains the importance

of the question: How do the distributions of Eq. (3) and

(5) change after temporal averaging?

The integration of (3) over the interval 0VqVqc

gives (Zaliapin et al., 2004):

nm
^~m�5=2: ð8Þ

The validity of (8) is confirmed by the observed

averaged mass distribution shown by the solid line in

Fig. 10: it retains the power-law form (4) of the distri-

bution at percolation while the slope is increased by 1 /2

due to averaging.

Similarly, for ranks one obtains (Zaliapin et al.,

2004):

nr
^~10�ra; ac0:87: ð9Þ

Again, the averaged rank distribution retains the ex-

ponential form (7) of the distribution at percolation;

while its index has increased due to averaging (see

Fig. 11).

4.4. Correction to simple scaling

Due to finiteness of the lattice, the results of previ-

ous sections require some corrections to exactly match

the simulated rank distributions. The pure power and

exponential laws in Figs. 10 and 11 are just first-order

approximations to the observed cluster distributions at

percolation. In both cases one sees the downward bend-

ing for small clusters and upward bending for large

clusters. These are not due to statistical fluctuations.

The downward bending for small clusters is explained

by bdeviations from scalingQ (Hoshen et al., 1979): it

can be shown analytically that the small clusters do not

yet obey the general scaling law of Eqs. (4) and (7)

which holds only for large enough masses (ranks). The

upward bend at large clusters is due to finite-size effects

(Hoshen et al., 1979; Margolina et al., 1984): each large

cluster that reaches outside the lattice boundary is

bseenQ as a number of smaller clusters, thus creating

the upward deviation from the pure power (exponential)

law. This phenomenon is especially important when the

system is close to percolation and clusters of arbitrary

large sizes have already been formed. The appropriate

scale corrections for the mass distribution were studied

by Hoshen et al. (1979) and Margolina et al. (1984).



Fig. 13. Dynamics of the mass of the cluster which will percolate first

Main panel shows the average over 1000 runs of a model with

L=2000, insert shows the dynamics of a single model run.
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In case of the mass distribution, the corrections to

scaling are given by (Margolina et al., 1984):

nm qcð Þgm�s q0 þ q1m
�X þ qLm

1=DL�1
� 	

; ð10Þ

where Xc0.75, 1 /D =48 /91 is the universal mean

cluster radius exponent, and q0, q1, qL are independent

of s and L. The first additional term describes the

deviation from scaling for small clusters, while the

second one is responsible for finite-size effects.

For the rank distribution, the bdeviations from scalingQ
at lower clusters are only observed for r=1; while the

finite-size effects at large clusters are clearly present for

many ranks. Zaliapin et al. (2004) proposed the follow-

ing correction to scaling for the rank distribution:

nr qcð Þg10�br p0 þ pL10
drL�1

� �
;rN1: ð11Þ

with

d ¼ 1

D
log10cc0:33

and showed that the observed ranks 4V rV9 nicely fol-

low the predicted scaling.

Importantly, the corrections to scaling (11) act at all

cluster sizes, so they cannot be neglected even for the

intermediate clusters, not only for the largest ones.

Indeed, their effect decreases with L, but this decrease

is very slow. Notably, as shown by Morein et al. (2004)

(their Fig. 5) even for lattices as large as L=30,000

during the process when clusters as large as 2% of the

lattice size are removed, the cluster size distribution

clearly exhibits the upward deviations at large ranks

(r =11, 12, 13.) For smaller systems these deviations

become dominant and may lead to an artificial decrease

of the observed slope of cluster size distribution; this is

demonstrated in Figs. 10 and 11 and is also seen in the

analysis of Turcotte et al. (1999) (their Fig. 9).

5. Properties of percolation cluster

This section analyzes the growth of the percolation

cluster; that is, we consider the time-dependent proper-

ties of the cluster that will first span the lattice (un-

avoidably using the information from the bfutureQ).
Such properties, being compared to the average statis-

tics over the entire cluster population, might be useful

for general description of the model as well as for

improving the observer’s knowledge about the moment

of the approaching percolation. Studying the percola-

tion cluster separately from the rest of the model can be

considered an analog to concentrating on the region

surrounding the epicenter of a large regional earthquake

versus the entire region; the latter approach being tra-
ditionally and effectively used in earthquake prediction

research. We emphasize that studying the percolation

cluster may differ from studying the largest cluster on

the grid. Indeed, for large lattices the percolation cluster

is almost surely is the largest one at the moment of

percolation; this equivalence though may not hold at

the earlier stages of the model dynamics as well as for

intermediate size lattices. Below we use the term

bpercolation clusterQ to denote the cluster that will

percolate first in a given model run.

5.1. Mass dynamics of percolation cluster

The time-dependent mass mp (q) of the percolation

cluster, averaged over 1000 runs of the model on

L=2000 grid, is shown in Fig. 13. One can easily

distinguish the following three major stages of the

mass development: Intermediate dynamics, 0.3N (qc�
q)N0.01, is well described by the scaling law

mpc5:0� qc � qð Þ�2:05: ð12Þ

However, at early times, (qc�q)N0.3, as well as in
the immediate vicinity of percolation, (qc�q)N0.01, the
mass dynamics deviates downward from the scaling of

Eq. (12). At early times this is due to the bdeviations
from scalingQ (Hoshen et al., 1979), while at later times

to the finite size effects (Hoshen et al., 1979; Margolina

et al., 1984) (see Section 4). The downward deviation

from the power scaling at later times seems a nice

signal of the approaching percolation. However such

a signal might be undetectable in a particular model

run, as illustrated in the insert of Fig. 13: While the

overall scaling with exponent 2.05 is clearly observed,
.
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the downward deviation prior to percolation is not seen

for this particular realization. This problem is very

similar to the one typically faced in earthquake predic-

tion studies: many premonitory seismicity patterns (the

Benioff strain release (Jaume and Sykes, 1999) being

the most popular one) are easily detected by the stack-

ing data from many large earthquakes, but almost un-

seen in the observed seismicity prior to a single

earthquake.

It should be noted though that the direct analog of a

power law Benioff strain release—a power law mass

increase of the percolation cluster—seems to be nicely

detectable even in a single model run (see insert in Fig.

13), and may serve as a basis for predicting the onset of

percolation. We leave a detailed treatment of such a

prediction technique for a further study, and proceed

now with the dynamics of the rank of the percolation

cluster.

5.2. Rank dynamics of percolation cluster

We argued above that the ranks are more feasible for

observations than masses. This advocates the study of

rank dynamics for the percolation cluster. Fig. 14 shows

the time-dependent rank rp(q) of the percolation cluster,
averaged over 1000 runs of the model on an L=2000

grid. The following exponential increase is clearly ob-

served at intermediate times to percolation, 0.3N (qc�
q)N0.01:

rpc2:2� 3:35� log10 qc � qð Þ: ð13Þ

As in the mass dynamics, the downward deviations

from this law at early times, (qc�q)N0.3, and close to

percolation, (qc�q)N0.01 can be explained by bdevia-
Fig. 14. Dynamics of the rank of the cluster which will percolate first;

average over 1000 runs of a model with L=2000.
tions from scalingQ and finite size effects (see Section 1).
Again, the delay in creation of the consecutive rank

may serve as a signal of approaching percolation, but

this delay would be hard (if possible at all) to detect in a

single model run.

Striking is the following observation: The building

of the percolation rank is monotonous, it lacks the

characteristic log-periodic oscillations observed for

the process of rank creation on the entire grid (see

Fig. 7 and its discussion).

5.3. Mass–rank relation for percolation cluster

Having established the scaling laws for mass (Eq.

(12)) and rank (Eq. (13)) of the percolation cluster, we

now proceed with connecting these laws. One obvious-

ly may rewrite them as

qc � qð Þc mp

5:0

� 	�1=2:05

; qc � qð Þc10� rp�2:2ð Þ=3:35;

which leads to

mp

5:0

� 	1=2:05

c10 rp�2:2ð Þ=3:35

or

log10mpcrp
2:05

3:35
� log105:0�

2:05� 2:2

3:35


 �
c0:61� rp � 0:65:

The index 0.61 is fairly close to that of the mass–

rank relation (2) (with cc0.625) estimated for the

entire cluster population at percolation (see Fig. 6).

This prompts one to conjecture that the index of the

mass–rank scaling for the percolation cluster matches

that of the total cluster population at percolation. This

observation, schematically illustrated in Fig. 15, depicts

a very special character of the percolation cluster: at

any time instant it possesses the information about the

index of the mass–rank scaling law that will be ob-

served for the entire cluster population at percolation.

Thus, comparison of the mass–rank scalings for the

entire cluster population with that of the percolation

cluster may serve as another precursor for the percola-

tion onset. Indeed, we do not know in advance which

cluster will percolate first, so one may use instead the

largest observed cluster. Detailed analysis of the power

and usefulness of such a premonitory pattern is beyond

the scope of the present study.

We also observe from Fig. 15 that the mass mp of the

cluster that will percolate first is always less than the

average mass of clusters of the same rank at percola-

tion. This observation is supported by Fig. 16 that

shows the dynamics of the average mass mr of clusters



Fig. 17. Rank distribution of subclusters within the cluster that will

percolate first. For comparison, all curves are normalized to unity at

r =1 and arbitrarily shifted downward.Fig. 15. Mass–rank relationship for the entire cluster population at

percolation (top solid line), entire cluster population prior to percolation

(dashed line), and the cluster that will percolate first (bottom solid line).
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of a given rank. Strikingly, the average mass continues

to increase when both the total number nr of clusters

and their total mass Mr significantly decreased having

passed their respective peak values. In other words, the

bfatQ members of a rank population still survive when

their bthinQ companions already have merged together

turning into clusters of a higher rank.

5.4. Rank distribution within percolation cluster

Recall that each cluster in our model is an aggregate

of smaller ones that merged together at previous time
Fig. 16. Dynamics of number of clusters nr (solid line), total mass Mr

(dashed line), and average mass mr (dash-dotted line) for clusters of

rank r =5.
steps. Thus, it is natural to consider the rank distribu-

tion of subclusters within the percolation cluster at

different stages of its development. This distribution

for four time instants: q =0.29, 0.5, 0.54, and at perco-

lation is shown in Fig. 17. The rank distribution within

the percolation cluster is always approximately expo-

nential (modulo the largest ranks that deviate signifi-

cantly from the overall pattern):

f
mr~10�0:3r; ð14Þ

where m̃r, is the number of clusters of rank r within the

percolation cluster. Notable is the upward bend that

reflects the bcriticalQ character of the percolation cluster

(see Section 7 for details). Importantly, the distribution

is stable in time; there is no transformation from convex

to almost linear shape observed for the entire cluster

population (see Section 4, Fig. 11). The index of the

exponential law (14) is twice less than that of the rank

distribution for the entire cluster population (see Sec-

tion 4, Eq. (7), Fig. 11). Thus the relative number of

larger clusters within the percolation one is higher

comparing to that for the entire cluster population.

6. Tokunaga scaling for side branching

In this section we show how the index c of the

mass–rank relationship (2) is expressed via the para-

meters of another important scaling law (Tokunaga

scaling (Tokunaga, 1978)) that describes self-similar

side branching of clusters. First, following (Newman

et al., 1997; Tokunaga, 1978) we define the branching

ratio Tij for a given cluster (tree) as the number Nij of its

subclusters (nodes) of rank i that joined subcluster
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(node) of rank j, averaged over subclusters (nodes) of

rank j:

Tij ¼
Nij

Nj

:

Many natural hierarchies are shown to exhibit self-

similar side branching, obeying the Tokunaga scaling

constraint (Newman et al., 1997; Tokunaga, 1978):

Tiiþk ¼ Tk ¼ s0s
k�1: ð15Þ

Particularly, it was predicted by Gabrielov et al.

(1999) and later confirmed by simulations (Morein et

al., 2004) that clusters produced by aggregation dynam-

ics obey the Tokunaga scaling (15) asymptotically in k.

Moreover, Gabrielov et al. (1999) established a re-

lationship between parameters s0,s of the Tokunaga

scaling (15) and the mass–rank distribution (2). Specif-

ically, if one assumes clusters of a regular non-fractal

shape (Euclidean limit of the model), then

s0c0:55495813; s ¼ 1=s0c1:80193774;

c ¼ 1=s20c3:24697602: ð16Þ

Observed systems though are expected to produce

fractal clusters (non-Euclidean case), which might

change the values of the parameters and their interplay;

for example, the steady-state simulations of Morein et

al. (2004) suggest

sc3:0253; s0c0:6993; cc4:325 ð17Þ

The general connection between s0, s and c can be

established by noticing that the Tokunaga scaling

uniquely determines the mass of rank r clusters. To

express the average mass mr via the parameters s0, s we

notice that the mass of a rank r cluster is the sum of two

r�1 cluster masses that formed the cluster (we ignore

the possibility for three or more clusters to coalesce at

the same step), plus a unit mass of a joining particle,

plus the mass of all the lower-rank clusters that joined

the considered cluster, hence:

m1 ¼ 1

m2 ¼ 2m1 þ Pð Þ þ T12 m1 þ Pð Þ
m3 ¼ 2m2 þ 1ð Þ þ T23 m2 þ 1ð Þ þ T13 m1 þ Pð Þ
. . .

mk¼ 2mk�1þ1ð Þþ
Xk�1

i¼1

Tk�ik mk�iþ1ð Þ� 1� Pð ÞT1k ;kz3:

ð18Þ
Here the coefficient P addresses the possibility for a

one-particle cluster to join another cluster in two ways:

via a one-particle connector (with probability P) or

directly (with probability 1�P); the clusters with
r N2 can only join other clusters using a one-particle

connector.

Assuming the Tokunaga scaling (15) we rewrite Eq.

(18) for kz3 as

mk ¼ 2mk�1 þ 1ð Þ þ
Xk�1

i¼1

Ti mk�i þ 1ð Þ � 1� Pð ÞTk�1;

and using the mass–rank relation (2) with c N1 obtain

ck�1 ¼ 2ck�2 þ 1
Xk�1

i¼1

s0s
i�1 ck�i�1þ1

� �
� 1�Pð Þs0sk�1

¼ ck�2 2þ 1

ck�2
þ s0

1� s=cð Þk�1

1� s=c
þ s0

ck�2

"

� sk�1 � 1

s� 1
� 1� Pð Þs0 s=cð Þk�2

#

It is easily checked that this equation has a solution

only if c N s; thus s/c b1 and for large k then follows

ck�1 ¼ ck�2 2þ s0

1� s=c

� �

leading to the final equation

c2 � c 2þ sþ s0ð Þ þ 2s ¼ 0:

A simple analysis shows that this equation always

has at least one solution for s0N0, and the only solution

that ensures c N s is given by

c ¼
2þ sþ s0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ sþ s0ð Þ2 � 8s

q
2

; ð19Þ

while c N1 implies s N1+ s0.

For the Euclidean values of s0, s (16) the above

formula gives c (s0, s)=3.24697960, which is remark-

ably close (6 digits) to the result of (Gabrielov et al.,

1999). Furthermore, the non-Euclidean values of (17)

solve Eq. (19) exactly. We found it quite convincing

that our complimentary set of assumptions used to

derive (19) lead to the same numerical results as an

analytical study (Gabrielov et al., 1999) and simulations

of (Morein et al., 2004). This suggests an internal

stability of a system that follows an aggregation dy-

namics with respect to the details of its particular

realization. The relationship (19) provides a striking

constraint for the scaling of aggregation processes,

and may be useful in working with observed systems.

7. Discussion

This work continues a line of research initiated

recently by Turcotte et al. (1999), Gabrielov et al.
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(1999), Morein et al. (2004), and Zaliapin et al. (2004),

who have introduced and studied hierarchical inverse

cascade description of aggregation (coagulation) phe-

nomena. Notably, the inverse cascade approach is

shown to explain self-organized critical behavior (Tur-

cotte et al., 1999), while the aggregation phenomena

are proven important for evolution of many natural

hazardous processes such as earthquakes, landslides,

and forest fires (Turcotte et al., 2002; Morein et al.,

2004); they are also commonly employed for descrip-

tion and modeling of material fracture.

Following (Gabrielov et al., 1999) we described

clusters in 2D site-percolation model on a square lattice

by hierarchical trees that reflect the history of cluster

formation; the Horton–Strahler scheme was used to

rank the trees and thus the corresponding clusters. We

concentrated on the development of the first percolation

cluster, thus working with a system that does not ex-

hibit the steady-state dynamics, contrary to the studies

(Gabrielov et al., 1999; Morein et al., 2004) that have

developed mean-field steady-state approximations to

the system.

The most important results of percolation theory

are traditionally given in terms of cluster masses

(Stauffer and Aharony, 1994). Accordingly, in order

to bridge the classical results to the novel rank de-

scription it is vitally important to establish the mass–

rank scaling laws, which was done in (Gabrielov et

al., 1999; Morein et al., 2004). In this study we have

analytically expressed the index of the mass–rank

exponential relationship (2) via the parameters of the

Tokunaga side-branching constraint (15). The predic-

tions and simulations of Gabrielov et al. (1999) and

Morein et al. (2004) are found to be in a perfect

agreement with this relationship, suggesting the univer-

sality of the essential characteristics of the aggregation

process, independently of its particular (physical or

analytical) realization.

We studied in detail the transition of the system

from earlier stages to the vicinity of percolation and

reported several characteristic phenomena observed as

qYqc. They include transformation of the cluster

size distribution not unlike that observed in seismic-

ity, steel samples fracture, and previous models of

hierarchical fractures (Narkunskaya and Shnirman,

1990; Rotwain et al., 1997; Gabrielov et al., 2000a;

Zaliapin et al., 2003). In our simple model these

phenomena are partly explained (qualitatively as

well as quantitatively) by finite-size effects; neverthe-

less we believe that they should not be neglected as

irrelevant side-effects of numerical simulation. In fact,

in practice we often work with systems that are
described by intermediate depth hierarchies (in other

words they have an intermediate number of degrees

of-freedom). The percolation results related to small

and intermediate lattices might be of high relevance

in describing such systems. In addition, simulations

on large lattices (L=30,000) performed by Morein et

al. (2004) show that finite-size effects are not negli-

gible even for large L.

We have studied the growth of the percolation

cluster tracing its evolution from the earliest times to

the onset of percolation and established scaling laws

for mass and rank of the percolation cluster. We also

studied the frequency-size distribution of subclusters

within the percolation cluster. We have reported sev-

eral features that may be used for prediction of the

onset of percolation: power-law increase of the mass

of the percolation cluster (this property is known from

the classical studies (Stauffer and Aharony, 1994));

exponential increase of the rank of the percolation

cluster; downward deviations of the mass- and rank-

scalings prior to percolation; and convergence of the

index of the mass–rank distribution for the entire

cluster population to that within the percolation clus-

ter. Indeed, if we may count precisely the occupied

sites, then the onset of percolation is determined by

the critical time qc, and there is no need in additional

premonitory patterns. At the same time, it is not

uncommon in prediction research that premonitory

patterns whose emergence is obvious in a simple

model can be effectively applied for prediction of

critical events in more complex systems as well as

in observations (e.g., see Gabrielov et al., 2000b;

Narkunskaya and Shnirman, 1990; Narkunskaya and

Shnirman, 1994; Rotwain et al., 1997; Shebalin et al.,

2000; Zaliapin et al., 2003), so the further analysis of

the above patterns seems promising.

Our closing remark is on the index s of cluster

mass distribution at percolation (Eq. (4)). The studies

of Gabrielov et al. (1999) and Morein et al. (2004)

predict s =2; which slightly deviates from the well

established theoretical value of the Fisher exponent

s =187 /91c2.05. The index of the mass distribution

is an essential characteristic of a system, thus even this

slight difference of 2.5% might seem disappointing,

implying the intrinsically approximate character of the

modeling of (Gabrielov et al., 1999; Morein et al.,

2004). In fact, this implication is not true. To validate

the approach of (Gabrielov et al., 1999; Morein et al.,

2004) we notice that the Fisher exponent is tightly

connected to the precise count of cluster particles on

a site-level, hardly feasible in practice. At the same

time, the studies (Ziff et al., 1999; Cardy and Ziff,
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2003) have demonstrated that when we bcharacterize the
size distribution of clusters in a way that circumvents the

site-level descriptionQ considering any bmacroscopic

measure of the length scale of the clusterQ, the exponent
of the corresponding scaling law becomes 2, universally

for all 2D systems. An example of a bmacroscopic

measureQ is the linear size in an arbitrary direction, the

radius of gyration, the diameter of the covering disk, etc.

Clearly, the modeling of (Gabrielov et al., 1999; Morein

et al., 2004) deals with such a macroscopic measure

of cluster size, and hence predicts the correct scaling

exponent.
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