SHARP UPPER BOUNDS OF THE BETTI NUMBERS
FOR A GIVEN HILBERT POLYNOMIAL

GIULIO CAVIGLIA AND SATOSHI MURAI

ABSTRACT. We show that there exists a saturated graded ideal in a standard
graded polynomial ring which has the largest total Betti numbers among all sat-
urated graded ideals for a fixed Hilbert polynomial.

1. INTRODUCTION

A classical problem consists in studying the number of minimal generators of ideals
in a local or a graded ring in relation to other invariants of the ring and of the ideals
themselves. In particular a great amount of work has been done to establish bounds
for the number of generators in terms of certain invariants, for instance: multiplicity,
Krull dimension and Hilbert functions (see [M, S]). An important result was proved
in [ERV] where the authors established a sharp upper bound for the number of
generators v(I) of all perfect ideals I in a regular local ring (R, m, K) (or in a
polynomial ring over a field K') in terms of their multiplicity and their height.

In a subsequent paper [V], Valla provides under the same hypotheses sharp upper
bounds for every Betti number 3;(I) = dimg Torj (I, K), notice that with this
notation 5y(I) = v(I). More surprisingly Valla proved that among all perfect ideals
with a fixed multiplicity and height in a formal power series ring over a field K,
there exists one which has the largest possible Betti numbers ;’s.

The main result of this paper is an extension of Valla’s Theorem. We will consider
both the local and the graded case although the result we present for the local case
follows directly from the graded case.

We first consider the graded case. We show that for every fixed Hilbert polynomial
p(t), there exist a point Y in the Hilbert scheme Hilb”" | such that Bi(ly) > Bi(Ix)

for all i and for all X € Hilbt2",. Equivalently, let S = K[X, ..., X,] be a standard

graded polynomial ring over a field K, we prove
Theorem 1.1. Let p(t) be the Hilbert polynomial of a graded ideal of S. There exists
a saturated graded ideal L C S with Hilbert polynomial p(t) such that 5;(S/L) >
Bi(S/I) for all i and for all saturated graded ideals I C S with Hilbert polynomial
p(t).

Notice that Valla’s result corresponds to the special case of the theorem when p(t)

is constant. We have chosen to not present an explicit formula of the bounds. We
are convinced that such a formula, in the general case, would be hard to read and
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to interpret. Instead, as a part of the proof, we describe the construction of the lex
ideal that achieves the bound. Using the Eliahou-Kervaire resolution it is possible
to write an explicit formula for the total Betti numbers of every lex ideal in terms
of its minimal generators.

In particular explicit computations of the bounds can be carried out for a given
Hilbert polynomial. Thus it would be possible to describe an explicit formula of the
bounds for classes of simple enough Hilbert polynomials. For example in the special
case when the Hilbert polynomials are constant, such a formula was given by Valla
[V].

Theorem 1.1 induces the following upper bounds of Betti numbers of ideals in a
regular local ring (see Section 3 for the proof). For a regular local ring (R, m, K)
and an ideal I C R, let pg/;(t) be the Hilbert-Samuel polynomial of R/I with
respect to m (see [BH, §4.6]).

Theorem 1.2. Let (R, m, K) be a regular local ring of dimension n, and let p(t) be
a polynomial such that there is an ideal J C R such that p(t) = prys(t). There exists
an ideal L in A = K[[z1,...,x,]| with pa;(t) = p(t) such that 5;(A/L) > B;(R/I)
for all i and for all ideals I C R with pr/(t) = p(t).

Unfortunately, the proof of Theorem 1.1 is very long and complicated. Moreover,
a construction of ideals which achieve the bound is not easy to understand. Thus
it would be desirable to get a simpler proof of the theorem and to get a better
understanding for the structure of ideals which attain maximal Betti numbers.

The paper is structured in the following way: In Section 2 and 3, we reduce a
problem of Betti numbers to a problem of combinatorics of lexicographic sets of
monomials with a special structure. In Section 4, we introduce key techniques to
prove the main result. In particular, we give a new proof of Valla’s result in this
section. In Section 5, a construction of ideals which attain maximal Betti numbers of
saturated graded ideals for a fixed Hilbert polynomial will be given. In Section 6, we
give a proof of the main combinatorial result about lexicographic sets of monomials
which essentially proves Theorem 1.1. In Section 7, some examples of ideals with
maximal Betti numbers are given.

2. UNIVERSAL LEX IDEALS

In this section, we introduce basic notations which are used in the paper.
Let S = K|x1,...,x,] be a standard graded polynomial ring over a field K. Let

M Dbe a finitely generated graded S-module. The Hilbert function H(M,—) : Z — Z
of M is the numerical function defined by

H(M, k’) = diHlK Mk

for all k € Z, where M, is the graded component of M of degree k. We denote
Py(t) by the Hilbert polynomial of M. Thus Py (t) is a polynomial in t satisfying
Py (k) = H(M, k) for k> 0. The numbers

Bij(M) = dimg Tor;(M, K);
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are called the graded Betti numbers of M, and 3;(M) = ., B ;(M) are called the
(total) Betti numbers of M.

A set of monomials W C S is said to be lex if, for all monomials u € W and
v >0 4 Of the same degree, one has v € W, where > is the lexicographic order
induced by the ordering x1 >jex -+ >lex Tn. A monomial ideal I C S is said to be
lex if the set of monomials in I is lex. By the classical Macaulay’s theorem [M],
for any graded ideal I C S there exists the unique lex ideal L C S with the same
Hilbert function as I. Moreover, Bigatti [B], Hulett [H] and Pardue [P] proved that
lex ideals have the largest graded Betti numbers among all graded ideals having the
same Hilbert function.

For any graded ideal I C S, let

sat [ = (1 : m™)

be the saturation of I C S, where m = (z1,...,x,) is the graded maximal ideal of
S. A graded ideal [ is said to be saturated if I = sat I. It is well-known that [ is
saturated if and only if depth(S/I) > 0or I = S.

Let L C S be alex ideal. Then sat L is also a lex ideal. It is natural to ask which
lex ideals are saturated. The theory of universal lex ideals gives an answer.

A lex ideal L C S is said to be universal if LS[z,+1] is also a lex ideal in S[x,,11].
The followings are fundamental results on universal lex ideals.

Lemma 2.1 ([MH]). Let L C S be a lex ideal. The following conditions are equiv-
alent:
(i) L is universal;
(ii) L is generated by at most n monomials;
(iii) L = S or there exist integers ay, as,...,a; > 0 with 1 <t < n such that

o a1+1 a1 .a2+1 ai _.as at—1 _at+1
(1) L= (aP" alay o aftay?a  at).
A relation between universal lex ideals and saturated lex ideals is the following.

Lemma 2.2 ([MH]). Let L C S be a lex ideal. Then depth(S/L) > 0 if and only if
L s generated by at most n — 1 monomials.

A lex ideal I C S is called a proper universal lex ideal if I is generated by at most
n — 1 monomials or I = S.

Let I C S be a graded ideal. Then there exists the unique lex ideal L C S with
the same Hilbert function as I. Then sat L is a proper universal lex ideal with
the same Hilbert polynomial as I. This construction I — sat L gives a one-to-one
correspondence between Hilbert polynomials of graded ideals and proper universal
lex ideals, say,

Proposition 2.3. For any graded ideal I C S there exists the unique proper uni-
versal lex ideal L C S with the same Hilbert polynomial as 1.

Proof. The existence is obvious. What we must prove is that, if L and L’ are proper
universal lex ideals with the same Hilbert polynomial then L = L.
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Since L and L’ have the same Hilbert polynomial, their Hilbert function coincide
in sufficiently large degrees. This fact shows Ly = L, for d > 0. Thus sat L = sat L.
Since L and L' are saturated, L =sat L =sat L' = L. 0

3. 1-LEXICOGRAPHIC IDEALS, BETTI NUMBERS AND MAX SEQUENCES

In this section, we reduce a problem of Betti numbers of graded ideals to a problem
of combinatorics of lex sets of monomials.

Let S = K[zy,...,2,) and S = K[x1,...,7,_1]. For a monomial ideal I C S, let
I =1NS. A monomial ideal I C S is said to be 1-lezicographic if z,, is a regular
sequence of S/I and I is a lex ideal of S. The following fact was shown in [IP,
Proposition 4].

Lemma 3.1 (Iyengar—Pardue). For any saturated graded ideal I C S, there exists
a 1-lexicographic ideal J C S with the same Hilbert function as I such that B; ;(I) <
Bii(J) for alli,j.
Lemma 3.2. Let J C S be a 1-lexicographic ideal. Then,

(i) dimg Jy = 22:0 dimg Jy for all d > 0.

(ii) B5(J) = B(J) for all i.

Proof. (ii) is obvious since z,, is regular on S/.J. Also, for all d > 0, we have a

d—k
n

Corollary 3.3. Let J and J' be 1-lexicographic ideals in S. If J and J' have the
same Hilbert polynomial then Jq = J) for d > 0.

decomposition J; = ®Z:0 Jrxé " as K-vector spaces. This equality proves (i). O

Proof. Lemma 3.2(i) says that dimg Jy—dimg J4—1 = dim Jy, so dimg Jg = dimg J
for d > 0. Then the statement follows since J and J’ are lex. O

Next, we describe all 1-lexicographic ideals in S. By Proposition 2.3, to fix a

Hilbert polynomial is equivalent to fixing a proper universal lex ideal U. For a
proper universal lex ideal U C S, let

L{U)

={I C S:1isalex ideal with I C satU and dimg(sat U)/I = dimg(sat U)/U}.
Note that dimg(sat J)/J is finite for any graded ideal J C S since (sat J)/J is
isomorphic to the 0th local cohomology module H(S/J). By using Lemma 3.2,

it is easy to see that if I € L£(U) then IS has the same Hilbert polynomial as U.
Actually, the converse is also true.

Lemma 3.4. Let U be a proper universal lex ideal. If J is a 1-lexicographic ideal
such that Py(t) = Py(t), then J € L(U).

Proof. By Corollary 3.3 we have Uy = J; for d > 0, so sat U = sat J. Also, since U
and J have the same Hilbert polynomial, for d > 0, one has

d d
dimK Ud = Zdlm[( Uk = ZdimK(sat Uk) - dimK(sat U/U)
k=0 k=0
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and

d d
dimg Jg = ZdimK Jy, = ZdimK(sat Jy) — dimg (sat J/.J).
k=0 k=0

Since sat J = sat U, we have dimg(sat J/J) = dimg(sat U/U) and J € L(U). O

By Lemmas 3.1 and 3.4, to prove Theorem 1.1, it is enough to find a lex ideal
which has the largest Betti numbers among all ideals in £(U). We consider a more
general setting. For any universal lex ideal U C S (not necessary proper) and for
any positive integer ¢ > 0, define

L(U;c)={I CcU:1Iisalex ideal with dimg U/I = c}.

We consider the Betti numbers of ideals in £(U;¢).

We first discuss Betti numbers of lex ideals. We need the following notation. For
any monomial u € 9, let max u be the largest integer ¢ such that x, divides u, where
max(1) = 1. For a set of monomials (or a K-vector space spanned by monomials)
M, let

me<i(M) = #{u € M : maxu < i}
for i =1,2,...,n, where #X is the cardinality of a finite set X, and
m(M) = (mgl(M), mSQ(M), Cey mgn(M)) .

These numbers are often used to study Betti numbers of lex ideals. The next formula
was proved by Bigatti [B] and Hulett [H], by using the famous Eliahou—Kervaire
resolution [EK].

Lemma 3.5. Let I C S be a lex ideal. Then, for all i, ],

Biiri(I) = (n ; 1) dimg I; — Z <k ; 1>m<k i-1) Z <z B 1>m<k I;).

k=1
For vectors a = (ay,...,a,), b= (b1,...,b,) € Z", we define
arb & aq>bfori=1,2,....n
Corollary 3.6. Let U be a universal lex ideal and I,J € L(U;c). Let My (resp.

M) be the set of all monomials in U\ I (resp. U\ J). If m(My) = m(M) then
Bi(I) = Bi(J) for alli.

Proof. Observe that 3;,4;(I) = Bii4;(J) = 0 for j > 0. Thus, for d > 0, we have
Gi(l) = Z?:o Biiti(I). Let I<4 = @Z:O I. Then by Lemma 3.5,

n n—1
51([) — (n ; 1) dimKISd _ Z (k ; 1>m<k I<d 1 Z (2 B 1)m<k I<d)

k=1 k=1
and the same formula holds for J. Since, for d > 0,

m(J<q) = m(Usq) = m(M,) = m(Us<q) — m(M;) = m(I<a),
we have [;(I) > (;(J) for all i, as desired. O
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Next, we study the structure of M;. Let
U= (@ afag™, . afagt ol ag)
be a universal lex ideal, §; = z{* - - - ;" fx“”rl and b; = a; +---+a; +1 = degd;. (If
U=Sthent=1anda; =—1.) Let

SO = Klx;,...,x,].

Then, as K-vector spaces, we have a decomposition

U =65 @52 @...@@S(t).

Definition 3.7. A set of monomials N C S is said to be rev-lex if, for all mono-
mials v € N and v <jx u of the same degree, one has v € N. Moreover, N is
said to be super rev-lex (in S®) if it is rev-lex and v € N implies v € N for any
monomial v € S® of degree < degu — 1. A multicomplex is a set of monomials
N C SO satisfying that v € N and v|u imply v € N. Thus a multicomplex is the
complement of the set of monomials in a monomial ideal. Note that super rev-lex
sets are multicomplexes.

Let I € L(U;c) and M the set of monomials in U \ I. Then we can uniquely

write
M;=ouM U52 L"j"'L"jdtM

where My C S® and where [#) denotes the disjoint union. The following fact is
obvious.

Lemma 3.8. With the same notation as above,

(i) each My is a rev-lex multicomplex.
i) if 0; M has a monomial of degree d then 0,1 M1, contains all monomials
g +1 4V (i+1)
of degree d in 6;1 ST for all d.

Note that Lemma 3.8(ii) is equivalent to saying that if M, contains a monomial
of degree d then My contains all monomials of degree d — al+1 in SO+,
We say that a set of monomials

M = 51M<1> L'H(SQM(Q) L—H---L—H(stM@) cU,

where M;y C S, is a ladder set if it satisfies the conditions (i) and (ii) of Lemma
3.8. The next result is the key result in this paper.

Proposition 3.9. Let U C S be a universal lex ideal. For any integer ¢ > 0, there
exists a ladder set N C U with #N = ¢ such that for any ladder set M C U with
#M = c one has

m(N) = m(M).

We prove Proposition 3.9 in Section 6. Here, we prove Theorem 1.1 by using
Proposition 3.9.
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Proof of Theorem 1.1. Let U C S be a proper universal lex ideal with Py (t) = p(t)
and U = UNS. Let ¢ = dimg(sat U/U). For any lex ideal I C sat U, let M; be
the set of monomials in (sat U \ I).

Let N C sat U be a ladder set of monomials with #N = ¢ given in Proposition
3.9. Consider the ideal J C S generated by all monomials in sat U \ N. Then
J CsatU and M; = N. In particular, J € L(U).

Let L = JS. By the construction, Pp(t) = Py(t) = p(t). We claim that L satisfies
the desired conditions. Let I C S be a saturated graded ideal with P;(t) = p(t).

By Lemmas 3.1 and 3.4, we may assume that [ is a 1-lexicographic ideal with I €
L(U) = L(satU;c). Since M is a ladder set, by the choice of J, m(M ) = m(Mj).
Then, by Corollary 3.6, 5;(L) = B;(J) > 5;(1) = 5;(1) for all i, as desired. O

Another interesting corollary of Proposition 3.9 is

Corollary 3.10. Let U C S be a universal lex ideal and ¢ > 0. There exists a
lex ideal L C U with dimyg U/L = ¢ such that, for any graded ideal I C U with
dimg U/I = ¢, one has B;(L) > Bi(I) for all i.

Finally we prove Theorem 1.2.

Proof of Theorem 1.2. Let I be an ideal in a regular local ring (R, m, K') such that
Pr/1(t) = p(t). Then the associated graded ring gr,,(R/I) has the same Hilbert—
Samuel polynomial as R/I and 5;(R/I) < pi(gr,,(R/I)) for all i (see [R] and [HRV]).

Let S = Klzi,...,x,] and S = S[z,4+1] be standard graded polynomial rings.
By adjoining a variable to gr,,(R/I) we obtain a graded ring that is isomorphic
to S’/J for a saturated graded ideal J C S’. Then pg_(r/n(t) is equal to the
Hilbert polynomial of S'/J and f;(gr,, (R/1)) = 5;(S’/J) for all i. Let L' C 5" be
the saturated ideal with the same Hilbert polynomial as J given in Theorem 1.1.
Observe that L' has no generators which are divisible by z,, .1 by the construction
given in the proof of Theorem 1.1.

Let L ¢ A = K][x1,...,z,]] be a monomial ideal having the same generators
as L. We claim that L satisfies the desired conditions. By the construction, the
Hilbert—Samuel polynomial of A/L is equal to the Hilbert polynomial of S’/L" and
Bi(A/L) = B;i(S'/L') for all i. Since §;(R/I) < 3;(5"/J) < Bi(S'/L) and pr/(t) =
Pgi/;(t) = Pgi/1s(t), the ideal L satisfies the desired conditions. O

4. SOME TOOLS TO STUDY MAX SEQUENCE

In this section, we introduce some tools to study m(—). Let S = K{z1,...,z,] and
S=K [xg,...,2,]. From now on, we identify vector spaces spanned by monomials
(such as polynomial rings and monomial ideals) with the set of monomials in the
spaces. First, we introduce pictures which help to understand the proofs. We
associate with the set of monomials in S the following picture in Figure 1.
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Figure 1
3.2 3
Ss | zy x{xe -+ T
SQ x% T1To -+ Ii
Sl Ty T2 ces T
So 1

Each block in Figure 1 represents a set of monomials in S of a fixed degree ordered
by the lex order. We represent a set of monomials M C S by a shaded picture
so that the set of monomials in the shade is equal to M. For example, Figure 2

represents the set M = {1, 21, zs,...,x,, 22}
Figure 2
3,2 3
1 L1202 Ly
T
XLy e Tn
,,,,,,,,,, Lo

Definition 4.1. We define the opposite degree lex order >qpdiex DY U >opdiex v if (1)
degu < degwv or (ii) degu = degv and u > v.

For monomials u; >gpdiex U2, let

[u17u2] - {U €s: U Zopdlex v Zopdlex u2}-

A set of monomials M C S is called an interval if M = [uy, us] for some monomials
uy,uy € S. Moreover, we say that M is a lower lex set of degree d if M = [x¢, us)],
and that M is an upper rev-lex set of degree d if M = [uy,x%]. (See Fig. 3.)

Figure 3
UQ ......... - xz ]
....... '- Uy wy o
',ét'l" """" :L‘l .
Interval Lower lex set Upper rev-lex set

A benefit of considering pictures is that we can visualize the following map p :
S — S. For any monomial z}u € S with u € S, let

plaiu) = u.
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This induces a bijection

d A A d &
pr Sa= @k:o x’de_k — S< = @kzo Sk

It is easy to see that if [uy, us] C Sy then p([u1, us]) = [p(u1), p(ug)] is an interval in

N

S. (See Fig. 4.)

Figure 4
—
p(ul) ,,,,,
[ur, ug] C Sq p([u, us]) C S<q

In particular, we have

Lemma 4.2. Let M C Sy be a set of monomials.

(i) If M is lex then p(M) is a lower lex set of degree 0 in S.
(ii) If M is rev-lex then p(M) is an upper rev-lex set of degree d in S.

We define max(1) = 1 in S and max(1) = 2 in S. For any monomial u € S; with
u # x¢, one has max(u) = max(p(u)). Hence

Lemma 4.3. Let M C Sy be a set of monomials. One has m(M) = m(p(M)).
Moreover, if x¢ & M then m(M) = m(p(M)).

Lemma 4.4 (Interval Lemma). Let [uy, us] be an interval in S, 0 < a < degu; and
b > deguy. Let L C S be the lower lex set of degree a and R the upper rev-lex set of
degree b with #L = #R = #[uy1,us|. Then

m(L) = m([u1, u]) = m(R).

Proof. We use double induction on n and #[uy,us]. The statement is obvious if
n =1 or if #[uy, us] = 1. Suppose n > 1 and #[uy, us] > 1.

Case 1. We first prove the statement when [u1,us], L and R are contained in a
single component S; for some degree d. We may assume L # [uj,us] and L # R.
Then, since x§ & [uy, us], m([ur, us]) = m(p([ur, us])) and m(R) = m(p(R)). Since
p(L) C S<qis a lower lex set of degree 0, p([uy,us]) C S<q is an interval and
p(R) C Sgd is an upper rev-lex set of degree d in S , by the induction hypothesis,

we have
m(L) = m(p(L)) = m(p([ur, ua])) = m(p(R)) = m(R).

Then the statement follows since m(p([ug, us])) = m([uq, us)).
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Case 2. Now we prove the statement in general. We first prove the statement for
L. We identify S; with the set of monomials in S of degree i. Suppose #[uq, us] >
#5S,. Then there exist u},u, € S such that

(w1, uz] = [ur, us) H‘J[U'p us)

and #[uy, ub] = #S,. Let L' be the lower lex set of degree a+1 with #L" = #[u], us].
By the induction hypothesis, m(S,) = m([uy, uy]) and m(L") = m([u}, uz]). Thus

m([ur, ug]) =< m(SaL-_i-JL’) =m(L).

Suppose #[uq, us] < #S,. Then L C S,. Let d = degu; and A C Sy the lex set
with #A = #[uy, us]. Then A = 297°L. Since m(A) = m(L), what we must prove
is

m(A) = m([u, us)).

Since #[uy, us] < #S, < #5411, we have degus < d + 1.
If degus = d, then [uy,us] C Sy Then the desired inequality follows from Case
1. Suppose degus = d + 1. Then

[y, ug] = [y, ] L"j[xcfﬂa Us).

Recall #[uy, us] < #S, < #S4. Let B C Sy be the lex set with #B = #[291! uy].
Then [#{™, uy] = 21 B. Since #B + #[uy, 28] = #[u1,us] < #Sq, B N [ug, 2%] = 0.
Then, by Case 1,

m([u1, us]) = m(B) +m([ur, zl]) < m(A).
(See Fig. 5.)
Figure 5
u2 ...............................................
y = - = = e
* i
[u1, us] B[uy, x4 A L

Next, we prove the statement for R. In the same way as in the proof for L, we
may assume #[uq, us] < #5Sy. Let d = degus.

If degu; = d, then [uj,us] C Sy and A = mlf_d[ul, ug] is an interval in S,. Then,
by Case 1, we have m([ul,uQ]) = m(A) = m(R) as desired. Suppose degu; < d.
Then

[y, up] = [ug, 281 L—Ij[x‘f,ug].
Let R be the upper rev-lex set of degree b in S with #R’ = #[uy, z¢7]. Then,

m([ur,uo]) = m(R)+m([zf,us]) = m(R) + m([2}, 2} ")),
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where the first inequality follows from the induction hypothesis on the cardinality.

Since R\ R’ C Sy is an interval and [23, 257%uy] C Sy is lex, by Case 1 we have

m(R') +m([2}, 27 %)) = m(R') + m(R\ R') = m(R),
as desired. (See Fig. 6.)

Figure 6
Y [ T LR i
“Us T Uz
i -~ Al = e =
-
[uy, us] R'\[z4, us) R Y[t 27 uy] R

O

Recall that a set M C S of monomials is said to be super rev-lex if it is rev-lex
and u € M implies v € M for any monomial v € S of degree < degu — 1.

Corollary 4.5. Let R C S be an upper rev-lex set of degree d and M C S a super
rev-lex set such that #R + #M < #S<4. Let QQ C S be the super rev-lex set with
#HQ =#R+#M. Then

m(Q) = m(R) +m(M).
Proof. Let e = min{k : a¥ ¢ M} and F = {u € S, : u g M}. If #F > #R then
Q =M@\ M)

and Q \ M C F is an interval. Thus m(Q \ M) = m(R) by the interval lemma.
Suppose #F < #R. Write

R=I|HF

such that [ is an interval with #1 = #F and R’ is an upper rev-lex set of degree d.
Since F' is a lex set, the interval lemma shows

m(M) + m(R) = m(M) +m(I) + m(R') 2 m(F 4 M) +m(R).

Then F' |4 M is a super rev-lex set containing x§. By repeating this procedure, we

have m(M) +m(R) = m(Q). O
The above corollary proves the next result which was essentially proved in [ERV].

Corollary 4.6 (Elias-Robbiano-Valla). Let R C S be a finite rev-lex set of mono-
mials and M C S the super rev-lex set with #M = #R. Then m(M) = m(R).

Proof. Let R = Hji]\io R;, where R; is the set of monomials in R of degree i and
N =max{i: R; # 0}. Let M<;y be the super rev-lex set with #M<;) = # !, R;.
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We claim m(M<;)) = m(H_, R;) for all j. This follows inductively from Corollary
4.5 as follows:

m( L‘ﬂ R;) = m( HJ R;) +m(R;) X m(M<j—1)) + m(R;) 2 m(M<j)).

(We use induction hypothesis for the second step and use Corollary 4.5 for the last
step.) Then we have m(M) = m(M<n)) = m(b—)i]\io R;). O

We finish this section by proving the result of Valla which we mentioned in the
introduction.

Corollary 4.7 (Valla). Let ¢ be a positive integer and M C S the super rev-lex set
with #M = c. Let J C S be the monomial ideal generated by all monomials which
are not in M. Then, for any homogeneous ideal I C S with dimg(S/I) = ¢, we
have ;(S/J) > p;(S/I) for alli.

Proof. The proof is similar to that of Corollary 3.6. By the Bigatti-Hulett-Pardue
theorem, we may assume that [ is lex. Then Lemma 3.5 says, for d > 0, we have

pil) = (n B 1) dimg I<q — an; (k B 1>msk(1§d1) —:Z_é (l;:ll)mﬁk(jsd>

and the same formula holds for J. Let N C S be the set of monomials which are
not in /. Since N is a rev-lex set with #N = ¢, for d > 0, by Corollary 4.6 we have

m(J<a) = m(S<a) —m(M) = m(S<q) — m(N) = m(l<q)-
Hence §;(J) > f;(I) for all i as desired. O

The proof given in this section provides a new short proof of the above result.
The most difficult part in the proof is Corollary 4.6. The original proof given in
[ERV] is based on computations of binomial coefficients. On the other hand, our
proof is based on moves of interval sets of monomials.

5. CONSTRUCTION

In this section, we give a construction of sets of monomials which satisfies the
conditions of Proposition 3.9, and study their properties.

Throughout Sections 5 and 6, we fix the following notation: Let ai,as,...,a; be
non-negative integers, wheret < n, and let b; = ay+---+a;+1forte =1,2,...,t. Let
F=25Se P Se;P---P Se; be a free S-modules with dege; = b; fori =1,2,...,t.
we consider the set

U=5Ve [H5Pe, |44 SVe, c F.

Note that we identify each S*) with the set of monomials in it. For i = 1,2,....t,
let 6; = a§* -z 'a%t. Then, by the decomposition given before Definition 3.7,
the above set U can be identified with the set of monomials in the universal lex ideal

(61,...,0) =65V P --- @ 6, S® via the natural correspondence ue; + J;u.
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We call an element ue; € U a monomial in U. For each monomial ue; € U, we

define

i, ifu=1,
max(ue;) = { max(u), otherwise .
Also, for M C U, we define m(M) = (m<;(M),m<o(M),...,m<,(M)) in the same
way as in Section 3. We say that a subset M = Myye,lH---{ Mye, C U is a ladder
set if My, ..., My satisfy the conditions (i) and (ii) of Lemma 3.8. Then, consid-
ering m(—) of ladder sets in U = SWe; |- -- 1) SPe, is equivalent to considering
m(—) of ladder sets in the universal lex ideal (6y,...,8;) = 6,5V P ---P5,5Y. In
particular, to prove Proposition 3.9, it is enough to consider ladder sets in U.
Let M C U. We write
t

U9 = 5We;, MO =MnUYD, UE) = L_!_J S®e, and MED = M N UED,

k=i
Note that UED = |-, S®Pe; can be identified with the universal lex ideal in
Klz;, ..., x,] generated by {(z2 )% - - - e et ok =d,i4+1,. .., t}. For asubset

M C U, we write Mj, for the set of monomials in M of degree k and M<; = Lﬂizo M;,.
Like Section 4, we use pictures to help to understand the proofs. We identify U
with the following picture.

UM U®) U®)

Note that each low represents the set of monomials in U having the same degree.
Thus, in Figure 7, degey, = dege; + 2 and dege; = deges + 1. Also, we present
a subset M C U by a shaded picture. For example, Figure 8 represents M =
{1, 21, 29,..., 2, e; [H{1}es.

Figure 8
Th o Ty |73 g T T
TP T |T2 o Tn] ]
FORNE Y T
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Also, we define the map p : U — U by extending the map given in Section 4 as

follows: For zfue; € U® with u € K[z;y1,...,7,], let
ue; 1, ifi<t—1,
platue) = { g E1E]

We call the above map p : U — U the moving map of U. The moving map induces
a bijection from U]@ = {ue; € UY : degu = j — b;} to Ug;iiiﬂ = {ue;; € U
degu < j—b}fori=1,2,...,t — 1. Also, we have

Lemma 5.1. For N C U]@ with i <t—1, one has m(N) = m(p(N)). Moreover, if
2i7%e; & N then m(N) = m(p(N)).

)

Next, we define ladder sets M C U which attain maximal Betti numbers. Recall
that a subset M C U is called a ladder set if the following conditions hold:

(i) {u € SD :ue; € MW} is a rev-lex multicomplex for i = 1,2,...,t.
(i) if M\” # 0 then MV = UV for i = 1,2,...,¢ — 1 and for all j > 0.

To simplify the notation, we say that N C U is a super rev-lex set (resp. interval,
lower lex set or upper rev-lex set of degree d) if N’ = {u € S : ue; € N} is super
rev-lex (resp. interval, lower lex set or upper rev-lex set of degree d —b;) in S @) For
monomials ue;, ve; € U and for a monomial order > on S, we write ue; > ve; if
u > .

Definition 5.2. A monomial f = x"25%---20"e; € U is said to be admissible

over U if the following conditions hold:
(i) degp'(f) <e+1lorp'(f)=epifori=1,2,...,t—2,
(i) 9 10F) = e or () Zopates 5" ey,
Note that the second condition in (ii) cannot be satisfied when e +1 —b; < 0 and

that if ¢ = 1 then all monomials in U are admissible. Also p'*(f) >opdiex it b

if and only if deg p'~1(f) < e or p1(f) = 2¢T e,
We say that f € UL is admissible if it is admissible over UZ?. Note that
rFe; € UM is admissible for all i and k.

t

Definition 5.3. Let >gx be the degree lex order. Thus for monomials u,v € S,
U >qex v if degu > degv or degu = degv and u > v. We extend >qex to
monomials in U by ue; >qiex ve; if d;u >qex d;0. Thus, we have ue; >qex ve; if
(i) degue; > degwve;, or (ii) degue; = degve; and i < j, or (iii) degue; = degve;,
1 =7 and u >qpex .
Fix an integer ¢ > 0. Let
f=max{g e UY : gis admissible and #{h € U : h <qiex g} < ¢}

>dlex

and
L(c) = {h € U(l) h <dlex f}
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Let M = MW Y-l M® C U be a set of monomials with #M = c¢. We say that
M satisfies the mazimal condition if M) = L. Also, we say that M is extremal
if MR c UEP satisfies the maximal condition in UG® for all k.

Example 5.4. If t = 1 then any monomial in U = SMe, is admissible and extremal
sets can be identified with super rev-lex sets in S,

Example 5.5. Suppose t = 2. Then f = z{'x5*--- 2%y, where f # x7'ey, is

admissible in U = SMe; |4 SPe, if oy > ay or f = m‘fz_lxgmel. In other words, a
monomial f € Sc(ll)el is admissible if and only if f > x‘frlxg_”Hm if ay < d and
f = 2de, if ay > d. For example, if dege; = 2 and dege, = 4 then the admissible
: : 1) _ g
monomials in Uy’ = (S5 )e; are
xi’el, x?xgel, IL‘%CL’gel, ce x%xnel, xlxgel.

Example 5.6. Suppose t = 3. The situation is more complicated. A monomial
f=af"zy? - a0me € U, where f # x7'eq, is admissible in U if and only if the
following conditions hold:

o a1 > as — 1

1-b
o 5% O > qex Ty P Or TP

cexom = 1.
For example, if dege; = 2, degey, = 4, deges = 6 and n = 3 then the set of the
admissible monomials in Uﬁ(l) = (K21, 29, x3)4)e1 are

{zle1} U{alrer, xizse } U {ziaser, vimowse; } U {miwie;, 11 v573€; ).
Example 5.7. Let U = 225U [§ 2,235®). Suppose ¢ = ("}?) + 2. Then

max {f e UM . f is admissible and #{heU:h<gex [} < c} = 2%e;.

>dlex

Indeed,

n+ 2

and

#{h €U : h <qex T1735€1} = #(S(Slg \ {2? 232, . .. ,xfxn})el L—ijS(SQl)eg

n—+3 -
= C.
3

By Example 5.5, the lex-smallest admissible monomial in Uél) is ryz2e;. Thus the
extremal set L C U with #L = c is

L = Sgel L—ij{l,xn}eg.

Example 5.8. In general, it is not easy to understand the shape of extremal sets,
but in some special cases they are simple.

If by = by = --- = b, then any monomial in U is admissible. Thus any extremal
set M in U is of the form

M:{hGUZhSdleXf}
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for some f € U.
If b, > e then the only admissible monomial in Ue( is x7~ ble,. Thus if b; < by <
- & by, (for example, if b; 1 — b; > ¢ for all i), then any extremal set M in U with

#M = c is of the form
US<d GQU US<d let 1UN>

M =Se
where N € S@We; and #55;Y ei b+ W SY Y et YN < #85, fori=1,... 1~
1.

In the rest of this section, we study properties of extremal sets. Suppose t > 3.
For an integer k > —as, we write UD[—k] = SWe! where €/ is a basis element with
dege; = b; + k. In the picture, U®[—F] is the picture obtained from that of U®
by moving the blocks k steps above. In particular, for any integer k > —ag, U’ =

@ (i UD[~k]) can be identified with a universal lex ideal in K[z, ..., z,).
(See Fig. 9.)

Figure 9

U= U (-, UV [-k])
Lemma 5.9. Suppose t > 3. Let [ € v, d = degp(f) and k > —az with
e—d+k >0. Then f is admissible over U if and only if the following conditions
hold:

o degp(f) <e+ 1 orp(f) = ey,
o 25 Fp(f) € U r 08 admissible in U’ =

U(=2)

U Y(Wis U [=H)).

Proof. Let U = SPeyl S®elly--- |5 SWe, with dege, = dege; + k for k =
3,...,t, and let ¢ be the moving map of U’. Let p'(f) = usy1€i41 fori =2,...,t—1.
Then gbl( ST D(f)) = wipo€l, for i =1,2,...,t—2. Thus deg p'(f) < e+ 1 if and
only if deg ¢ ' (25 p(f)) < e4 14k for i > 2. Also, p' "1 (f) Zepaiex i ey
if and only if ¢!~ 2( SHED(F)) Zopdiex (T %€, Since deg 25 p(f) = e + k, the
above facts prove the statement. U

By the definition of the maximal condition, the following facts are straightforward.

Lemma 5.10. Let M C U be an extremal set.
(i) If #M > #U<, then M D U<..
(ii) If #M > #US) WUE? then M > US) | WUS?.
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Proof. Since M is extremal, there exists an f € U™ such that
V={heU":h<qe f}.
(i) Since 257"'e; is admissible and {h € U : h <qex 25 "€1} = U<e, f >diex
257 "e;. Then MW S {h € UM : h <giex 25 "€} = Uge). Also, since
#M@?) = #M—H#MD > #{h € U h <qex f}—#{h € UV 1 h <qex f} > #UL),

we have M2 5 Uge) by induction on t.
(ii). It is clear that M D U<,y by (i). If deg f > e then

#M > #{h € U : h <qex f} > 4 MM @ngy

Then HMED > #U(>2 and M=? 5 U 2 by (i) as desired. If deg f < e then

M U(l) , and #M G2 > #U(>2 by the assumption. Hence M2 5 U( by
<i>. -

Corollary 5.11. Eztremal sets are ladder sets.
Proof. If M C U is extremal then M® is super rev-lex for all i by the maximal
condition. It is enough to prove that if M # 0 then M > UEY. 1f MY + () then
there exists an admissible monomial f € U™ such that
#M > #{h € U h <ae f} = #U%  [HUE?.
Then the statement follows from Lemma 5.10. 0J
To simplify notation, for ue;,ve; € U with u >opdlex U, We Write
[ue;, ve;] = {we; € UY 1 u >gpqiex W Zopdiex v}
Lemma 5.12. Suppose t > 2. Let M C U be an extremal set.
(i) If ag > O then M(l) # 0 if and only if #M > #Uge).
(ii) If az =0 and MY 40 then #M > #U(l).

Proof. Let f € U™ be the lex-smallest admissible monomial in U over U.
(i) It suffices to prove that

(2) #{h €U h <qe f} = #UL.

If f =25 "e; then f/ = 29" 25e; is not admissible. By the definition of the
admissibility, one has deg p( f ) deg xoes > e+ 1 and by > e. In this case we have

{h e U : h <gex f} = Uge).
Suppose f # z¢ " e;. We prove (2) by using induction on ¢. Suppose ¢t = 2. Then
f— a2 1 e+1 bgel and

{(heU:h <ae [} = UL I 25 et HUL.
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2
Since p([f, z¢b1ey]) = Lﬂj+gil U( )| we have

#{heU:h<qe [} = #Uge)fl + #Uge)mz = #Uge)

where we use p(U") = Uge) +a, Tor the last equality.

Suppose t > 3. Since p(f) # ey, we have deg p(f) = ¢+ 1. Indeed, by Lemma
5.9, deg p(f) < e+ 1. On the other hand, since 29> ' 257 ""2¢, is admissible over U,
f <iex 29212572, Thus deg p(f) > deg p(z9> a5 2e)) = e + 1.

Consider U’ = U L‘dﬁ:s U®[~1]. By Lemma 5.9 (consider the case when d = e+1

and k = 1), p(f) is the lex-smallest admissible monomial in Uéi)l over U’. Then

(3) #[P 6+1 b29 LJU;2 = #[p(f e+1 b29 UU<e UU/<e+1
= #{h cU :h <dlex P(f)}

2
- #Uée)-i-l

where the last equation follows from the induction hypothesis. On the other hand
(4) {(heU:h<ae f}=[f, 25 e W UL, |HUE?
and

e+as
(5) p((f. 5 er]) = [p(f), 5t *ea] L+J( v Uﬁ”) -

j=e+2

(3), (4) and (5) show
#{heU:h<ae [} =#U5 HUE),,, = #U8) | HUW = #UL)

where the second equality follows since p(Ue () )=U. Se’ an
(ii) It suffices to prove that

#{h €U :h <qe f} > #UL).
Since as = 0, #Uge) = #Ue(l). Then we have
#{heU:h<qu [} >#US) | HUD =408) | HU® =UL),
as desired. O

Corollary 5.13. Suppose t > 2. Let B C UL be the rev-lex set and N C U2
a ladder set with #N > #Ugi)l. Let Y C U be the extremal set with #Y =

#UL) WBYN. If #BYN < #UL then
y =vl) [H Y2,

Proof. Since #Y > #U<6 1, we have Y D U<e 1 by Lemma 5.10. On the other
hand, since #Y = #U<6 T WBWHN < #U by the assumption, we have v =
by Lemma 5.12. Hence YV = U(le) 1 O
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For monomials f >gex g € U<i), let [f,9) = [f, 9]\ {g}-

Lemma 5.14. Let [ € Ue(l) be the lex-smallest admaissible monomial in Ue(l) over U

and g >1ex h € Ue(l) admissible monomaials over U such that there are no admissible
monomials in [g, h] except for g and h. Then #[g, h) < #[f, 2 %1ey].

Proof. 1f t = 1 then all monomials are admissible over U. If ¢ = 2 then any monomial
w E Ue(l) with w > f is admissible over U. Thus the statement is clear if ¢ < 2.

Suppose t > 3. Since g # h we have [ # xf_blel. By the definition of the
admissibility, we have deg(p(f)) = e if ay = 0 and deg(p(f)) = e+ 1 if ay > 0. We
consider the case when as > 0 (the proof for the case when ay = 0 is similar).

Consider U' = U@ W('_, UD[—1]). Since any monomial w € U such that
p(w) = zhey with k < e + 1 — by is admissible over U, we have p([g, h)) C Sy for
some d < e+ 1. Let

A=a57 (g, ) = 257 p(g), 5™ p(R)) € U
(See Fig. 10.)
Figure 10

B LAl

Let w € A. Then w = 25 ?p(w’) for some w’ € [g,h). Lemma 5.9 says that w
is admissible over U’ if and only if w’ is admissible over U. Hence A contains no

admissible monomial over U’ except for x5 %p(g). By Lemma 5.9, p(f) € Ue(i)l

is the lex-smallest admissible monomial in Ue(i)l over U'. Then, by the induction

hypothesis,

#HA < H#p(f),257es) = #p(If. 25 el]) VU, < #[f,25 e,
Then the statement follows since #[g, h) = #p([g, h)) = #A. O

Lemma 5.15. Let M C U be an extremal set, e = min{k : 2% e, ¢ M} and
H=U\M.. Let f € Ue(l) be the lex-smallest admissible monomial in Uél) over U.
Then

(i) #Use + #1f 257er] < #UL).

(i) #M +#H < #U%), .
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Proof. We use induction on t. If ¢ = 1 then then the statements are obvious. Suppose
t>1.

(i) If az > 0 then by Lemma 5.12
BUco + #1050 = #{h €U+ h e 3+ #UD = 408 + 400 < 400,

as desired. Suppose ay = 0. Then
p([f i en]) = [o(f), 25 e € UP

and p(f) is the lex-smallest admissible monomial in U over U2 by Lemma 5.9.
Then by the induction hypothesis
#U<e +#1f 2y e] = #UL + (#US” + #lo(f), 25 e))
< #US +#UEL,
#UL

as desired.
(ii) Suppose M? F# U, Then MY = 0. Since M>? is extremal over U2, by
the induction hypothesis

#M + #H = #US M 4 U0 W HE? < UL+ #U8),, <#U%,,,

where we use #Ue(-l& = #Uge) by 2 #Uge) 41 for the last inequality.
Suppose MY = U?) . Let g = max.,, MW and let

= min{h € Uge) : h is admissible over U and h >gex g}-

>dlex

Then [u, g) C UY since J > dlex :vf_bl_lel. Since M is extremal,

#H#M < #{h €U : h <giex 11}
Since MM = {h € UM : h <qex 9}, H = [25 ey, g). Thus
#M +#H < #{h €U :h <aqex n} + #[25 e, 9)
= #U<e + #l1,9)
< H#U<o + #[f, 25 e,

where the last inequality follows from Lemma 5.14. Then the desired inequality
follows from (i). O

6. PROOF OF THE MAIN THEOREM

Let U = SWe; 1) S@e, 4 - - - ) SPe, be as in Section 5. The aim of this section
is to prove the next result, which proves Proposition 3.9.

Theorem 6.1. Let M C U be a ladder set and L C U the extremal set with
#L =#M. Then m(L) = m(M).
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The proof of the above theorem is long. We prove it in subsections 6.1, 6.2 and
6.3 by case analysis.
In the rest of this section, we fix a ladder set M C U.

6.1. Preliminary of the proof.
For two subsets A, B C U, we define

A> B < #A=#B and m(A) = m(B).

Let X C UW be the super rev-lex set with #X = #M®. Then {k : M,gl) +#
0} O {k: X; # 0}. Thus X U MZ? is also a ladder set in U. Since X > MW" by
Corollary 4.6, we have

Lemma 6.2. There exists a ladder set N C U such that NV is super rev-lex and
N> M.

Thus in the rest of this section, we assume that M) is super rev-lex. Let
e =min{k + b, : z¥e, & M}
and

f=max{g € USQ : ¢ is admissible over U and #{h € U : h <qiex 9} < #M},
> dlex -
where [ =0 if #{h € U : h <qiex €1} > #M. Since x‘f*brlel is admissible over U
(when e # b;), we have f = 257" 'e; or deg f = e. We will prove

Proposition 6.3. With the same notation as above, there exists a ladder set N such
that N > M and

N(l) = {h S U(l) h Sdlex f}7
where {h € UM 1 h <qex f} =0 if f =0.

The above proposition proves Theorem 6.1. Indeed, by applying the above propo-
sition repeatedly, one obtains a set N which satisfies the maximal condition and
N > M. Then apply the induction on t. Also if t = 1 then Proposition 6.3 follows
from Corollary 4.6. In the rest of this section, we assume that ¢ > 1 and that the
statement is true when the number of the free basis of U is at most ¢ — 1. By the
above argument, we may assume that Theorem 6.1 is also true when the number of
the free basis of U is at most ¢t — 1.

Lemma 6.4. There exists a ladder set N C U with N > M and min{k+0b, : z}e, &
NWY = e satisfying the following conditions
(A1) N s super rev-lex and N2 is extremal in U2,
(A2) p(NYUNG S UL, or p(N) N N® =g,
(A3) Ift =2 and p(NYAN® =@ then NV = 0. Ift > 3 and p(N)NN@ = ¢
then NV = 0 or there ezists a d > e such that N® = Ugd) and N(gi)1 # Uﬁ)l.
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Proof. Let F = M. Then M = (UY)_ W F) W M@ | M since MO is super
rev-lex. -

Step 1. We first prove that there exits N satisfying (Al). Let X be the extremal
set in U2 with #X = #M©?)| Let

N=MOYx =0l L—_I—JFH—JX

Since we assume that Theorem 6.1 is true for U , N> M. What we must prove
is that IV is a ladder set. Slnce ME2 5 U<e 1 #X HME2D > 40U >21. Then

Lemma 5.10 says X D U<; 1> which shows that N is a ladder set if F' = (. If F # ()

then M(=2) U( 2 by the definition of ladder sets, and X O U( ? by Lemma 5.10.
Hence N is a ladder set.

Step 2. We prove that if M satisfies (A1) but does not satisfy either (A2) or
(A3) then there exists an N satisfying (A2) and (A3) such that N > M and
#NW is strictly smaller than #M 1. We may assume p(F)U M3 2 Uge)Jr@ and
F # (0, otherwise M itself satisfies the desired conditions. Note that F' # () implies
M® 5 U2 Let

a = min{k : M #U(Z}
b=max{k:k<e+as p(F)#U”}

and
d = max{k : M) = U1}

where d = oco if n =2. Let H = Ugd \ M@ (See Fig. 11.)

Figure 11

Since p(F) is an upper rev-lex set of degree e + ao, p(F) = p(F) U(U?ZL U(Q))

Suppose H = (Z) Then M? = Uizd) Since p(F)uU M® 3 U<e+a , we have b > d
and p(F) N M® = (), which say that M satisfies (A2) and (A3). Suppose H # 0.

Observe that for any super rev-lex set L with U<6 CLC de), WYL MY is
a ladder set. - -

Case 1: Suppose #H > #F. (Note that if t = 2 then we always have #H > #F.)
Then M® is super rev-lex since we assume that M (2% is extremal and p(F) is an
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upper rev-lex set of degree e + ag with #M®) + #p(F) < #Ugd). Let R c U® be
the super rev-lex set in U® with #R = #M® 4 #p(F). By Corollary 4.5,

(6) m(R) = m(M®) +m(p(F)) = m(M®) +m(F).

Also, since R is super rev-lex, Uge) CRCU gd). Thus

N=U8  |HRHME

is a ladder set. Then N = @ and N > M by (6). Hence N satisfies (A2) and
(A3).
Case 2: Suppose #H < #F. Observe that M) U p(F) contains all monomials

of degree kin U® for k < aand b < k < e+ ay. Since M Up(F) 2 Ufe)m, we have
a <b. -

Let I C p(F) be the interval in U® such that #1 = #H, and p(F)\ I is an upper
rev-lex set of degree e+ aq, and let F' C F be the rev-lex set with p(F') = p(F)\ 1.
Since H, is a lower lex set of degree a, by the interval lemma,

m(M®) +m(p(F)) < m (H M) +m(p(F)\ 1) = m(UE) +m(p(F)).
(See Fig. 12.)
Figure 12

M@
Suppose p(F') U ng > U<e+a2 Then

N = Uge)fl H_J F/) L_'j Ug H_J M(Z3)

is a ladder set and satisfies N > M and conditions (A2) and (A3) since p(Ne(l)) U
N 2 U<e+a2

Suppose p(F") U UL 2 U<6+L12 Then p(F') C W¥iZan, U( ). Since we assume
WH < #F, #F — AF — 4H, > #(H\ H,). Let J C p(F') be the interval in
U® such that #J = #(H \ H,) and p(F’) \ J is an upper rev-lex set of degree
e + ay, and let F” C F’ be the rev-lex set satisfying p(F") = p(F’) \ J. Since
H\ H, U a1 U (2) is a lower lex set of degree a + 1, by the interval lemma

m(UE) +m(p(F")) 2 m(M® W H) +m(p(F") = m(UE) +m(p(F")).
(See Fig. 13.)
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Figure 13
S L J """" |
........ //

] Yy .
+ 1

o5 p(F)
= [ .
+ 1

U(2) F//

<d P( )

Then
N= U8 HF) U8 M=
is a ladder set and satisfies N > M and conditions (A2) and (A3).
Finally, since Step 1 does not change the first component M and Step 2 decreases

the first component, by applying Step 1 and 2 repeatedly, we obtain a set N C U
satisfying conditions (A1), (A2) and (A3). O

Lemma 6.4 says that to prove Proposition 6.3 we may assume that M satisfies
(A1), (A2) and (A3). Thus in the rest of this section we assume that M satisfies
these conditions. Also, we may assume f # 0 since the proposition follows from the
induction hypothesis when f = 0.

6.2. Proof of Proposition 6.3 when f # 25" e,.
In this subsection, we prove Proposition 6.3 when f # xf*brlel. In this case we
have deg f = e. Let
f=aft - are

and F = M. Since 2$"e; ¢ F by the choice of e, we have m(F) = m(p(F)).
Also we have
MED 5 UE?,
Indeed, this is obvious when F # () by the definition of ladder sets. If F' = § then
HMED = g M — #UL) | > #{h € U h <aex f} — #UL), > #UL),
and since M =2 is extremal we have M2 D USQ) by Lemma 5.10. Let
e=degp(f) =as+ -+ a, + ba.
Case 1. Suppose p(F) C Lﬂ;ia"’ U]@) and #F + #M® \ Lﬂ;ZE UJ@) < #USE)MQ.

€

Observe M® > i Uj@). Let P be the super rev-lex set with #P = #M® \
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Lﬂ;ze Uj@), and let Q C U® be the super rev-lex set with #Q = #F + #M® \
&J;:E UJ@). Since p(F) is an upper rev-lex set of degree e + ap and M@\ trjjze U]@)

is rev-lex, by Corollaries 4.5 and 4.6, we have
(7) m(Q) = m(P) +m(p(F)) = m(M@\ |HUP) +m(F).
Jj=€
(See the first two steps in Fig. 15.)
Observe that ) C Uge) ta, SiNCE #Q < #Uge) +a, Dy the assumption of Case 1. Let
U' = U (W _, UD[~ay]). Since ME¥[—ay] > UEY [—as] = U'EY, |

QL‘HM(ES)[—CLQ] C U/

is a ladder set in U’. (See the third step in Fig. 15.)
Let g be the largest admissible monomial in Uge) va, OVEr U " with respect to >giex

satisfying
#{h € U+ h <aex g} < #QH M[—as)*?.
By the induction hypothesis, there exists Y C U’ =3 such that
X={heU?:h<augtHY CU

is a ladder set in U’ and

(8) X > QM=
Let

d=¢e+ay—¢€.
We claim

Lemma 6.5. g >o, 23p(f).
Proof. To prove this, consider

L={heU:h<aqe [}
Then #M > #L and L& = USY. Thus L\ W U® = UL . Let F' =
L = [f x5 er]. Then p(F") = [p(f), x5 2es] (W52, U). Also p(F') 1 (L)
W UP) =0 and

m(p(F) (LN UD)) = m(UE N\ [ en p(1))

= m(US),, \ [257 ey, 250(f))).
Let
R=UE),,\ [057 e, 25p(f)) = UL, 0,1 [ [280(f), 257 ).
(See Fig. 14).
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Figure 14

€—

U W p(F) R

Then R LE3[—ay] € U’ is a ladder set in U’ and 2¢p(f) is admissible over U’ by
Lemma 5.9. On the other hand,

#RIYLED = #L - #Ul) | — #HUP <M — Ul - #HUP = #X.
J=e€ Jj=e€
Since xdp(f) is admissible over U’ and since RlY LE[—ay] = {h € U’ : h <qiex
x3p(f)}, by the choice of g, we have
g Zlex Jng(f)
as desired. 0

By Lemma 6.5, g is divisible by 2. Let H C U be the rev-lex set such that

e+as

p(H) = L—l_—J UJ@) \x;d [x§+a2_b2€2,9).
Jj=€

Then by Lemma 4.3
(9) m(H) +m(UE ) = m(US),\ [25t2 ey, g)) = m(X ).

Let
N= U8 \HH) HUD | HY [+as] C U.

Since X is a ladder set, Y D U’ (522@ and Y[+ag] D Ugs)' Thus N is a ladder set
in U. We claim that N satisfies the desired conditions.
A routine computation shows

#M\ U =408  Hol MY = 408 WX = #N\HUP.
Jj=€ Jj=¢€
(See Fig. 15.) Thus #N = #M. Let p = max.,_ H. Then zép(u) = g. We
claim that g = f. Since g >1ox 230(f), it >1ex f- Since g is admissible over U’, p
is admissible over U by Lemma 5.9. (If ¢ = 2 then Lemma 5.9 is not applicable,

however, if t = 2 then any monomial h € Uél) with h >, f is admissible). However,
since #N = #M and N D {h € U : h <qiex ¢}, by the choice of f, we have f = p.
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Figure 15

UY W HEUE 1YY [+as)

27
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It remains to prove N > M. This follows from (7), (8) and (9) as follows:

L (MU U U R A
j=€ Jj=e
< UL ey u=
< U8, 1Hx
< (U9 W) WU, WYl = N\ U,
j=€

(See Fig. 15.)
Case 2. Suppose p(F) C i U and #F +#M 3\ L"J;:E ) > 7‘7£U<e+a2 We

claim

Lemma 6.6. [ = x{"25%e,, namely, a3 = --- = a, = 0.
1 2 ) ; (3

ay aztaz+-tap

Proof. Suppose [ # x{x5%e;. Let g = 7" x5 e;. Then g >qiex f is admis-
sible over U by the definition of the adm1581b111ty. Also,

HM < #{h €U h <ae g} = # (UL, g, 25 "er) UL |H UL,

Since p([g, 25 "er]) = Wit U and MED 5 UL,
HE + #(M U HUP) = (#M - #UL, - #ME) - # U
Jj=€

< #g. 2 e + #UD — #lHUP
Jj=e€

2
= #U\ 0
which contradicts the assumption of Case 2. Thus f = x{"z5%e;. O
Note that the above lemma says p(f) = x5 "2e,. In particular, p([f, 25 "e]) =
U U Let
e+as
2
H=|H U\ p(F).
Jj=e€

(See Fig. 16).
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Figure 16

Since p(F') is an upper rev-lex set of degree e + as, H is a lower lex set of degree
>2)

€. Also, since #F + #M®@ > #UL . p(F)yu M@ > US? by (A2). Thus
M® > H.

Let R be the super rev-lex set in U?) with #R = #M® \ H. Since M \ H is
rev-lex, by Corollary 4.6 we have

(10) R> MP\ H.
Then since #R < #M®?)

Rt'_J ME3 - =2
is a ladder set. (See the third picture in Fig. 17.)

Let Y C U®? be the extremal set in UZ? with #Y = #RH M3, We claim
that

N={heUY:h<qe [}HY

satisfies the desired conditions. Indeed, since p(F) ) H = ;12 U = p([f, x5 "ey)),
by (10), we have

M o= UL HFHH)H M\ H) ) MmE
< (UL Wif a5 ve]) ) R MED

< {heUW:h<gu fHHY = N.
(See Fig. 17.) It remains to prove that N is a ladder set. Since
HY = #M — #{h € UD 1 h <qex [} > #US

by the choice of f, we have Y D Ug% by Lemma 5.10. This fact guarantees that
N is a ladder set.
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Figure 17

{heUW : h<qex [} YR ME3) N={heUW:h<gy fHY

Case 3. Suppose p(F) ¢ @;:?2 U ;2). Then p(F') properly contains &Jj:? U JQ) since
p(F) is an upper rev-lex set of degree e + as. In particular, F' properly contains
[f, 267" e;]. We claim

Lemma 6.7. f = z{"z5%e; and oy # 0.

Proof. If ay, # 0 for some k > 3 then 2$'23>t "t e; >4 f is admissible over U.
Then by the choice of f, F' C [z{" 252 e, 2 b1e;] and

e+ao

p(F) € p(laf o e, el]) = W U,
Jj=e€

a contradiction. Also, if ay = 0 then ¢ = degp(f) = 0 which implies p(F) C
p(Ue(l)) = Uge)JraQ = trjj:? U;z), a contradiction. O

Recall € = deg p(f). Thus ay = € — by by Lemma 6.7. Let
H={heF:h>ef}

and
g = max H.

>lex
By the choice of f, H contains no admissible monomials over U. By Lemma
6.7, p(F\ H) = Lﬂji‘f Uj@). Hence H # () by the assumption of Case 3. Since



UPPER BOUNDS OF THE BETTI NUMBERS 31

a1+1 _as—1

27T x5? "ey is admissible over U,

p(H) C p([e a5 ey, 2 a5ten)) = U2
={ey} and H # 0.

If ¢t = 2 then any monomial h & Ut
H = (). Thus we may assume ¢ > 3.

To prove the statement, it is enough to prove that there exists an extremal set
Z C U= such that

(11)

Indeed, if such a Z exists then N = (MW \ H)|Y M@ |H Z satisfies the desired
conditions. Recall that ¢ < e+ 1 by the deﬁmtlon of the admissibility.

is rev-lex. Also, € — 1 > by since Ub2

with h > f is admissible, which implies

Z>H@M®X

(subcase 3-1) Suppose a3 > e — (e — 1).
Let d = e — (e — 1). We consider

=U% 4 (U HUt +d>
This set is well-defined since a3 > d. Recall p(H) C Ue_l. Let

HYHUD, | MEI]+d).

(See Fig. 18.) Then Y is a ladder set since M(=* O USE)Hd = Ugg).
Ug)_z # () since € — 1 > by.

Also,

Lemma 6.8. u

Figure 18
M<23> ..............................
------ =
I B VICED] P
Uéi)_z Uéi)_Q N I
p(H)WUS | M= Y

to >qex satisfying #{h €
Proposition 6.3 is true for U’, there exists an extremal set Z C U’

U’

D h <dlex

Y < {heUP: h <qex n}H 2.

e—2—bo
=,

€s.

To prove (11), it is enough to prove {h € U® : h <gey pt} = Ug)

Let p € U<6 . be the largest admissible monomial in Uie , over U’ with respect
p} < #Y. Then since We assume that

€e—2)

3) such that

in other words,
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Proof. Recall that USELQ # (). It is enough to prove that degu # € — 1. Suppose

contrary that degu =e—1. Let p’ € U be a monomial such that p(i') = p. Then
i is admissible over U by Lemma 5.9. Also

#Y — HUD > H{p, a5 2es) + #U'SY, = #lp, a5 2eq] + #UEY.

Since #ME3) + #H = #Y — #Ugl2 and since p([1/, f)) = [u, 2517 "2e,], we have

#M = #(M\H)HM | H M=
(M\H UU<€+#/’L7 el- b2e UZ
> # HHMN\H)HUE? = #{h € U h <aex 1/},

which contradicts the maximality of f since ' > g >1ex f and ' is admissible
over U. OJ

v

(subcase 3-2) Suppose a3z < e — (e —1). We consider
X =25 Yp(H) c U

(See Fig. 19.)
Figure 19

Let
Y ={h e U : h <qex 75 p(g)} H ME

(see Fig. 20) and let
g =max (Y®\ X).

>dlex
Since e — (e — 1) > a3, e — (e — 1) > 1. Thus

1 e—(e—1)—1_ e—by
g =y Ty “€2

and
YO =X |H{h e U : h <aex ¢}

Since a3 < e — (e — 1), deg p(¢’) = € + a3 < e. Thus ¢’ is admissible over U(=?),
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Let i be the largest admissible monomial in Uﬁij over U(Z?) with respect to > qex

with #{h € UC? : h <gex p} < #Y. Since Lemma 5.9 says that X contains no
admissible monomials over U(Z?),
1 >diex 9 and p & X.

Since we assume that Proposition 6.3 is true for UZ?) there exists an extremal set
Z ¢ U3 such that
W = {h € U(2) ch Sdlex M}L‘HZ
is a ladder set and
W>Y
(See Fig. 20.)
Figure 20

We claim
Lemma 6.9. y=¢'.
Proof. Suppose contrary that u # ¢’. Then u >q.ex ¢ and
W= (a5 “Vole) Y 2.
Then there exists u' € U™ such that
25TV =
By Lemma 5.9, ¢/ is admissible over U and p/ > ¢ >1ex f. Observe that
HMED 4 H = #7Z |l o) = #7Z+ #, f)
by the construction of Y and Z. Since Z D Ugg),
#M > #(MON\H) W HHUE | mE)
= #MON\H) U2 Y 2l 1)
> #(MO\H) Y H YU HUE”
= H#{heU:h<ge i}

Since p' is admissible over U, this contradicts the maximality of f. ([l
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Now
W = {h S U(z) :h Sdlex g/}L-l_'JZ

and since W > Y and Y = X W{h € U? : h <gre ¢’} MY we have
m(Z) = m(X|[HMEY) = m(H|H M),
which proves (11).

6.3. Proof of Proposition 6.3 when f = 2 " e,.

In this subsection, we prove Proposition 6.3 when f = x?bl*lel. Let F = Me(l).
If F = () then there is nothing to prove. Thus we may assume F # (). Then
M > U%Z) since M is a ladder set.

Case 1. Suppose as = 0. Then dege; = degey = by. Since x?blel is admissible
over U, x5 "e; ¢ F. Indeed, if 25 "e; € F then M D {h € U : h <gqix 75 €1},
which contradicts the maximality of f. Thus

F C [z5"e;, 25 e

and
p(F) C p([y "er, 28" ey]) = U,

e
Consider

X = p(F) Lﬂ Uge)_l @M(zs) c U

and let Y C UZ? be the extremal set with #Y = #X. Since X is a ladder set in
U2 by the induction hypothesis we have

Y > X.
We claim

Lemma 6.10. Y® = Uge)_l.

Proof. Suppose contrary that Y £ U(;e)q- Let g = ge, be the largest admissible
monomial in YS(? over UZ? with respect to >qex. Since X D ng)l, we have
YO Uge)_l by Lemma 5.10. Thus degg=e and ¥ D Ugg).

Let ¢ = ge;. Since g = ge, is admissible over UZ?) and since p(¢') = g, ¢’ is
admissible over U by Lemma 5.9. Observe #Y = #X < #F + #M©E2 — £y®,
Then

#M #U%) | Pl a2

HUL) |+ #UD + 4y

H#UD |+ #UO 4 {h € U : h <oy g}

- #Uge)_1 +#UP + #Uge)_l H—J[g, 1z ey H-J Ug?))
#Uge)—l + #Ug) + #[g, 25" ey

L{heU:h <ae g}

v

v
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which contradicts the maximality of f. Hence Y2 U(<26) 1 O
Then, since Y > X, we have

(12) YE) s Pl MY

Let

N=U M HrE,

Then N is a ladder set since #Y &3 > #ME3 . Also N > M by (12). Thus N
satisfies the desired conditions.

Case 2. Suppose as > 0. Since deg f # e, by Lemma 5.12 we have

(13) #M < #UL
Hence
(14) HE +#MP <H#M - #UL) | < #UW < #U<e+a2

Then, by (A42) and (A3), we may assume that p(F) N M® = (), ¢t > 3 and there

exists a d > e such that M® U<2d and M di)l #U. (ﬁ)l.

Let
— . (eta2)—(d+1) (e+az)—(d+1)
A= {ues € p(F)eta, : T3 ) divides u and u/ sy Je, & p(F)at},
(e+a +(d+1)
b= i AcC Ud+1v
and

B = p(Feta, \ACU, e+a2
(See the second picture in Fig. 21.)

(subcase 2-1) Suppose #B + #MZ3) < #U Consider

e+a2

! H‘J (H‘J U(i)[—az]> :
Since ME3[—ay] D U’ (<>eia2, by Corollary 5.13 and the by induction hypothesis,
there exists the extremal set ) C U’ 23 guch that
(15) Q> BlH M=),

Let P be the super rev-lex set in U®) with #P = #M® +4p(F)\ B. Then since
P(F)<etas—1 &J E is rev-lex, Corollary 4.6 shows

(16) M2 Hp(F)\ B) = m(M®) + m(p(F)<crar1 ) E) < m(P).
(See the second step in Fig. 21.) We claim that

N=U W PHQl+a] cU
satisfies the desired conditions. Indeed, by (15) and (16),

m(N) = m(UL_, [ MPH (p(F)\ B) ) (BlH MED)) = m(M).
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(See Fig. 21). It remains to prove that N is a ladder set. If p(F) \ B =0 then P =
M@ and therefore N is a ladder set since #@Q > #M 3. Suppose p(F)\ B # 0.
Recall that p(F) N M® = (. Since

HUL < #M® < 4P = #p(F) s W EHY MO <402, .

we have
v cpPcu?,, .

Then by Lemma 5.10 what we must prove is

#Q > #UEY |

Figure 21
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Since #S,) = 7 #S\, for all i > 0 and k > 0, we have

t
(17) #0D >N 40, = #UZY

=3
for all £ > 0. Since p(F)\ B# 0, #B = #p(F)eya, \ A > #Uei)a2 #Uﬁ)l. Thus

e+az e+az e+ag—1
>
#B>#UD, —#US =# W UL, ># W U2 > Y U=,
j=d+2 j=d+2 j=d+1

(we use (17) for the last step) and therefore

e+az—1
$Q=#MEY + 48> 4UE + 3 U > 4US,
d+1

as desired.
(subcase 2-2) Suppose #B + #M (23) > 4U e+a2 We first prove

Lemma 6.11. p(F) %, U

j=d+2
Proof. Suppose contrary that p( ) D UjJFZiQ U®. Then
e+az—1
#p(F)\B=#(pM\(AHYB)YHE=# | U
j=d+1

by the choice of F. Then
#(P(F) \ B) H‘J M®) = #Uge)ﬂzrl

and
M = #UY W o(P) ) MO W M > g0 40?1402, = 40D,

where we use the assumption #B+#M 3 > #Ue ‘a, for the second step. However,

this contradicts (13). O
The above lemma says that e + ag > d + 2 and p(F)4y1 = 0. Thus B does not
contain any monomial ues such that u is divisible by x(e+a2) @) Hence
etaz+as3
(18) pBYC W UP
j=d+2+a3

Since ]\/[dJrl #* Ud by Lemma 5.15,

#ME < 4US)

15

We claim
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Lemma 6.12. a3 = 0.

Proof. If a3 > 0 then

etaz+as
#B ™ #M(ZS) < # L_'j UJ@) + #Ugd)-ﬂ < Ug;)-l—az-&-aa - #Ue(—zf—)azv
j=d+2+as3
which contradicts the assumption of (subcase 2-2). O
Let
H={heUZY hg¢g M=},
(See Fig. 22.)
Figure 22
M
By Lemma 5.15,
#H + #ME) < 3U8) .
Since a3z = 0, by the assumption of (subcase 2-2)
e+as
#B > #U, — #ME = UL, —# M > 4l + 4 ) U7,
j=d+3

Let

B=1IlHJ|HC

such that I is the set of lex-largest #H monomials in B and G is the rev-lex set
(See Fig. 23.)

Figure 23

with p(G) = i, U7,
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Since az = 0, (18) says p(B) C 41 U( ). Hence p(I) C Uﬁz. Let C' C Uc(lj-)2 be

j=d+2
the lex set in U oo With #C = #H. If we regard U=% as an universal lex ideal in
Klzs,...,x,], then H and C are lex sets in K|[zs,...,x,] with the same cardinality.
Hence C' = x3H. Then, by the interval lemma,
(19) m(H) = m(C) = m(p(1)) = (1)

Let P C U® be the super rev-lex set with #P = #A + #J + #M? . By the
choice of G, G is the set of all monomials ue; € p(F) such that u is not divisible

by 2577 Also, since B does not contain any monomial ue, such that wu is

divisible by x5~ (dﬂ), any monomial in .J 1s divisible by aitee @2, Then

zy T2 o gl g a rev-lex set. Since M@ W E 4 e+a2)+ 2T is rev-lex,
2 d+2

(20)  m(P) = m(MP 4 B[z, TN = (M@ H Al 7).

(See Fig. 24.)

Figure 24

TYAYs  MOWBWS  MOWEWL I p

Let
F \ (AL-HB) = p(F)SeJranl-

(subcase 2-2-a) Suppose that #P + #Q < #U2, . . Let R C U® be the
super rev-lex set with #R = #P + #(). Then since () is an upper rev-lex set of
degree e 4+ ag — 1, by Corollary 4.5 and (20)

(21) R>PHQ>MP|HAHIHQ
On the other hand, by Lemma 5.15,
#H + #ME < #U8) .
Then since p(G) = 45752 U@),

j=d+3
#ij GU M(>3) #GU HU M >3) < #Uf)e)JraQ # e+a2
Let U = U (s UV [—ay]). Observe that M [—ay] D U’<>§jza2 Then Corol-

lary 5.13 and (19) say that there exists the extremal set Z C UZ%[—ay] such that
(22) Z> GHHHM ) [—a)) > GlHI[HMEY
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(See Fig. 25.)

Figure 25

IYG WY ME3 Gl HME Z[+as)

We claim that
N =U8, |HRIH Z[+as]
satisfies the desired conditions. Indeed, by (21) and (22),

N> U9 (M@ WAl sl e) Wl Ty e
> UL WP g e
— M.

(We use p(F) =AY IHJHGHQ and m(F) = m(p(F)) for the second step.) It
remains to prove that N is a ladder set. Since Ugd) CRC Uge) ta,_1 it 18 enough to
prove that Z[+as] D U<i—3m2 \- Since p(G) = Y2 U(?’),

j=d+3
e+ao
#Z =#(HYMIYG) > #UE0 () > #08D,
j=d+3

E:,VY(G) used#_(]](: > #Uj%f) for the last step.) Then Z[+as] D Ugi)%_l by Lemma
10 as desired.

(subcase 2-2-b) Suppose that #P + #Q > #Uge)ﬂz—r Note that
#P +H#Q + H#I + #G = #F + #M®P
Then #M®@ |4 F > #Uge)ﬂz_l. Let R be the super rev-lex set with #R = #M® +
#F. Then #R = #M® + #F < #Ufgm by (14). Since #R > #P + #Q >
Uge)ﬂrl, there exists a rev-lex set B’ C UeJra2 such that

/
<e+a2 1 U B

Also by Corollary 4.5,

(23) BHUL 1 = B> MO p(F)
Since #F + #MG? < #U<e+a2, we have #B' + #M©3 < #Ugr)a2 Then by

Corollary 5.13 there exists the extremal set Z C UZ3[—ay] such that
(24) B |H(M[—ay)) <« Z.
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We claim that
N = Uge)_l L-ﬂ Ug@)ﬂ@_1 L.H Z[+as)]

satisfies the desired conditions.
By (23) and (24),

N o> U89 YUY, B ME
> UL WFHMOHME =
(See Fig. 26.)

Figure 26

Ul)  WRYMEY N=U% WU, W Z[+as]

It remains to prove that N is a ladder set. What we must prove is

Z[+as] D UEY .

By the assumption of (subcase 2-2-b),

#M(2) —+ #F — #(IL‘HG) = #Q + #P > #Uge)-i-tm—l'
Then
#B' = # MO +#F —#U8), > #I1HG.

Then in the same way as the computation of #Z in (subcase 2-2-a), we have
#2Z = #ME Y B > # M H1H ) > #U57,,

Then by Lemma 5.10, Z[+as] D Ugi)arl as desired.
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7. EXAMPLES

In this section, we give some examples of saturated graded ideals which attain
maximal Betti numbers for a fixed Hilbert polynomial. Observe that, by the decom-
position given before Definition 3.7, the Hilbert polynomial of a proper universal lex
ideal I = (81, 02,...,0;) is given by

_ 1 _ —9 _ _
Hy(t) = t—bi+n . t—by+n T t—b;+n—t |
n—1 n—2 n—t

where b; = degd; for 1 =1,2,...,t.

Example 7.1. Let S = Klxy,...,74 and S = K[zy,...,23]. Consider the ideal
I = (23,2229, 1123, 23, 23x3) C S. Then

1 15 t+2 t—4 t—9
H[(t):6t3+t2—gt+1:< 5 >+( 5 >+< . )

and the proper universal lex ideal with the same Hilbert polynomial as [ is

L = (w1, 25, x523).
Let
U=satL=(L:25) = (z1,23) C S

and ¢ = dimg U/L = 5. Then the extremal set M C U with #M =5 is
M = a1{1, 21, 9, 23} L—lj:cg{l}
Then the ideal in S generated by all monomials in U \ M is
J = x1(23, 2139, 11703, T3, o3, T3) + 25 (29, 23) C S,

and J has the largest total Betti numbers among all saturated graded ideals in S
having the same Hilbert polynomial as I.

Example 7.2. Let S = Klxy,...,25] and S = Klxy,...,24]. Consider the ideal
I = (21,23, 2923, zox2x}%). Then [ is a proper universal lex ideal. Let

U=satl=(I:25) = (1,23, z073) C S
and ¢ = dim U/I = 15. Then the extremal set M C U with #M = 15 is
2 2 2 2
M = {1, 21, x9, T3, 4, oy, Toky, T3, T3Tq, T3} W x5{1, o, x3, x4} W xow5{1}.

Then the ideal in S generated by all monomials in U \ M is
2 2 2 2 3 .2 2 3
J = @y(a], 2129, 2123, 124, T3, ToT3, ToT3Ty, Toly, T3, 3Ty, T3], Ty)

2/ 2 2 2 2
+x5(25, Tols, Loy, T3, T3Ty, Ty) + Tox3 (T3, T4)

and J has the largest total Betti numbers among all saturated graded ideals in S
having the same Hilbert polynomial as [.



UPPER BOUNDS OF THE BETTI NUMBERS 43

REFERENCES

[B] A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra
21 (1993), 2317-2334.

[BH] W. Bruns and J. Herzog, Cohen-Macaulay rings, Revised Edition, Cambridge University
Press, Cambridge, 1998.

[EK] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129
(1990), 1-25.

[ERV] J. Elias, L. Robbiano, G. Valla, Number of generators of ideals, Nagoya Math. J. 123
(1991), 39-76.

[HRV] J. Herzog, M.E. Rossi, G. Valla, On the depth of the symmetric algebra, Trans. Amer.
Math. Soc. 296 (2) (1986), 577-606.

[H] H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function,
Comm. Algebra 21 (1993), 2335-2350.

[IP] S. Iyengar and K. Pardue, Maximal minimal resolutions, J. Reine Angew. Math. 512 (1999),
27-48.

[M] F. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London
Math. Soc. 26 (1927), 531-555.

[MH] S. Murai and T. Hibi, The depth of an ideal with a given Hilbert function, Proc. Amer.
Math. Soc. 136 (2008), 1533-1538.

[P] K. Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J.
Math. 40 (1996), 564-585.

[R] L. Robbiano, Coni tangenti a singolarita razionali, Curve algebriche, Istituto di Analisi Globale,
Firenze, (1981).

[S] J. Sally, Numbers of generators of ideals in local rings. Marcel Dekker, Inc., New York-Basel,
(1978), ix+93 pp.

[V] G. Valla, On the Betti numbers of perfect ideals, Compositio Math. 91 (1994), 305-319.

GI1ULIO CAVIGLIA, DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE,
IN 47901, USA.
E-mail address: gcavigli@math.purdue.edu

SATOSHI MURAI, DEPARTMENT OF MATHEMATICAL SCIENCE, FACULTY OF SCIENCE, YAM-
AGUCHI UNIVERSITY, 1677-1 YOSHIDA, YAMAGUCHI 753-8512, JAPAN.
E-mail address: murai@yamaguchi-u.ac.jp



