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Abstract. We show that there exists a saturated graded ideal in a standard
graded polynomial ring which has the largest total Betti numbers among all sat-
urated graded ideals for a fixed Hilbert polynomial.

1. Introduction

A classical problem consists in studying the number of minimal generators of ideals
in a local or a graded ring in relation to other invariants of the ring and of the ideals
themselves. In particular a great amount of work has been done to establish bounds
for the number of generators in terms of certain invariants, for instance: multiplicity,
Krull dimension and Hilbert functions (see [M, S]). An important result was proved
in [ERV] where the authors established a sharp upper bound for the number of
generators ν(I) of all perfect ideals I in a regular local ring (R,m, K) (or in a
polynomial ring over a field K) in terms of their multiplicity and their height.

In a subsequent paper [V], Valla provides under the same hypotheses sharp upper
bounds for every Betti number βi(I) = dimK TorRi (I,K), notice that with this
notation β0(I) = ν(I). More surprisingly Valla proved that among all perfect ideals
with a fixed multiplicity and height in a formal power series ring over a field K,
there exists one which has the largest possible Betti numbers βi’s.

The main result of this paper is an extension of Valla’s Theorem. We will consider
both the local and the graded case although the result we present for the local case
follows directly from the graded case.

We first consider the graded case. We show that for every fixed Hilbert polynomial

p(t), there exist a point Y in the Hilbert scheme Hilb
p(t)

Pn−1 such that βi(IY ) ≥ βi(IX)

for all i and for all X ∈ Hilb
p(t)

Pn−1 . Equivalently, let S = K[X1, . . . , Xn] be a standard
graded polynomial ring over a field K, we prove

Theorem 1.1. Let p(t) be the Hilbert polynomial of a graded ideal of S. There exists
a saturated graded ideal L ⊂ S with Hilbert polynomial p(t) such that βi(S/L) ≥
βi(S/I) for all i and for all saturated graded ideals I ⊂ S with Hilbert polynomial
p(t).

Notice that Valla’s result corresponds to the special case of the theorem when p(t)
is constant. We have chosen to not present an explicit formula of the bounds. We
are convinced that such a formula, in the general case, would be hard to read and
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to interpret. Instead, as a part of the proof, we describe the construction of the lex
ideal that achieves the bound. Using the Eliahou–Kervaire resolution it is possible
to write an explicit formula for the total Betti numbers of every lex ideal in terms
of its minimal generators.

In particular explicit computations of the bounds can be carried out for a given
Hilbert polynomial. Thus it would be possible to describe an explicit formula of the
bounds for classes of simple enough Hilbert polynomials. For example in the special
case when the Hilbert polynomials are constant, such a formula was given by Valla
[V].

Theorem 1.1 induces the following upper bounds of Betti numbers of ideals in a
regular local ring (see Section 3 for the proof). For a regular local ring (R,m, K)
and an ideal I ⊂ R, let pR/I(t) be the Hilbert–Samuel polynomial of R/I with
respect to m (see [BH, §4.6]).

Theorem 1.2. Let (R,m, K) be a regular local ring of dimension n, and let p(t) be
a polynomial such that there is an ideal J ⊂ R such that p(t) = pR/J(t). There exists
an ideal L in A = K[[x1, . . . , xn]] with pA/L(t) = p(t) such that βi(A/L) ≥ βi(R/I)
for all i and for all ideals I ⊂ R with pR/I(t) = p(t).

Unfortunately, the proof of Theorem 1.1 is very long and complicated. Moreover,
a construction of ideals which achieve the bound is not easy to understand. Thus
it would be desirable to get a simpler proof of the theorem and to get a better
understanding for the structure of ideals which attain maximal Betti numbers.

The paper is structured in the following way: In Section 2 and 3, we reduce a
problem of Betti numbers to a problem of combinatorics of lexicographic sets of
monomials with a special structure. In Section 4, we introduce key techniques to
prove the main result. In particular, we give a new proof of Valla’s result in this
section. In Section 5, a construction of ideals which attain maximal Betti numbers of
saturated graded ideals for a fixed Hilbert polynomial will be given. In Section 6, we
give a proof of the main combinatorial result about lexicographic sets of monomials
which essentially proves Theorem 1.1. In Section 7, some examples of ideals with
maximal Betti numbers are given.

2. Universal Lex Ideals

In this section, we introduce basic notations which are used in the paper.
Let S = K[x1, . . . , xn] be a standard graded polynomial ring over a field K. Let

M be a finitely generated graded S-module. The Hilbert function H(M,−) : Z → Z
of M is the numerical function defined by

H(M,k) = dimK Mk

for all k ∈ Z, where Mk is the graded component of M of degree k. We denote
PM(t) by the Hilbert polynomial of M . Thus PM(t) is a polynomial in t satisfying
PM(k) = H(M,k) for k ≫ 0. The numbers

βi,j(M) = dimK Tori(M,K)j
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are called the graded Betti numbers of M , and βi(M) =
∑

j∈Z βi,j(M) are called the

(total) Betti numbers of M .
A set of monomials W ⊂ S is said to be lex if, for all monomials u ∈ W and

v >lex u of the same degree, one has v ∈ W , where >lex is the lexicographic order
induced by the ordering x1 >lex · · · >lex xn. A monomial ideal I ⊂ S is said to be
lex if the set of monomials in I is lex. By the classical Macaulay’s theorem [M],
for any graded ideal I ⊂ S there exists the unique lex ideal L ⊂ S with the same
Hilbert function as I. Moreover, Bigatti [B], Hulett [H] and Pardue [P] proved that
lex ideals have the largest graded Betti numbers among all graded ideals having the
same Hilbert function.

For any graded ideal I ⊂ S, let

sat I = (I : m∞)

be the saturation of I ⊂ S, where m = (x1, . . . , xn) is the graded maximal ideal of
S. A graded ideal I is said to be saturated if I = sat I. It is well-known that I is
saturated if and only if depth(S/I) > 0 or I = S.

Let L ⊂ S be a lex ideal. Then satL is also a lex ideal. It is natural to ask which
lex ideals are saturated. The theory of universal lex ideals gives an answer.

A lex ideal L ⊂ S is said to be universal if LS[xn+1] is also a lex ideal in S[xn+1].
The followings are fundamental results on universal lex ideals.

Lemma 2.1 ([MH]). Let L ⊂ S be a lex ideal. The following conditions are equiv-
alent:

(i) L is universal;
(ii) L is generated by at most n monomials;
(iii) L = S or there exist integers a1, a2, . . . , at ≥ 0 with 1 ≤ t ≤ n such that

L = (xa1+1
1 , xa1

1 xa2+1
2 , . . . , xa1

1 xa2
2 · · · xat−1

t−1 x
at+1
t ).(1)

A relation between universal lex ideals and saturated lex ideals is the following.

Lemma 2.2 ([MH]). Let L ( S be a lex ideal. Then depth(S/L) > 0 if and only if
L is generated by at most n− 1 monomials.

A lex ideal I ⊂ S is called a proper universal lex ideal if I is generated by at most
n− 1 monomials or I = S.

Let I ⊂ S be a graded ideal. Then there exists the unique lex ideal L ⊂ S with
the same Hilbert function as I. Then sat L is a proper universal lex ideal with
the same Hilbert polynomial as I. This construction I → satL gives a one-to-one
correspondence between Hilbert polynomials of graded ideals and proper universal
lex ideals, say,

Proposition 2.3. For any graded ideal I ⊂ S there exists the unique proper uni-
versal lex ideal L ⊂ S with the same Hilbert polynomial as I.

Proof. The existence is obvious. What we must prove is that, if L and L′ are proper
universal lex ideals with the same Hilbert polynomial then L = L′.
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Since L and L′ have the same Hilbert polynomial, their Hilbert function coincide
in sufficiently large degrees. This fact shows Ld = L′

d for d ≫ 0. Thus satL = satL′.
Since L and L′ are saturated, L = satL = satL′ = L. �

3. 1-lexicographic ideals, Betti numbers and max sequences

In this section, we reduce a problem of Betti numbers of graded ideals to a problem
of combinatorics of lex sets of monomials.

Let S = K[x1, . . . , xn] and S̄ = K[x1, . . . , xn−1]. For a monomial ideal I ⊂ S, let
Ī = I ∩ S̄. A monomial ideal I ⊂ S is said to be 1-lexicographic if xn is a regular
sequence of S/I and Ī is a lex ideal of S̄. The following fact was shown in [IP,
Proposition 4].

Lemma 3.1 (Iyengar–Pardue). For any saturated graded ideal I ⊂ S, there exists
a 1-lexicographic ideal J ⊂ S with the same Hilbert function as I such that βi,j(I) ≤
βi,j(J) for all i, j.

Lemma 3.2. Let J ⊂ S be a 1-lexicographic ideal. Then,

(i) dimK Jd =
∑d

k=0 dimK J̄k for all d ≥ 0.

(ii) βS
i (J) = βS̄

i (J̄) for all i.

Proof. (ii) is obvious since xn is regular on S/J . Also, for all d ≥ 0, we have a

decomposition Jd =
⊕d

k=0 Jkx
d−k
n as K-vector spaces. This equality proves (i). �

Corollary 3.3. Let J and J ′ be 1-lexicographic ideals in S. If J and J ′ have the
same Hilbert polynomial then J̄d = J̄ ′

d for d ≫ 0.

Proof. Lemma 3.2(i) says that dimK Jd−dimK Jd−1 = dim J̄d, so dimK J̄d = dimK J̄ ′
d

for d ≫ 0. Then the statement follows since J̄ and J̄ ′ are lex. �
Next, we describe all 1-lexicographic ideals in S. By Proposition 2.3, to fix a

Hilbert polynomial is equivalent to fixing a proper universal lex ideal U . For a
proper universal lex ideal U ⊂ S, let

L(U)

= {I ⊂ S̄ : I is a lex ideal with I ⊂ sat Ū and dimK(sat Ū)/I = dimK(sat Ū)/Ū}.
Note that dimK(sat J)/J is finite for any graded ideal J ⊂ S since (sat J)/J is
isomorphic to the 0th local cohomology module H0

m(S/J). By using Lemma 3.2,
it is easy to see that if I ∈ L(U) then IS has the same Hilbert polynomial as U .
Actually, the converse is also true.

Lemma 3.4. Let U be a proper universal lex ideal. If J is a 1-lexicographic ideal
such that PJ(t) = PU(t), then J̄ ∈ L(U).

Proof. By Corollary 3.3 we have Ūd = J̄d for d ≫ 0, so sat Ū = sat J̄ . Also, since U
and J have the same Hilbert polynomial, for d ≫ 0, one has

dimK Ud =
d∑

k=0

dimK Ūk =
d∑

k=0

dimK(sat Ūk)− dimK(sat Ū/Ū)
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and

dimK Jd =
d∑

k=0

dimK J̄k =
d∑

k=0

dimK(sat J̄k)− dimK(sat J̄/J̄).

Since sat J̄ = sat Ū , we have dimK(sat J̄/J̄) = dimK(sat Ū/Ū) and J̄ ∈ L(U). �
By Lemmas 3.1 and 3.4, to prove Theorem 1.1, it is enough to find a lex ideal

which has the largest Betti numbers among all ideals in L(U). We consider a more
general setting. For any universal lex ideal U ⊂ S (not necessary proper) and for
any positive integer c > 0, define

L(U ; c) = {I ⊂ U : I is a lex ideal with dimK U/I = c}.
We consider the Betti numbers of ideals in L(U ; c).

We first discuss Betti numbers of lex ideals. We need the following notation. For
any monomial u ∈ S, let maxu be the largest integer ℓ such that xℓ divides u, where
max(1) = 1. For a set of monomials (or a K-vector space spanned by monomials)
M , let

m≤i(M) = #{u ∈ M : max u ≤ i}
for i = 1, 2, . . . , n, where #X is the cardinality of a finite set X, and

m(M) =
(
m≤1(M),m≤2(M), . . . ,m≤n(M)

)
.

These numbers are often used to study Betti numbers of lex ideals. The next formula
was proved by Bigatti [B] and Hulett [H], by using the famous Eliahou–Kervaire
resolution [EK].

Lemma 3.5. Let I ⊂ S be a lex ideal. Then, for all i, j,

βi,i+j(I) =

(
n− 1

i

)
dimK Ij −

n∑
k=1

(
k − 1

i

)
m≤k(Ij−1)−

n−1∑
k=1

(
k − 1

i− 1

)
m≤k(Ij).

For vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Zn, we define

a ≽ b ⇔ ai ≥ bi for i = 1, 2, . . . , n.

Corollary 3.6. Let U be a universal lex ideal and I, J ∈ L(U ; c). Let MI (resp.
MJ) be the set of all monomials in U \ I (resp. U \ J). If m(MI) ≽ m(MJ) then
βi(I) ≥ βi(J) for all i.

Proof. Observe that βi,i+j(I) = βi,i+j(J) = 0 for j ≫ 0. Thus, for d ≫ 0, we have

βi(I) =
∑d

j=0 βi,i+j(I). Let I≤d =
⊕d

k=0 Ik. Then by Lemma 3.5,

βi(I) =

(
n− 1

i

)
dimK I≤d −

n∑
k=1

(
k − 1

i

)
m≤k(I≤d−1)−

n−1∑
k=1

(
k − 1

i− 1

)
m≤k(I≤d)

and the same formula holds for J . Since, for d ≫ 0,

m(J≤d) = m(U≤d)−m(MJ) ≽ m(U≤d)−m(MI) = m(I≤d),

we have βi(I) ≥ βi(J) for all i, as desired. �
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Next, we study the structure of MI . Let

U = (xa1+1
1 , xa1

1 xa2+1
2 , . . . , xa1

1 xa2
2 · · · xat−1

t−1 x
at+1
t )

be a universal lex ideal, δi = xa1
1 · · · xai−1

i−1 x
ai+1
i and bi = a1+ · · ·+ ai+1 = deg δi. (If

U = S then t = 1 and a1 = −1.) Let

S(i) = K[xi, . . . , xn].

Then, as K-vector spaces, we have a decomposition

U = δ1S
(1)
⊕

δ2S
(2)
⊕

· · ·
⊕

δtS
(t).

Definition 3.7. A set of monomials N ⊂ S(i) is said to be rev-lex if, for all mono-
mials u ∈ N and v <lex u of the same degree, one has v ∈ N . Moreover, N is
said to be super rev-lex (in S(i)) if it is rev-lex and u ∈ N implies v ∈ N for any
monomial v ∈ S(i) of degree ≤ deg u − 1. A multicomplex is a set of monomials
N ⊂ S(i) satisfying that u ∈ N and v|u imply v ∈ N . Thus a multicomplex is the
complement of the set of monomials in a monomial ideal. Note that super rev-lex
sets are multicomplexes.

Let I ∈ L(U ; c) and MI the set of monomials in U \ I. Then we can uniquely
write

MI = δ1M⟨1⟩
⊎

δ2M⟨2⟩
⊎

· · ·
⊎

δtM⟨t⟩

where M⟨i⟩ ⊂ S(i) and where
⊎

denotes the disjoint union. The following fact is
obvious.

Lemma 3.8. With the same notation as above,

(i) each M⟨i⟩ is a rev-lex multicomplex.
(ii) if δiM⟨i⟩ has a monomial of degree d then δi+1M⟨i+1⟩ contains all monomials

of degree d in δi+1S
(i+1) for all d.

Note that Lemma 3.8(ii) is equivalent to saying that if M⟨i⟩ contains a monomial

of degree d then M⟨i+1⟩ contains all monomials of degree d− ai+1 in S(i+1).
We say that a set of monomials

M = δ1M⟨1⟩
⊎

δ2M⟨2⟩
⊎

· · ·
⊎

δtM⟨t⟩ ⊂ U,

where M⟨i⟩ ⊂ S(i), is a ladder set if it satisfies the conditions (i) and (ii) of Lemma
3.8. The next result is the key result in this paper.

Proposition 3.9. Let U ⊂ S be a universal lex ideal. For any integer c ≥ 0, there
exists a ladder set N ⊂ U with #N = c such that for any ladder set M ⊂ U with
#M = c one has

m(N) ≽ m(M).

We prove Proposition 3.9 in Section 6. Here, we prove Theorem 1.1 by using
Proposition 3.9.



UPPER BOUNDS OF THE BETTI NUMBERS 7

Proof of Theorem 1.1. Let U ⊂ S be a proper universal lex ideal with PU(t) = p(t)
and Ū = U ∩ S̄. Let c = dimK(sat Ū/Ū). For any lex ideal I ⊂ sat Ū , let MI be
the set of monomials in (sat Ū \ I).

Let N ⊂ sat Ū be a ladder set of monomials with #N = c given in Proposition
3.9. Consider the ideal J ⊂ S̄ generated by all monomials in sat Ū \ N . Then
J ⊂ sat Ū and MJ = N . In particular, J ∈ L(U).

Let L = JS. By the construction, PL(t) = PU(t) = p(t). We claim that L satisfies
the desired conditions. Let I ⊂ S be a saturated graded ideal with PI(t) = p(t).
By Lemmas 3.1 and 3.4, we may assume that I is a 1-lexicographic ideal with Ī ∈
L(U) = L(sat Ū ; c). Since MĪ is a ladder set, by the choice of J , m(MJ) ≽ m(MĪ).
Then, by Corollary 3.6, βi(L) = βi(J) ≥ βi(Ī) = βi(I) for all i, as desired. �

Another interesting corollary of Proposition 3.9 is

Corollary 3.10. Let U ⊂ S be a universal lex ideal and c ≥ 0. There exists a
lex ideal L ⊂ U with dimK U/L = c such that, for any graded ideal I ⊂ U with
dimK U/I = c, one has βi(L) ≥ βi(I) for all i.

Finally we prove Theorem 1.2.

Proof of Theorem 1.2. Let I be an ideal in a regular local ring (R,m, K) such that
pR/I(t) = p(t). Then the associated graded ring grm(R/I) has the same Hilbert–
Samuel polynomial as R/I and βi(R/I) ≤ βi(grm(R/I)) for all i (see [R] and [HRV]).

Let S = K[x1, . . . , xn] and S ′ = S[xn+1] be standard graded polynomial rings.
By adjoining a variable to grm(R/I) we obtain a graded ring that is isomorphic
to S ′/J for a saturated graded ideal J ⊂ S ′. Then pgrm(R/I)(t) is equal to the
Hilbert polynomial of S ′/J and βi(grm(R/I)) = βi(S

′/J) for all i. Let L′ ⊂ S ′ be
the saturated ideal with the same Hilbert polynomial as J given in Theorem 1.1.
Observe that L′ has no generators which are divisible by xn+1 by the construction
given in the proof of Theorem 1.1.

Let L ⊂ A = K[[x1, . . . , xn]] be a monomial ideal having the same generators
as L′. We claim that L satisfies the desired conditions. By the construction, the
Hilbert–Samuel polynomial of A/L is equal to the Hilbert polynomial of S ′/L′ and
βi(A/L) = βi(S

′/L′) for all i. Since βi(R/I) ≤ βi(S
′/J) ≤ βi(S

′/L′) and pR/I(t) =
PS′/J(t) = PS′/L′(t), the ideal L satisfies the desired conditions. �

4. Some tools to study max sequence

In this section, we introduce some tools to studym(−). Let S = K[x1, . . . , xn] and

Ŝ = K[x2, . . . , xn]. From now on, we identify vector spaces spanned by monomials
(such as polynomial rings and monomial ideals) with the set of monomials in the
spaces. First, we introduce pictures which help to understand the proofs. We
associate with the set of monomials in S the following picture in Figure 1.
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1

x1

x2
1 x1x2 · · · x2

n

x3
1 x2

1x2 · · · x3
n

x2 xn· · ·

S0

S1

S2

S3

Figure 1

Each block in Figure 1 represents a set of monomials in S of a fixed degree ordered
by the lex order. We represent a set of monomials M ⊂ S by a shaded picture
so that the set of monomials in the shade is equal to M . For example, Figure 2
represents the set M = {1, x1, x2, . . . , xn, x

2
n}.

1

x1

x2
1 x1x2 . . . x2

n

x3
1 x2

1x2 . . . x3
n

x2 xn. . .

Figure 2

M =

Definition 4.1. We define the opposite degree lex order >opdlex by u >opdlex v if (i)
deg u < deg v or (ii) deg u = deg v and u >lex v.

For monomials u1 ≥opdlex u2, let

[u1, u2] = {v ∈ S : u1 ≥opdlex v ≥opdlex u2}.
A set of monomials M ⊂ S is called an interval if M = [u1, u2] for some monomials
u1, u2 ∈ S. Moreover, we say that M is a lower lex set of degree d if M = [xd

1, u2],
and that M is an upper rev-lex set of degree d if M = [u1, x

d
n]. (See Fig. 3.)

Figure 3

Interval Upper rev-lex setLower lex set

u1

u2 xd
n

u1u2

xd
1

A benefit of considering pictures is that we can visualize the following map ρ :
S → Ŝ. For any monomial xk

1u ∈ S with u ∈ Ŝ, let

ρ(xk
1u) = u.
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This induces a bijection

ρ : Sd =
⊕d

k=0 x
k
1Ŝd−k −→ Ŝ≤d =

⊕d
k=0 Ŝk

xk
1u −→ u.

It is easy to see that if [u1, u2] ⊂ Sd then ρ([u1, u2]) = [ρ(u1), ρ(u2)] is an interval in

Ŝ. (See Fig. 4.)

Figure 4

u1 u2 ρ(u2)

ρ(u1)

[u1, u2] ⊂ Sd ρ([u1, u2]) ⊂ Ŝ≤d

In particular, we have

Lemma 4.2. Let M ⊂ Sd be a set of monomials.

(i) If M is lex then ρ(M) is a lower lex set of degree 0 in Ŝ.

(ii) If M is rev-lex then ρ(M) is an upper rev-lex set of degree d in Ŝ.

We define max(1) = 1 in S and max(1) = 2 in Ŝ. For any monomial u ∈ Sd with
u ̸= xd

1, one has max(u) = max(ρ(u)). Hence

Lemma 4.3. Let M ⊂ Sd be a set of monomials. One has m(M) ≽ m(ρ(M)).
Moreover, if xd

1 ̸∈ M then m(M) = m(ρ(M)).

Lemma 4.4 (Interval Lemma). Let [u1, u2] be an interval in S, 0 ≤ a ≤ deg u1 and
b ≥ deg u2. Let L ⊂ S be the lower lex set of degree a and R the upper rev-lex set of
degree b with #L = #R = #[u1, u2]. Then

m(L) ≽ m
(
[u1, u2]

)
≽ m(R).

Proof. We use double induction on n and #[u1, u2]. The statement is obvious if
n = 1 or if #[u1, u2] = 1. Suppose n > 1 and #[u1, u2] > 1.

Case 1. We first prove the statement when [u1, u2], L and R are contained in a
single component Sd for some degree d. We may assume L ̸= [u1, u2] and L ̸= R.
Then, since xd

1 ̸∈ [u1, u2], m([u1, u2]) = m(ρ([u1, u2])) and m(R) = m(ρ(R)). Since

ρ(L) ⊂ Ŝ≤d is a lower lex set of degree 0, ρ([u1, u2]) ⊂ Ŝ≤d is an interval and

ρ(R) ⊂ Ŝ≤d is an upper rev-lex set of degree d in Ŝ, by the induction hypothesis,
we have

m(L) ≽ m
(
ρ(L)

)
≽ m

(
ρ
(
[u1, u2]

))
≽ m

(
ρ(R)

)
= m(R).

Then the statement follows since m(ρ([u1, u2])) = m([u1, u2]).
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Case 2. Now we prove the statement in general. We first prove the statement for
L. We identify Si with the set of monomials in S of degree i. Suppose #[u1, u2] >
#Sa. Then there exist u′

1, u
′
2 ∈ S such that

[u1, u2] = [u1, u
′
2]
⊎

[u′
1, u2]

and #[u1, u
′
2] = #Sa. Let L

′ be the lower lex set of degree a+1 with #L′ = #[u′
1, u2].

By the induction hypothesis, m(Sa) ≽ m([u1, u
′
2]) and m(L′) ≽ m([u′

1, u2]). Thus

m
(
[u1, u2]

)
≼ m

(
Sa

⊎
L′) = m(L).

Suppose #[u1, u2] ≤ #Sa. Then L ⊂ Sa. Let d = deg u1 and A ⊂ Sd the lex set
with #A = #[u1, u2]. Then A = xd−a

1 L. Since m(A) = m(L), what we must prove
is

m(A) ≽ m
(
[u1, u2]

)
.

Since #[u1, u2] ≤ #Sa ≤ #Sd+1, we have deg u2 ≤ d+ 1.
If deg u2 = d, then [u1, u2] ⊂ Sd. Then the desired inequality follows from Case

1. Suppose deg u2 = d+ 1. Then

[u1, u2] = [u1, x
d
n]
⊎

[xd+1
1 , u2].

Recall #[u1, u2] ≤ #Sa ≤ #Sd. Let B ⊂ Sd be the lex set with #B = #[xd+1
1 , u2].

Then [xd+1
1 , u2] = x1B. Since #B + #[u1, x

d
n] = #[u1, u2] ≤ #Sd, B ∩ [u1, x

d
n] = ∅.

Then, by Case 1,

m
(
[u1, u2]

)
= m(B) +m

(
[u1, x

d
n]
)
≼ m(A).

(See Fig. 5.)

A

L

u1

u2

B u1

⇒⇒⇒

Figure 5

[u1, u2] B
⊎
[u1, x

d
n] A L

Next, we prove the statement for R. In the same way as in the proof for L, we
may assume #[u1, u2] ≤ #Sb. Let d = deg u2.

If deg u1 = d, then [u1, u2] ⊂ Sd and A = xb−d
1 [u1, u2] is an interval in Sb. Then,

by Case 1, we have m
(
[u1, u2]

)
= m(A) ≽ m(R) as desired. Suppose deg u1 < d.

Then

[u1, u2] = [u1, x
d−1
n ]

⊎
[xd

1, u2].

Let R′ be the upper rev-lex set of degree b in S with #R′ = #[u1, x
d−1
n ]. Then,

m
(
[u1, u2]

)
≽ m(R′) +m

(
[xd

1, u2]
)
= m(R′) +m

(
[xb

1, x
b−d
1 u2]

)
,
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where the first inequality follows from the induction hypothesis on the cardinality.
Since R \R′ ⊂ Sb is an interval and [xb

1, x
b−d
1 u2] ⊂ Sb is lex, by Case 1 we have

m(R′) +m
(
[xb

1, x
b−d
1 u2]

)
≽ m(R′) +m(R \R′) = m(R),

as desired. (See Fig. 6.)

u1

u2 ⇒⇒⇒

Figure 6

[u1, u2] R′⊎[xd
1, u2] R′⊎[xb

1, x
b−d
1 u2] R

R′

u2

R′ R

�

Recall that a set M ⊂ S of monomials is said to be super rev-lex if it is rev-lex
and u ∈ M implies v ∈ M for any monomial v ∈ S of degree ≤ deg u− 1.

Corollary 4.5. Let R ⊂ S be an upper rev-lex set of degree d and M ⊂ S a super
rev-lex set such that #R + #M ≤ #S≤d. Let Q ⊂ S be the super rev-lex set with
#Q = #R +#M . Then

m(Q) ≽ m(R) +m(M).

Proof. Let e = min{k : xk
1 ̸∈ M} and F = {u ∈ Se : u ̸∈ M}. If #F ≥ #R then

Q = M
⊎

(Q \M)

and Q \M ⊂ F is an interval. Thus m(Q \M) ≽ m(R) by the interval lemma.
Suppose #F < #R. Write

R = I
⊎

R′

such that I is an interval with #I = #F and R′ is an upper rev-lex set of degree d.
Since F is a lex set, the interval lemma shows

m(M) +m(R) = m(M) +m(I) +m(R′) ≼ m
(
F
⊎

M
)
+m(R′).

Then F
⊎

M is a super rev-lex set containing xe
1. By repeating this procedure, we

have m(M) +m(R) ≼ m(Q). �

The above corollary proves the next result which was essentially proved in [ERV].

Corollary 4.6 (Elias-Robbiano-Valla). Let R ⊂ S be a finite rev-lex set of mono-
mials and M ⊂ S the super rev-lex set with #M = #R. Then m(M) ≽ m(R).

Proof. Let R =
⊎N

i=0Ri, where Ri is the set of monomials in R of degree i and

N = max{i : Ri ̸= ∅}. Let M(≤j) be the super rev-lex set with #M(≤j) = #
⊎j

i=0Ri.
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We claim m(M(≤j)) ≽ m(
⊎j

i=0Ri) for all j. This follows inductively from Corollary
4.5 as follows:

m
( j⊎
i=0

Ri

)
= m

( j−1⊎
i=0

Ri

)
+m(Rj) ≼ m(M(≤j−1)) +m(Rj) ≼ m(M(≤j)).

(We use induction hypothesis for the second step and use Corollary 4.5 for the last

step.) Then we have m(M) = m(M(≤N)) ≽ m(
⊎N

i=0Ri). �
We finish this section by proving the result of Valla which we mentioned in the

introduction.

Corollary 4.7 (Valla). Let c be a positive integer and M ⊂ S the super rev-lex set
with #M = c. Let J ⊂ S be the monomial ideal generated by all monomials which
are not in M . Then, for any homogeneous ideal I ⊂ S with dimK(S/I) = c, we
have βi(S/J) ≥ βi(S/I) for all i.

Proof. The proof is similar to that of Corollary 3.6. By the Bigatti-Hulett-Pardue
theorem, we may assume that I is lex. Then Lemma 3.5 says, for d ≫ 0, we have

βi(I) =

(
n− 1

i

)
dimK I≤d −

n∑
k=1

(
k − 1

i

)
m≤k(I≤d−1)−

n−1∑
k=1

(
k − 1

i− 1

)
m≤k(I≤d)

and the same formula holds for J . Let N ⊂ S be the set of monomials which are
not in I. Since N is a rev-lex set with #N = c, for d ≫ 0, by Corollary 4.6 we have

m(J≤d) = m(S≤d)−m(M) ≼ m(S≤d)−m(N) = m(I≤d).

Hence βi(J) ≥ βi(I) for all i as desired. �
The proof given in this section provides a new short proof of the above result.

The most difficult part in the proof is Corollary 4.6. The original proof given in
[ERV] is based on computations of binomial coefficients. On the other hand, our
proof is based on moves of interval sets of monomials.

5. Construction

In this section, we give a construction of sets of monomials which satisfies the
conditions of Proposition 3.9, and study their properties.

Throughout Sections 5 and 6, we fix the following notation: Let a1, a2, . . . , at be
non-negative integers, where t ≤ n, and let bi = a1+· · ·+ai+1 for i = 1, 2, . . . , t. Let
F = Se1

⊕
Se2

⊕
· · ·
⊕

Set be a free S-modules with deg ei = bi for i = 1, 2, . . . , t.
we consider the set

U = S(1)e1
⊎

S(2)e2
⊎

· · ·
⊎

S(t)et ⊂ F.

Note that we identify each S(k) with the set of monomials in it. For i = 1, 2, . . . , t,
let δi = xa1

1 · · · xai−1

i−1 x
ai+1
i . Then, by the decomposition given before Definition 3.7,

the above set U can be identified with the set of monomials in the universal lex ideal
(δ1, . . . , δt) = δ1S

(1)
⊕

· · ·
⊕

δtS
(t) via the natural correspondence uei ↔ δiu.
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We call an element uei ∈ U a monomial in U . For each monomial uei ∈ U , we
define

max(uei) =

{
i, if u = 1,
max(u), otherwise .

Also, for M ⊂ U , we define m(M) = (m≤1(M),m≤2(M), . . . ,m≤n(M)) in the same
way as in Section 3. We say that a subset M = M⟨1⟩e1

⊎
· · ·
⊎
M⟨t⟩et ⊂ U is a ladder

set if M⟨1⟩, . . . ,M⟨t⟩ satisfy the conditions (i) and (ii) of Lemma 3.8. Then, consid-

ering m(−) of ladder sets in U = S(1)e1
⊎
· · ·
⊎

S(t)et is equivalent to considering
m(−) of ladder sets in the universal lex ideal (δ1, . . . , δt) = δ1S

(1)
⊕

· · ·
⊕

δtS
(t). In

particular, to prove Proposition 3.9, it is enough to consider ladder sets in U .
Let M ⊂ U . We write

U (i) = S(i)ei, M (i) = M ∩ U (i), U (≥i) =
t⊎

k=i

S(k)ek and M (≥i) = M ∩ U (≥i).

Note that U (≥i) =
⊎

k≥i S
(k)ek can be identified with the universal lex ideal in

K[xi, . . . , xn] generated by {(xbi−1

i )xai
i · · · xak−1

k−1 x
ak+1
k : k = i, i+1, . . . , t}. For a subset

M ⊂ U , we writeMk for the set of monomials inM of degree k andM≤j =
⊎j

k=0Mk.
Like Section 4, we use pictures to help to understand the proofs. We identify U

with the following picture.

1

x1 . . . xn

x2
1 . . . x2

n 1

x2
2 . . . x2

n
x2 . . . xn

x3 . . . xn

1

· · ·

U (1) U (2) U (3)

Figure 7

x3
1 . . . x3

n

x4
1 . . . x4

n

Note that each low represents the set of monomials in U having the same degree.
Thus, in Figure 7, deg e2 = deg e1 + 2 and deg e3 = deg e2 + 1. Also, we present
a subset M ⊂ U by a shaded picture. For example, Figure 8 represents M =
{1, x1, x2, . . . , xn}e1

⊎
{1}e2.

1

x1 . . . xn

x2
1 . . . x2

n 1

x2
2 . . . x2

n
x2 . . . xn

x3 . . . xn

1

· · ·

Figure 8

M

x3
1 . . . x3

n

x4
1 . . . x4

n
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Also, we define the map ρ : U → U by extending the map given in Section 4 as
follows: For xk

i uei ∈ U (i) with u ∈ K[xi+1, . . . , xn], let

ρ(xk
i uei) =

{
uei+1, if i ≤ t− 1,
0, if i = t.

We call the above map ρ : U → U the moving map of U . The moving map induces

a bijection from U
(i)
j = {uei ∈ U (i) : deg u = j − bi} to U

(i+1)
≤j+ai+1

= {uei+1 ∈ U (i+1) :

deg u ≤ j − bi} for i = 1, 2, . . . , t− 1. Also, we have

Lemma 5.1. For N ⊂ U
(i)
j with i ≤ t− 1, one has m(N) ≽ m(ρ(N)). Moreover, if

xj−bi
i ei ̸∈ N then m(N) = m(ρ(N)).

Next, we define ladder sets M ⊂ U which attain maximal Betti numbers. Recall
that a subset M ⊂ U is called a ladder set if the following conditions hold:

(i) {u ∈ S(i) : uei ∈ M (i)} is a rev-lex multicomplex for i = 1, 2, . . . , t.

(ii) if M
(i)
j ̸= ∅ then M

(i+1)
j = U

(i+1)
j for i = 1, 2, . . . , t− 1 and for all j ≥ 0.

To simplify the notation, we say that N ⊂ U (i) is a super rev-lex set (resp. interval,
lower lex set or upper rev-lex set of degree d) if N ′ = {u ∈ S(i) : uei ∈ N} is super
rev-lex (resp. interval, lower lex set or upper rev-lex set of degree d− bi) in S(i). For
monomials uei, vei ∈ U and for a monomial order > on S(i), we write uei > vei if
u > v.

Definition 5.2. A monomial f = xα1
1 xα2

2 · · · xαn
n e1 ∈ U

(1)
e is said to be admissible

over U if the following conditions hold:

(i) deg ρi(f) ≤ e+ 1 or ρi(f) = ei+1 for i = 1, 2, . . . , t− 2,
(ii) ρt−1(f) = et or ρ

t−1(f) ≥opdlex x
e+1−bt
t et.

Note that the second condition in (ii) cannot be satisfied when e + 1 − bt < 0 and
that if t = 1 then all monomials in U are admissible. Also ρt−1(f) ≥opdlex xe+1−bt

t et
if and only if deg ρt−1(f) ≤ e or ρt−1(f) = xe+1−bt

t et.

We say that f ∈ U
(i)
e is admissible if it is admissible over U (≥i). Note that

xk
i ei ∈ U (i) is admissible for all i and k.

Definition 5.3. Let >dlex be the degree lex order. Thus for monomials u, v ∈ S,
u >dlex v if deg u > deg v or deg u = deg v and u >lex v. We extend >dlex to
monomials in U by uei >dlex vej if δiu >dlex δjv. Thus, we have uei >dlex vej if
(i) deg uei > deg vej, or (ii) deg uei = deg vej and i < j, or (iii) deg uei = deg vej,
i = j and u >dlex v.

Fix an integer c > 0. Let

f = max
>dlex

{g ∈ U (1) : g is admissible and #{h ∈ U : h ≤dlex g} ≤ c}

and

L(c) = {h ∈ U (1) : h ≤dlex f}.
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Let M = M (1)
⊎

· · ·
⊎
M (t) ⊂ U be a set of monomials with #M = c. We say that

M satisfies the maximal condition if M (1) = L(c). Also, we say that M is extremal

if M (≥k) ⊂ U (≥k) satisfies the maximal condition in U (≥k) for all k.

Example 5.4. If t = 1 then any monomial in U = S(1)e1 is admissible and extremal
sets can be identified with super rev-lex sets in S(1).

Example 5.5. Suppose t = 2. Then f = xα1
1 xα2

2 · · · xαn
n e1, where f ̸= xα1

1 e1, is
admissible in U = S(1)e1

⊎
S(2)e2 if α1 ≥ a2 or f = xa2−1

1 xα2
2 e1. In other words, a

monomial f ∈ S
(1)
d e1 is admissible if and only if f ≥lex x

a2−1
1 xd−a2+1

2 e1 if a2 ≤ d and
f = xd

1e1 if a2 > d. For example, if deg e1 = 2 and deg e2 = 4 then the admissible

monomials in U
(1)
5 = (S

(1)
3 )e1 are

x3
1e1, x

2
1x2e1, x

2
1x3e1, . . . , x

2
1xne1, x1x

2
2e1.

Example 5.6. Suppose t = 3. The situation is more complicated. A monomial

f = xα1
1 xα2

2 · · · xαn
n e1 ∈ U

(1)
e , where f ̸= xα1

1 e1, is admissible in U if and only if the
following conditions hold:

• α1 ≥ a2 − 1;
• xα3

3 · · · xαn
n ≥opdlex xe+1−b3

3 or xα3
3 · · · xαn

n = 1.

For example, if deg e1 = 2, deg e2 = 4, deg e3 = 6 and n = 3 then the set of the

admissible monomials in U
(1)
6 = (K[x1, x2, x3]4)e1 are

{x4
1e1} ∪ {x3

1x2e1, x
3
1x3e1} ∪ {x2

1x
2
2e1, x

2
1x2x3e1} ∪ {x1x

3
2e1, x1x

2
2x3e1}.

Example 5.7. Let U = x2
1S

(1)
⊎

x1x
3
2S

(2). Suppose c =
(
n+2
2

)
+ 2. Then

max
>dlex

{
f ∈ U (1) : f is admissible and #{h ∈ U : h ≤dlex f} ≤ c

}
= x2

1e1.

Indeed,

#{h ∈ U : h ≤dlex x
2
1e1} = #S

(1)
≤2e1

⊎
{1}e2 =

(
n+ 2

2

)
+ 1

and

#{h ∈ U : h ≤dlex x1x
2
2e1} = #

(
S
(1)
≤3 \ {x3

1, x
2
1x2, . . . , x

2
1xn}

)
e1
⊎

S
(2)
≤1e2

=

(
n+ 3

3

)
> c.

By Example 5.5, the lex-smallest admissible monomial in U
(1)
5 is x1x

2
2e1. Thus the

extremal set L ⊂ U with #L = c is

L = S
(1)
≤2e1

⊎
{1, xn}e2.

Example 5.8. In general, it is not easy to understand the shape of extremal sets,
but in some special cases they are simple.

If b1 = b2 = · · · = bt then any monomial in U is admissible. Thus any extremal
set M in U is of the form

M = {h ∈ U : h ≤dlex f}
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for some f ∈ U .

If b2 > e then the only admissible monomial in U
(1)
e is xe−b1

1 e1. Thus if b1 ≪ b2 ≪
· · · ≪ bn (for example, if bi+1 − bi > c for all i), then any extremal set M in U with
#M = c is of the form

M = S
(1)
≤d1

e1
⊎

S
(2)
≤d2

e2
⊎

· · ·
⊎

S
(t−1)
≤dt−1

et−1

⊎
N,

whereN ⊂ S(t)et and #S
(i+1)
≤di+1

ei+1

⊎
· · ·
⊎

S
(t−1)
≤dt−1

et−1

⊎
N < #S

(i)
di+1 for i = 1, . . . , t−

1.

In the rest of this section, we study properties of extremal sets. Suppose t ≥ 3.
For an integer k ≥ −a3, we write U (i)[−k] = S(i)e′i where e′i is a basis element with
deg ei = bi + k. In the picture, U (i)[−k] is the picture obtained from that of U (i)

by moving the blocks k steps above. In particular, for any integer k ≥ −a3, U
′ =

U (2)
⊎
(
⊎t

i=3 U
(i)[−k]) can be identified with a universal lex ideal in K[x2, . . . , xn].

(See Fig. 9.)

U (≥2) U ′ = U (2)
⊎
(
⊎t

i=3 U
(i)[−k])

⇒

Figure 9

Lemma 5.9. Suppose t ≥ 3. Let f ∈ U
(1)
e , d = deg ρ(f) and k ≥ −a3 with

e − d + k ≥ 0. Then f is admissible over U if and only if the following conditions
hold:

• deg ρ(f) ≤ e+ 1 or ρ(f) = e2;

• xe−d+k
2 ρ(f) ∈ U

(2)
e+k is admissible in U ′ = U (2)

⊎
(
⊎t

i=3 U
(i)[−k]).

Proof. Let U ′ = S(2)e2
⊎

S(3)e′3
⊎

· · ·
⊎
S(t)e′t with deg e′i = deg ei + k for k =

3, . . . , t, and let ϕ be the moving map of U ′. Let ρi(f) = ui+1ei+1 for i = 2, . . . , t−1.
Then ϕi(xe−d+k

2 ρ(f)) = ui+2e
′
i+2 for i = 1, 2, . . . , t− 2. Thus deg ρi(f) ≤ e+1 if and

only if deg ϕi−1(xe−d+k
2 ρ(f)) ≤ e + 1 + k for i ≥ 2. Also, ρt−1(f) ≥opdlex xe+1−bt

t et
if and only if ϕt−2(xe+d+k

2 ρ(f)) ≥opdlex xe+1−bt
t e′t. Since deg xe−d+k

2 ρ(f) = e+ k, the
above facts prove the statement. �

By the definition of the maximal condition, the following facts are straightforward.

Lemma 5.10. Let M ⊂ U be an extremal set.

(i) If #M ≥ #U≤e then M ⊃ U≤e.

(ii) If #M ≥ #U
(1)
≤e−1

⊎
U

(≥2)
≤e then M ⊃ U

(1)
≤e−1

⊎
U

(≥2)
≤e .
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Proof. Since M is extremal, there exists an f ∈ U (1) such that

M (1) = {h ∈ U (1) : h ≤dlex f}.

(i) Since xe−b1
1 e1 is admissible and {h ∈ U : h ≤dlex xe−b1

1 e1} = U≤e, f ≥dlex

xe−b1
1 e1. Then M (1) ⊃ {h ∈ U (1) : h ≤dlex x

e−b1
1 e1} = U

(1)
≤e . Also, since

#M (≥2) = #M−#M (1) ≥ #{h ∈ U : h ≤dlex f}−#{h ∈ U (1) : h ≤dlex f} ≥ #U
(2)
≤e ,

we have M (≥2) ⊃ U
(2)
≤e by induction on t.

(ii). It is clear that M ⊃ U≤e−1 by (i). If deg f ≥ e then

#M ≥ #{h ∈ U : h ≤dlex f} ≥ #M (1)
⊎

U
(≥2)
≤e .

Then #M (≥2) ≥ #U
(≥2)
≤e and M (≥2) ⊃ U

(≥2)
≤e by (i) as desired. If deg f < e then

M (1) = U
(1)
≤e−1 and #M (≥2) ≥ #U

(≥2)
≤e by the assumption. Hence M (≥2) ⊃ U

(≥2)
≤e by

(i). �

Corollary 5.11. Extremal sets are ladder sets.

Proof. If M ⊂ U is extremal then M (i) is super rev-lex for all i by the maximal

condition. It is enough to prove that if M
(1)
e ̸= ∅ then M ⊃ U

(≥2)
e . If M

(1)
e ̸= ∅ then

there exists an admissible monomial f ∈ U
(1)
e such that

#M ≥ #{h ∈ U : h ≤dlex f} ≥ #U
(1)
≤e−1

⊎
U

(≥2)
≤e .

Then the statement follows from Lemma 5.10. �

To simplify notation, for uei, vei ∈ U (i) with u ≥opdlex v, we write

[uei, vei] = {wei ∈ U (i) : u ≥opdlex w ≥opdlex v}.

Lemma 5.12. Suppose t ≥ 2. Let M ⊂ U be an extremal set.

(i) If a2 > 0 then M
(1)
e ̸= 0 if and only if #M ≥ #U

(1)
≤e .

(ii) If a2 = 0 and M
(1)
e ̸= 0 then #M > #U

(1)
≤e .

Proof. Let f ∈ U
(1)
e be the lex-smallest admissible monomial in U

(1)
e over U .

(i) It suffices to prove that

#{h ∈ U : h ≤dlex f} = #U
(1)
≤e .(2)

If f = xe−b1
1 e1 then f ′ = xe−b1−1

1 x2e1 is not admissible. By the definition of the
admissibility, one has deg ρ(f ′) = deg x2e2 > e+ 1 and b2 > e. In this case we have

{h ∈ U : h ≤dlex f} = U
(1)
≤e .

Suppose f ̸= xe−b1
1 e1. We prove (2) by using induction on t. Suppose t = 2. Then

f = xa2−1
1 xe+1−b2

2 e1, and

{h ∈ U : h ≤dlex f} = U
(1)
≤e−1

⊎
[f, xe−b1

n e1]
⊎

U
(2)
≤e .
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Since ρ([f, xe−b1
n e1]) =

⊎e+a2
j=e+1 U

(2)
j , we have

#{h ∈ U : h ≤dlex f} = #U
(1)
≤e−1 +#U

(2)
≤e+a2

= #U
(1)
≤e

where we use ρ(U
(1)
e ) = U

(2)
≤e+a2

for the last equality.
Suppose t ≥ 3. Since ρ(f) ̸= e2, we have deg ρ(f) = e + 1. Indeed, by Lemma

5.9, deg ρ(f) ≤ e+1. On the other hand, since xa2−1
1 xe+1−b2

2 e1 is admissible over U ,
f ≤lex x

a2−1
1 xe+1−b2

2 e1. Thus deg ρ(f) ≥ deg ρ(xa2−1
1 xe+1−b2

2 e1) = e+ 1.
Consider U ′ = U (2)

⊎t
i=3 U

(i)[−1]. By Lemma 5.9 (consider the case when d = e+1

and k = 1), ρ(f) is the lex-smallest admissible monomial in U
(2)
e+1 over U ′. Then

#
[
ρ(f), xe+1−b2

n e2
]⊎

U
(≥2)
≤e = #[ρ(f), xe+1−b2

n e2]
⊎

U
(2)
≤e

⊎
U ′(≥3)

≤e+1(3)

= #
{
h ∈ U ′ : h ≤dlex ρ(f)

}
= #U

(2)
≤e+1

where the last equation follows from the induction hypothesis. On the other hand

{h ∈ U : h ≤dlex f} = [f, xe−b1
n e1]

⊎
U

(1)
≤e−1

⊎
U

(≥2)
≤e(4)

and

ρ
(
[f, xe−b1

n e1]
)
=
[
ρ(f), xe+1−b2

n e2
]⊎(

e+a2⊎
j=e+2

U
(2)
j

)
.(5)

(3), (4) and (5) show

#{h ∈ U : h ≤dlex f} = #U
(1)
≤e−1

⊎
U

(2)
≤e+a2

= #U
(1)
≤e−1

⊎
U (1)
e = #U

(1)
≤e

where the second equality follows since ρ(U
(1)
e ) = U

(2)
≤e+a2

.
(ii) It suffices to prove that

#{h ∈ U : h ≤dlex f} > #U
(1)
≤e .

Since a2 = 0, #U
(2)
≤e = #U

(1)
e . Then we have

#{h ∈ U : h ≤dlex f} > #U
(1)
≤e−1

⊎
U

(2)
≤e = #U

(1)
≤e−1

⊎
U (1)
e = U

(1)
≤e ,

as desired. �
Corollary 5.13. Suppose t ≥ 2. Let B ⊂ U

(1)
e be the rev-lex set and N ⊂ U (≥2)

a ladder set with #N ≥ #U
(≥2)
≤e−1. Let Y ⊂ U be the extremal set with #Y =

#U
(1)
≤e−1

⊎
B
⊎
N. If #B

⊎
N < #U

(1)
e then

Y = U
(1)
≤e−1

⊎
Y (≥2).

Proof. Since #Y ≥ #U≤e−1, we have Y ⊃ U≤e−1 by Lemma 5.10. On the other

hand, since #Y = #U
(1)
≤e−1

⊎
B
⊎

N < #U
(1)
≤e by the assumption, we have Y

(1)
e = ∅

by Lemma 5.12. Hence Y (1) = U
(1)
≤e−1. �
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For monomials f >dlex g ∈ U (i), let [f, g) = [f, g] \ {g}.

Lemma 5.14. Let f ∈ U
(1)
e be the lex-smallest admissible monomial in U

(1)
e over U

and g >lex h ∈ U
(1)
e admissible monomials over U such that there are no admissible

monomials in [g, h] except for g and h. Then #[g, h) ≤ #[f, xe−b1
n e1].

Proof. If t = 1 then all monomials are admissible over U . If t = 2 then any monomial

w ∈ U
(1)
e with w >lex f is admissible over U . Thus the statement is clear if t ≤ 2.

Suppose t ≥ 3. Since g ̸= h we have f ̸= xe−b1
1 e1. By the definition of the

admissibility, we have deg(ρ(f)) = e if a2 = 0 and deg(ρ(f)) = e + 1 if a2 > 0. We
consider the case when a2 > 0 (the proof for the case when a2 = 0 is similar).

Consider U ′ = U (2)
⊎
(
⊎t

i=3 U
(i)[−1]). Since any monomial w ∈ U

(1)
e such that

ρ(w) = xk
2e2 with k ≤ e + 1 − b2 is admissible over U , we have ρ([g, h)) ⊂ Sd for

some d ≤ e+ 1. Let

A = xe+1−d
2 ρ

(
[g, h)

)
=
[
xe+1−d
2 ρ(g), xe+1−d

2 ρ(h)
)
⊂ U

(2)
e+1.

(See Fig. 10.)

A

Figure 10

g h

Let w ∈ A. Then w = xe+1−d
2 ρ(w′) for some w′ ∈ [g, h). Lemma 5.9 says that w

is admissible over U ′ if and only if w′ is admissible over U . Hence A contains no

admissible monomial over U ′ except for xe+1−d
2 ρ(g). By Lemma 5.9, ρ(f) ∈ U

(2)
e+1

is the lex-smallest admissible monomial in U
(2)
e+1 over U ′. Then, by the induction

hypothesis,

#A ≤ #[ρ(f), xe−b2
n e2] = #ρ

(
[f, xe−b1

n e1]
)
∩ U

(2)
e+1 ≤ #[f, xe−b1

n e1].

Then the statement follows since #[g, h) = #ρ([g, h)) = #A. �

Lemma 5.15. Let M ⊂ U be an extremal set, e = min{k : xk−b1
1 e1 ̸∈ M} and

H = Ue \Me. Let f ∈ U
(1)
e be the lex-smallest admissible monomial in U

(1)
e over U .

Then

(i) #U≤e +#[f, xe−b1
n e1] ≤ #U

(1)
≤e+1.

(ii) #M +#H < #U
(1)
≤e+1.
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Proof. We use induction on t. If t = 1 then then the statements are obvious. Suppose
t > 1.

(i) If a2 > 0 then by Lemma 5.12

#U≤e +#[f, xe−b1
n e1] = #{h ∈ U : h ≤dlex f}+#U (1)

e = #U
(1)
≤e +#U (1)

e < #U
(1)
≤e+1

as desired. Suppose a2 = 0. Then

ρ
(
[f, xe−b1

n e1]
)
= [ρ(f), xe−b2

n e1] ⊂ U (2)
e

and ρ(f) is the lex-smallest admissible monomial in U
(2)
e over U (≥2) by Lemma 5.9.

Then by the induction hypothesis

#U≤e +#[f, xe−b1
n e1] = #U

(1)
≤e +

(
#U

(≥2)
≤e +#[ρ(f), xe−b2

n e2]
)

≤ #U
(1)
≤e +#U

(2)
≤e+1

= #U
(1)
≤e+1

as desired.
(ii) Suppose M

(2)
e ̸= U

(2)
e . Then M

(1)
e = ∅. Since M (≥2) is extremal over U (≥2), by

the induction hypothesis

#M +#H = #U
(1)
≤e−1

⊎
M (≥2) +#U (1)

e

⊎
H(≥2) < #U

(1)
≤e +#U

(2)
≤e+1 ≤ #U

(1)
≤e+1,

where we use #U
(1)
e+1 = #U

(2)
≤e+1+a2

≥ #U
(2)
≤e+1 for the last inequality.

Suppose M
(2)
e = U

(2)
e . Let g = max>dlex

M (1) and let

µ = min
>dlex

{h ∈ U
(1)
≤e : h is admissible over U and h >dlex g}.

Then [µ, g) ⊂ U
(1)
e since g ≥dlex x

e−b1−1
1 e1. Since M is extremal,

#M < #{h ∈ U : h ≤dlex µ}.

Since M (1) = {h ∈ U (1) : h ≤dlex g}, H = [xe−b1
1 e1, g). Thus

#M +#H < #{h ∈ U : h ≤dlex µ}+#[xe−b1
1 e1, g)

= #U≤e +#[µ, g)

≤ #U≤e +#[f, xe−b1
n e1],

where the last inequality follows from Lemma 5.14. Then the desired inequality
follows from (i). �

6. Proof of the main theorem

Let U = S(1)e1
⊎
S(2)e2

⊎
· · ·
⊎

S(t)et be as in Section 5. The aim of this section
is to prove the next result, which proves Proposition 3.9.

Theorem 6.1. Let M ⊂ U be a ladder set and L ⊂ U the extremal set with
#L = #M . Then m(L) ≽ m(M).
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The proof of the above theorem is long. We prove it in subsections 6.1, 6.2 and
6.3 by case analysis.

In the rest of this section, we fix a ladder set M ⊂ U .

6.1. Preliminary of the proof.
For two subsets A,B ⊂ U , we define

A ≫ B ⇔ #A = #B and m(A) ≽ m(B).

Let X ⊂ U (1) be the super rev-lex set with #X = #M (1). Then {k : M
(1)
k ̸=

∅} ⊃ {k : Xk ̸= ∅}. Thus X ∪M (≥2) is also a ladder set in U . Since X ≫ M (1) by
Corollary 4.6, we have

Lemma 6.2. There exists a ladder set N ⊂ U such that N (1) is super rev-lex and
N ≫ M .

Thus in the rest of this section, we assume that M (1) is super rev-lex. Let

e = min{k + b1 : x
k
1e1 ̸∈ M}

and

f = max
>dlex

{g ∈ U
(1)
≤e : g is admissible over U and #{h ∈ U : h ≤dlex g} ≤ #M},

where f = 0 if #{h ∈ U : h ≤dlex e1} > #M . Since xe−b1−1
1 e1 is admissible over U

(when e ̸= b1), we have f = xe−b1−1
1 e1 or deg f = e. We will prove

Proposition 6.3. With the same notation as above, there exists a ladder set N such
that N ≫ M and

N (1) = {h ∈ U (1) : h ≤dlex f},
where {h ∈ U (1) : h ≤dlex f} = ∅ if f = 0.

The above proposition proves Theorem 6.1. Indeed, by applying the above propo-
sition repeatedly, one obtains a set N which satisfies the maximal condition and
N ≫ M . Then apply the induction on t. Also if t = 1 then Proposition 6.3 follows
from Corollary 4.6. In the rest of this section, we assume that t > 1 and that the
statement is true when the number of the free basis of U is at most t − 1. By the
above argument, we may assume that Theorem 6.1 is also true when the number of
the free basis of U is at most t− 1.

Lemma 6.4. There exists a ladder set N ⊂ U with N ≫ M and min{k+b1 : x
k
1e1 ̸∈

N (1)} = e satisfying the following conditions

(A1) N (1) is super rev-lex and N (≥2) is extremal in U (≥2).

(A2) ρ(N
(1)
e ) ∪N (2) ⊃ U

(2)
≤e+a2

or ρ(N
(1)
e ) ∩N (2) = ∅.

(A3) If t = 2 and ρ(N
(1)
e )∩N (2) = ∅ then N

(1)
e = ∅. If t ≥ 3 and ρ(N

(1)
e )∩N (2) = ∅

then N
(1)
e = ∅ or there exists a d ≥ e such that N (2) = U

(2)
≤d and N

(3)
d+1 ̸= U

(3)
d+1.
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Proof. Let F = M
(1)
e . Then M = (U

(1)
≤e−1

⊎
F )
⊎

M (2)
⊎

M (≥3) since M (1) is super
rev-lex.

Step 1. We first prove that there exits N satisfying (A1). Let X be the extremal
set in U (≥2) with #X = #M (≥2). Let

N = M (1)
⊎

X = U
(1)
≤e−1

⊎
F
⊎

X.

Since we assume that Theorem 6.1 is true for U (≥2), N ≫ M . What we must prove

is that N is a ladder set. Since M (≥2) ⊃ U
(≥2)
≤e−1, #X = #M (≥2) ≥ #U

(≥2)
≤e−1. Then

Lemma 5.10 says X ⊃ U
(≥2)
≤e−1, which shows that N is a ladder set if F = ∅. If F ̸= ∅

then M (≥2) ⊃ U
(≥2)
≤e by the definition of ladder sets, and X ⊃ U

(≥2)
≤e by Lemma 5.10.

Hence N is a ladder set.
Step 2. We prove that if M satisfies (A1) but does not satisfy either (A2) or

(A3) then there exists an N satisfying (A2) and (A3) such that N ≫ M and

#N (1) is strictly smaller than #M (1). We may assume ρ(F ) ∪M (2) ̸⊃ U
(2)
≤e+a2

and
F ̸= ∅, otherwise M itself satisfies the desired conditions. Note that F ̸= ∅ implies

M (2) ⊃ U
(2)
≤e . Let

a = min{k : M
(2)
k ̸= U

(2)
k },

b = max{k : k ≤ e+ a2, ρ(F )k ̸= U
(2)
k }

and

d = max{k : M
(3)
k = U

(3)
k }

where d = ∞ if n = 2. Let H = U
(2)
≤d \M (2). (See Fig. 11.)

H

U
(1)
≤e−1

F

M

Figure 11

Since ρ(F ) is an upper rev-lex set of degree e+ a2, ρ(F ) = ρ(F )b
⊎
(
⊎e+a2

j=b+1 U
(2)
j ).

Suppose H = ∅. Then M (2) = U
(2)
≤d . Since ρ(F ) ∪ M (2) ̸⊃ U

(2)
≤e+a2

, we have b > d

and ρ(F ) ∩M (2) = ∅, which say that M satisfies (A2) and (A3). Suppose H ̸= ∅.
Observe that for any super rev-lex set L with U

(2)
≤e ⊂ L ⊂ U

(2)
≤d , M

(1)
⊎

L
⊎

M (≥3) is
a ladder set.

Case 1 : Suppose #H ≥ #F . (Note that if t = 2 then we always have #H ≥ #F .)
Then M (2) is super rev-lex since we assume that M (≥2) is extremal and ρ(F ) is an
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upper rev-lex set of degree e + a2 with #M (2) +#ρ(F ) ≤ #U
(2)
≤d . Let R ⊂ U (2) be

the super rev-lex set in U (2) with #R = #M (2) +#ρ(F ). By Corollary 4.5,

m(R) ≽ m(M (2)) +m
(
ρ(F )

)
= m(M (2)) +m(F ).(6)

Also, since R is super rev-lex, U
(2)
≤e ⊂ R ⊂ U

(2)
≤d . Thus

N = U
(1)
≤e−1

⊎
R
⊎

M (≥3)

is a ladder set. Then N
(1)
e = ∅ and N ≫ M by (6). Hence N satisfies (A2) and

(A3).

Case 2 : Suppose #H < #F . Observe that M (2) ∪ ρ(F ) contains all monomials

of degree k in U (2) for k < a and b < k ≤ e+ a2. Since M ∪ ρ(F ) ̸⊃ U
(2)
≤e+a2

, we have
a ≤ b.

Let I ⊂ ρ(F ) be the interval in U (2) such that #I = #Ha and ρ(F )\I is an upper
rev-lex set of degree e+ a2, and let F ′ ⊂ F be the rev-lex set with ρ(F ′) = ρ(F ) \ I.
Since Ha is a lower lex set of degree a, by the interval lemma,

m
(
M (2)

)
+m

(
ρ(F )

)
≪ m

(
Ha

⊎
M (2)

)
+m

(
ρ(F ) \ I

)
= m

(
U

(2)
≤a

)
+m

(
ρ(F ′)

)
.

(See Fig. 12.)

ρ(F ′)U
(2)
≤aρ(F )M (2)

Ha I
+

⇒
+

Figure 12

Suppose ρ(F ′) ∪ U
(2)
≤a ⊃ U

(2)
≤e+a2

. Then

N =
(
U

(1)
≤e−1

⊎
F ′)⊎U

(2)
≤a

⊎
M (≥3)

is a ladder set and satisfies N ≫ M and conditions (A2) and (A3) since ρ(N
(1)
e ) ∪

N (2) ⊃ U
(2)
≤e+a2

.

Suppose ρ(F ′) ∪ U
(2)
≤a ̸⊃ U

(2)
≤e+a2

. Then ρ(F ′) ⊂
⊎e+a2

j=a+1 U
(2)
j . Since we assume

#H < #F , #F ′ = #F − #Ha > #(H \ Ha). Let J ⊂ ρ(F ′) be the interval in
U (2) such that #J = #(H \ Ha) and ρ(F ′) \ J is an upper rev-lex set of degree
e + a2, and let F ′′ ⊂ F ′ be the rev-lex set satisfying ρ(F ′′) = ρ(F ′) \ J . Since

H \Ha =
⊎d

j=a+1 U
(2)
j is a lower lex set of degree a+ 1, by the interval lemma

m
(
U

(2)
≤a

)
+m

(
ρ(F ′)

)
≼ m

(
M (2)

⊎
H
)
+m

(
ρ(F ′′)

)
= m

(
U

(2)
≤d

)
+m

(
ρ(F ′′)

)
.

(See Fig. 13.)
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ρ(F ′)U
(2)
≤aρ(F )M (2)

Ha

+

⇒
+

Figure 13

ρ(F ′′)U
(2)
≤d

⇒
+

I
J

Then
N =

(
U

(1)
≤e−1

⊎
F ′′)⊎U

(2)
≤d

⊎
M (≥3)

is a ladder set and satisfies N ≫ M and conditions (A2) and (A3).
Finally, since Step 1 does not change the first componentM (1) and Step 2 decreases

the first component, by applying Step 1 and 2 repeatedly, we obtain a set N ⊂ U
satisfying conditions (A1), (A2) and (A3). �

Lemma 6.4 says that to prove Proposition 6.3 we may assume that M satisfies
(A1), (A2) and (A3). Thus in the rest of this section we assume that M satisfies
these conditions. Also, we may assume f ̸= 0 since the proposition follows from the
induction hypothesis when f = 0.

6.2. Proof of Proposition 6.3 when f ̸= xe−b1−1
1 e1.

In this subsection, we prove Proposition 6.3 when f ̸= xe−b1−1
1 e1. In this case we

have deg f = e. Let
f = xα1

1 · · · xαn
n e1

and F = M
(1)
e . Since xe−b1

1 e1 ̸∈ F by the choice of e, we have m(F ) = m(ρ(F )).
Also we have

M (≥2) ⊃ U
(≥2)
≤e .

Indeed, this is obvious when F ̸= ∅ by the definition of ladder sets. If F = ∅ then

#M (≥2) = #M −#U
(1)
≤e−1 ≥ #{h ∈ U : h ≤dlex f} −#U

(1)
≤e−1 ≥ #U

(2)
≤e ,

and since M (≥2) is extremal we have M (≥2) ⊃ U
(≥2)
≤e by Lemma 5.10. Let

ϵ = deg ρ(f) = α2 + · · ·+ αn + b2.

Case 1. Suppose ρ(F ) ⊂
⊎e+a2

j=ϵ U
(2)
j and #F + #M (2) \

⊎e
j=ϵ U

(2)
j ≤ #U

(2)
≤e+a2

.

Observe M (2) ⊃
⊎e

j=ϵ U
(2)
j . Let P be the super rev-lex set with #P = #M (2) \
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j=ϵ U

(2)
j , and let Q ⊂ U (2) be the super rev-lex set with #Q = #F + #M (2) \⊎e

j=ϵ U
(2)
j . Since ρ(F ) is an upper rev-lex set of degree e + a2 and M (2) \

⊎e
j=ϵ U

(2)
j

is rev-lex, by Corollaries 4.5 and 4.6, we have

m(Q) ≽ m(P ) +m
(
ρ(F )

)
≽ m

(
M (2) \

e⊎
j=ϵ

U
(2)
j

)
+m(F ).(7)

(See the first two steps in Fig. 15.)

Observe that Q ⊂ U
(2)
≤e+a2

since #Q ≤ #U
(2)
≤e+a2

by the assumption of Case 1. Let

U ′ = U (2)
⊎
(
⊎t

i=3 U
(i)[−a2]). Since M (≥3)[−a2] ⊃ U

(≥3)
≤e [−a2] = U ′(≥3)

≤e+a2
,

Q
⊎

M (≥3)[−a2] ⊂ U ′

is a ladder set in U ′. (See the third step in Fig. 15.)

Let g be the largest admissible monomial in U
(2)
≤e+a2

over U ′ with respect to >dlex

satisfying

#{h ∈ U ′ : h ≤dlex g} ≤ #Q
⊎

M [−a2]
(≥3).

By the induction hypothesis, there exists Y ⊂ U ′(≥3) such that

X = {h ∈ U (2) : h ≤dlex g}
⊎

Y ⊂ U ′

is a ladder set in U ′ and

X ≫ Q
⊎

M (≥3).(8)

Let
d = e+ a2 − ϵ.

We claim

Lemma 6.5. g ≥lex x
d
2ρ(f).

Proof. To prove this, consider

L = {h ∈ U : h ≤dlex f}.

Then #M ≥ #L and L(≥2) = U
(≥2)
≤e . Thus L(2) \

⊎e
j=ϵ U

(2)
j = U

(2)
≤ϵ−1. Let F ′ =

L
(1)
e = [f, xe−b1

n e1]. Then ρ(F ′) = [ρ(f), xϵ−b2
n e2]

⊎
(
⊎e+a2

j=ϵ+1 U
(2)
j ). Also ρ(F ′)∩ (L(2) \⊎e

j=ϵ U
(2)
j ) = ∅ and

m
(
ρ(F ′)

⊎(
L(2) \

e⊎
j=ϵ

U
(2)
j

))
= m

(
U

(2)
≤e+a2

\
[
xϵ−b2
2 e2, ρ(f)

))
= m

(
U

(2)
≤e+a2

\
[
xe+a2−b2
2 e2, x

d
2ρ(f)

))
.

Let

R = U
(2)
≤e+a2

\
[
xe+a2−b2
2 e2, x

d
2ρ(f)

)
= U

(2)
≤e+a2−1

⊎[
xd
2ρ(f), x

e+a2−b2
n e2

]
.

(See Fig. 14).
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ρ(F ′)

U
(1)
≤ϵ−1

U
(1)
≤ϵ−1

⊎
ρ(F ′) R

R

Figure 14

⇒

Then R
⊎

L(≥3)[−a2] ⊂ U ′ is a ladder set in U ′ and xd
2ρ(f) is admissible over U ′ by

Lemma 5.9. On the other hand,

#R
⊎

L(≥3) = #L−#U
(1)
≤e−1 −#

e⊎
j=ϵ

U
(2)
j ≤ #M −#U

(1)
≤e−1 −#

e⊎
j=ϵ

U
(2)
j = #X.

Since xd
2ρ(f) is admissible over U ′ and since R

⊎
L(≥3)[−a2] = {h ∈ U ′ : h ≤dlex

xd
2ρ(f)}, by the choice of g, we have

g ≥lex x
d
2ρ(f)

as desired. �
By Lemma 6.5, g is divisible by xd

2. Let H ⊂ U
(1)
e be the rev-lex set such that

ρ(H) =

e+a2⊎
j=ϵ

U
(2)
j \ x−d

2

[
xe+a2−b2
2 e2, g

)
.

Then by Lemma 4.3

m(H) +m
(
U

(2)
≤ϵ−1

)
≽ m

(
U

(2)
≤e+a2

\ [xe+a2−b2
2 e2, g)

)
= m

(
X(2)

)
.(9)

Let

N =
(
U

(1)
≤e−1

⊎
H
)⊎

U
(2)
≤e

⊎
Y [+a2] ⊂ U.

Since X is a ladder set, Y ⊃ U ′(≥3)
≤e+a2

and Y [+a2] ⊃ U
(≥3)
≤e . Thus N is a ladder set

in U . We claim that N satisfies the desired conditions.
A routine computation shows

#M \
e⊎

j=ϵ

U
(2)
j = #U

(1)
≤e−1

⊎
Q
⊎

M (≥3) = #U
(1)
≤e−1

⊎
X = #N \

e⊎
j=ϵ

U
(2)
j .

(See Fig. 15.) Thus #N = #M . Let µ = max>lex
H. Then xd

2ρ(µ) = g. We
claim that µ = f . Since g ≥lex xd

2ρ(f), µ ≥lex f . Since g is admissible over U ′, µ
is admissible over U by Lemma 5.9. (If t = 2 then Lemma 5.9 is not applicable,

however, if t = 2 then any monomial h ∈ U
(1)
e with h >lex f is admissible). However,

since #N = #M and N ⊃ {h ∈ U : h ≤dlex µ}, by the choice of f , we have f = µ.
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P

ρ(F )

F

M \ U (2)
[ϵ,e]

Q Q

Y Y

U
(1)
≤e−1 U

(1)
≤e−1

U
(1)
≤e−1U

(1)
≤e−1

U
(1)
≤e−1 U

(1)
≤e−1

M (≥3) M (≥3)

M (≥3)

M (≥3)[−a2]

U
(1)
≤e−1

⊎
ρ(F )

⊎
P
⊎
M (≥3)

U
(1)
≤e−1

⊎
Q
⊎

M (≥3) U
(1)
≤e−1

⊎
Q
⊎

M (≥3)[−a2]

⇒

⇒⇒

Figure 15

ρ(H)

X

U
(1)
≤e−1

⊎
X U

(1)
≤e−1

⊎
(ρ(H)

⊎
U

(2)
≤ϵ−1)

⊎
Y

⇒ ⇒

⇒ H

U
(1)
≤e−1

Y [+a2]

U
(1)
≤e−1

⊎
H
⊎

U
(2)
≤ϵ−1

⊎
Y [+a2]
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It remains to prove N ≫ M . This follows from (7), (8) and (9) as follows:

M \
e⊎

j=ϵ

U
(2)
j =

(
U

(1)
≤e−1

⊎
F
)⊎(

M (2) \
e⊎

j=ϵ

U
(2)
j

)⊎
M (≥3)

≪ U
(1)
≤e−1

⊎
Q
⊎

M (≥3)

≪ U
(1)
≤e−1

⊎
X

≪
(
U

(1)
≤e−1

⊎
H
)⊎

U
(2)
≤ϵ−1

⊎
Y [+a2] = N \

e⊎
j=ϵ

U
(2)
j .

(See Fig. 15.)

Case 2. Suppose ρ(F ) ⊂
⊎e+a2

j=ϵ U
(2)
j and #F +#M (2) \

⊎e
j=ϵ U

(2)
j > #U

(2)
≤e+a2

. We
claim

Lemma 6.6. f = xα1
1 xα2

2 e1, namely, α3 = · · · = αn = 0.

Proof. Suppose f ̸= xα1
1 xα2

2 e1. Let g = xα1
1 xα2+α3+···+αn

2 e1. Then g >dlex f is admis-
sible over U by the definition of the admissibility. Also,

#M < #{h ∈ U : h ≤dlex g} = #
(
U

(1)
≤e−1

⊎
[g, xe−b1

n ]e1
)⊎

U
(2)
≤e

⊎
U

(≥3)
≤e .

Since ρ([g, xe−b1
n e1]) =

⊎e+a2
i=ϵ U

(2)
i and M (≥3) ⊃ U

(≥3)
≤e ,

#F +#
(
M (2) \

e⊎
j=ϵ

U
(2)
j

)
=

(
#M −#U

(1)
≤e−1 −#M (≥3)

)
−#

e⊎
j=ϵ

U
(2)
j

< #[g, xe−b1
n e1] + #U

(2)
≤e −#

e⊎
j=ϵ

U
(2)
j

= #U
(2)
≤e+a2

,

which contradicts the assumption of Case 2. Thus f = xα1
1 xα2

2 e1. �

Note that the above lemma says ρ(f) = xϵ−b2
2 e2. In particular, ρ([f, xe−b1

n e1]) =∪e+a2
j=ϵ U

(2)
j . Let

H =

e+a2⊎
j=ϵ

U
(2)
j \ ρ(F ).

(See Fig. 16).
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H

ρ(F )

F

H

Figure 16

Since ρ(F ) is an upper rev-lex set of degree e + a2, H is a lower lex set of degree

ϵ. Also, since #F + #M (2) > #U
(2)
≤e+a2

, ρ(F ) ∪ M (2) ⊃ U
(≥2)
≤e+a2

by (A2). Thus

M (2) ⊃ H.
Let R be the super rev-lex set in U (2) with #R = #M (2) \H. Since M (2) \H is

rev-lex, by Corollary 4.6 we have

R ≫ M (2) \H.(10)

Then since #R ≤ #M (2),

R
⊎

M (≥3) ⊂ U (≥2)

is a ladder set. (See the third picture in Fig. 17.)
Let Y ⊂ U (≥2) be the extremal set in U (≥2) with #Y = #R

⊎
M (≥3). We claim

that

N = {h ∈ U (1) : h ≤dlex f}
⊎

Y

satisfies the desired conditions. Indeed, since ρ(F )
⊎
H =

⊎e+a2
j=ϵ U

(2)
j = ρ([f, xe−b1

n e2]),

by (10), we have

M =
(
U

(1)
≤e−1

⊎
F
⊎

H
)⊎(

M (2) \H
)⊎

M (≥3)

≪
(
U

(1)
≤e−1

⊎
[f, xe−b1

n e1]
)⊎

R
⊎

M (≥3)

≪ {h ∈ U (1) : h ≤dlex f}
⊎

Y = N.

(See Fig. 17.) It remains to prove that N is a ladder set. Since

#Y = #M −#{h ∈ U (1) : h ≤dlex f} ≥ #U
(≥2)
≤e

by the choice of f , we have Y ⊃ U
(≥2)
≤e by Lemma 5.10. This fact guarantees that

N is a ladder set.
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M

f f⇒H
F

ff ⇒⇒

{h ∈ U (1) : h ≤dlex f}
⊎
R
⊎

M (≥3) N = {h ∈ U (1) : h ≤dlex f}
⊎

Y

Y

U
(1)
≤e−1U

(1)
≤e−1

U
(1)
≤e−1 U

(1)
≤e−1

M (≥3)

M (≥3) M (≥3)

{h ∈ U (1) : h ≤dlex f}
⊎
(M (2) \H)

⊎
M (≥3)

Figure 17

R

Case 3. Suppose ρ(F ) ̸⊂
⊎e+a2

j=ϵ U
(2)
j . Then ρ(F ) properly contains

⊎e+a2
j=ϵ U

(2)
j since

ρ(F ) is an upper rev-lex set of degree e + a2. In particular, F properly contains
[f, xe−b1

n e1]. We claim

Lemma 6.7. f = xα1
1 xα2

2 e1 and α2 ̸= 0.

Proof. If αk ̸= 0 for some k ≥ 3 then xα1
1 xα2+···+αn

2 e1 >dlex f is admissible over U .
Then by the choice of f , F ⊂ [xα1

1 xα2+···+αn
2 e1, x

e−b1
n e1] and

ρ(F ) ⊂ ρ
(
[xα1

1 xα2+···+αn
2 e1, x

e−b1
n e1]

)
=

e+a2⊎
j=ϵ

U
(2)
j ,

a contradiction. Also, if α2 = 0 then ϵ = deg ρ(f) = 0 which implies ρ(F ) ⊂
ρ(U

(1)
e ) = U

(2)
≤e+a2

=
⊎e+a2

j=ϵ U
(2)
j , a contradiction. �

Recall ϵ = deg ρ(f). Thus α2 = ϵ− b2 by Lemma 6.7. Let

H = {h ∈ F : h >lex f}

and

g = max
>lex

H.

By the choice of f , H contains no admissible monomials over U . By Lemma

6.7, ρ(F \ H) =
⊎e+a2

j=ϵ U
(2)
j . Hence H ̸= ∅ by the assumption of Case 3. Since
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xα1+1
1 xα2−1

2 e1 is admissible over U ,

ρ(H) ⊂ ρ
(
[xα1+1

1 xα2−1
2 e1, x

α1
1 xα2

2 e1)
)
= U

(2)
ϵ−1

is rev-lex. Also, ϵ− 1 > b2 since U
(2)
b2

= {e2} and H ̸= ∅.
If t = 2 then any monomial h ∈ U

(1)
e with h >lex f is admissible, which implies

H = ∅. Thus we may assume t ≥ 3.
To prove the statement, it is enough to prove that there exists an extremal set

Z ⊂ U (≥3) such that

Z ≫ H
⊎

M (≥3).(11)

Indeed, if such a Z exists then N = (M (1) \ H)
⊎

M (2)
⊎

Z satisfies the desired
conditions. Recall that ϵ ≤ e+ 1 by the definition of the admissibility.

(subcase 3-1) Suppose a3 ≥ e− (ϵ− 1).
Let d = e− (ϵ− 1). We consider

U ′ = U (2)
⊎(

t⊎
i=3

U (i)[+d]

)
.

This set is well-defined since a3 ≥ d. Recall ρ(H) ⊂ U
(2)
ϵ−1. Let

Y = ρ(H)
⊎

U
(2)
≤ϵ−2

⊎
M (≥3)[+d].

(See Fig. 18.) Then Y is a ladder set since M (≥3) ⊃ U
(≥3)
≤ϵ−1+d = U

(≥3)
≤e . Also,

U
(2)
≤ϵ−2 ̸= ∅ since ϵ− 1 > b2.

M (≥3)

ρ(H)
M (≥3)[+d]

ρ(H)

U
(2)
≤ϵ−2

ρ(H)
⊎

U
(2)
≤ϵ−2

⊎
M (≥3) Y

⇒

Figure 18

U
(2)
≤ϵ−2

Let µ ∈ U
(2)
≤ϵ−1 be the largest admissible monomial in U

(2)
≤ϵ−1 over U ′ with respect

to >dlex satisfying #{h ∈ U ′ : h ≤dlex µ} ≤ #Y . Then since we assume that

Proposition 6.3 is true for U ′, there exists an extremal set Z ⊂ U ′(≥3) such that

Y ≪ {h ∈ U (2) : h ≤dlex µ}
⊎

Z.

To prove (11), it is enough to prove {h ∈ U (2) : h ≤dlex µ} = U
(2)
≤ϵ−2, in other words,

Lemma 6.8. µ = xϵ−2−b2
2 e2.
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Proof. Recall that U
(2)
≤ϵ−2 ̸= ∅. It is enough to prove that deg µ ̸= ϵ − 1. Suppose

contrary that deg µ = ϵ−1. Let µ′ ∈ U
(1)
e be a monomial such that ρ(µ′) = µ. Then

µ′ is admissible over U by Lemma 5.9. Also

#Y −#U
(2)
≤ϵ−2 ≥ #[µ, xϵ−1−b2

n e2] + #U ′(≥3)
≤ϵ−1 = #[µ, xϵ−1−b2

n e2] + #U
(≥3)
≤e .

Since #M (≥3) +#H = #Y −#U
(2)
≤ϵ−2 and since ρ([µ′, f)) = [µ, xϵ−1−b2

n e2], we have

#M = #(M \H)
⊎

M (2)
⊎

H
⊎

M (≥3)

≥ #(M \H)
⊎

U
(2)
≤e +#[µ, xϵ−1−b2

n e2]
⊎

Z

≥ #[µ′, f)
⊎

(M \H)
⊎

U
(≥2)
≤e = #{h ∈ U : h ≤dlex µ

′},

which contradicts the maximality of f since µ′ >lex g >lex f and µ′ is admissible
over U . �

(subcase 3-2) Suppose a3 < e− (ϵ− 1). We consider

X = x
e−(ϵ−1)
2 ρ(H) ⊂ U (2)

e .

(See Fig. 19.)

M

H XH

X

Figure 19

Let

Y = {h ∈ U (2) : h ≤dlex x
e−(ϵ−1)
2 ρ(g)}

⊎
M (≥3)

(see Fig. 20) and let

g′ = max
>dlex

(
Y (2) \X

)
.

Since e− (ϵ− 1) > a3, e− (ϵ− 1) ≥ 1. Thus

g′ = x
e−(ϵ−1)−1
2 xϵ−b2

3 e2

and

Y (2) = X
⊎

{h ∈ U (2) : h ≤dlex g
′}.

Since a3 < e− (ϵ− 1), deg ρ(g′) = ϵ+ a3 ≤ e. Thus g′ is admissible over U (≥2).
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Let µ be the largest admissible monomial in U
(2)
≤e over U (≥2) with respect to >dlex

with #{h ∈ U (≥2) : h ≤dlex µ} ≤ #Y . Since Lemma 5.9 says that X contains no
admissible monomials over U (≥2),

µ ≥dlex g
′ and µ ̸∈ X.

Since we assume that Proposition 6.3 is true for U (≥2), there exists an extremal set
Z ⊂ U (≥3) such that

W = {h ∈ U (2) : h ≤dlex µ}
⊎

Z

is a ladder set and

W ≫ Y

(See Fig. 20.)

M (≥3)X

Y

Z

W

Figure 20

⇒
g′ µ

We claim

Lemma 6.9. µ = g′.

Proof. Suppose contrary that µ ̸= g′. Then µ >dlex g
′ and

W =
[
µ, x

e−(ϵ−1)
2 ρ(g)

)⊎
Y (2)

⊎
Z.

Then there exists µ′ ∈ U
(1)
e such that

x
e−(ϵ−1)
2 ρ(µ′) = µ.

By Lemma 5.9, µ′ is admissible over U and µ′ >lex g >lex f . Observe that

#M (≥3) +#H = #Z
⊎

[µ, g′) = #Z +#[µ′, f)

by the construction of Y and Z. Since Z ⊃ U
(≥3)
≤e ,

#M ≥ #
(
M (1) \H

)⊎
H
⊎

U
(2)
≤e

⊎
M (≥3)

= #
(
M (1) \H

)⊎
U

(2)
≤e

⊎
Z
⊎

[µ′, f)

≥ #
(
M (1) \H

)⊎
[µ′, f)

⊎
U

(2)
≤e

⊎
U

(≥3)
≤e

= #{h ∈ U : h ≤dlex µ
′}.

Since µ′ is admissible over U , this contradicts the maximality of f . �
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Now
W = {h ∈ U (2) : h ≤dlex g

′}
⊎

Z

and since W ≫ Y and Y = X
⊎
{h ∈ U (2) : h ≤dlex g

′}
⊎

M (≥3), we have

m(Z) ≽ m
(
X
⊎

M (≥3)
)
= m

(
H
⊎

M (≥3)
)
,

which proves (11).

6.3. Proof of Proposition 6.3 when f = xe−b1−1
1 e1.

In this subsection, we prove Proposition 6.3 when f = xe−b1−1
1 e1. Let F = M

(1)
e .

If F = ∅ then there is nothing to prove. Thus we may assume F ̸= ∅. Then

M ⊃ U
(≥2)
≤e since M is a ladder set.

Case 1. Suppose a2 = 0. Then deg e1 = deg e2 = b1. Since xe−b1
2 e1 is admissible

over U , xe−b1
2 e1 ̸∈ F . Indeed, if xe−b1

2 e1 ∈ F then M ⊃ {h ∈ U : h ≤dlex xe−b1
2 e1},

which contradicts the maximality of f . Thus

F ⊂ [xe−b1
2 e1, x

e−b1
n e1]

and
ρ(F ) ⊂ ρ

(
[xe−b1

2 e1, x
e−b1
n e1]

)
= U (2)

e .

Consider
X = ρ(F )

⊎
U

(2)
≤e−1

⊎
M (≥3) ⊂ U (≥2)

and let Y ⊂ U (≥2) be the extremal set with #Y = #X. Since X is a ladder set in
U (≥2), by the induction hypothesis we have

Y ≫ X.

We claim

Lemma 6.10. Y (2) = U
(2)
≤e−1.

Proof. Suppose contrary that Y (2) ̸= U
(2)
≤e−1. Let g = ḡe2 be the largest admissible

monomial in Y
(2)
≤e over U (≥2) with respect to >dlex. Since X ⊃ U

(≥2)
≤e−1, we have

Y ⊃ U
(2)
≤e−1 by Lemma 5.10. Thus deg g = e and Y ⊃ U

(≥3)
≤e .

Let g′ = ḡe1. Since g = ḡe2 is admissible over U (≥2) and since ρ(g′) = g, g′ is

admissible over U by Lemma 5.9. Observe #Y = #X ≤ #F + #M (≥2) − #U
(2)
e .

Then

#M = #U
(1)
≤e−1

⊎
F
⊎

M (≥2)

≥ #U
(1)
≤e−1 +#U (2)

e +#Y

≥ #U
(1)
≤e−1 +#U (2)

e +#{h ∈ U (≥2) : h ≤dlex g}

= #U
(1)
≤e−1 +#U (2)

e +#U
(2)
≤e−1

⊎
[g, xe−b1

n e2]
⊎

U
(≥3)
≤e

= #U
(1)
≤e−1 +#U

(≥2)
≤e +#[g′, xe−b1

n e1]

= #{h ∈ U : h ≤dlex g
′}
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which contradicts the maximality of f . Hence Y (2) = U
(2)
≤e−1. �

Then, since Y ≫ X, we have

Y (≥3) ≫ F
⊎

M (≥3).(12)

Let
N = U

(1)
≤e−1

⊎
M (2)

⊎
Y (≥3).

Then N is a ladder set since #Y (≥3) ≥ #M (≥3). Also N ≫ M by (12). Thus N
satisfies the desired conditions.

Case 2. Suppose a2 > 0. Since deg f ̸= e, by Lemma 5.12 we have

#M < #U
(1)
≤e .(13)

Hence

#F +#M (2) ≤ #M −#U
(1)
≤e−1 < #U (1)

e ≤ #U
(2)
≤e+a2

.(14)

Then, by (A2) and (A3), we may assume that ρ(F ) ∩ M (2) = ∅, t ≥ 3 and there

exists a d ≥ e such that M (2) = U
(2)
≤d and M

(3)
d+1 ̸= U

(3)
d+1.

Let

A =
{
ue2 ∈ ρ(F )e+a2 : x

(e+a2)−(d+1)
2 divides u and u/x

(e+a2)−(d+1)
2 e2 ̸∈ ρ(F )d+1

}
,

E = x
−(e+a2)+(d+1)
2 A ⊂ U

(2)
d+1,

and
B = ρ(F )e+a2 \ A ⊂ U

(2)
e+a2 .

(See the second picture in Fig. 21.)

(subcase 2-1) Suppose #B +#M (≥3) < #U
(2)
e+a2 . Consider

U ′ = U (2)
⊎(

t⊎
i=3

U (i)[−a2]

)
.

Since M (≥3)[−a2] ⊃ U ′(≥3)
≤e+a2

, by Corollary 5.13 and the by induction hypothesis,

there exists the extremal set Q ⊂ U ′(≥3) such that

Q ≫ B
⊎

M (≥3).(15)

Let P be the super rev-lex set in U (2) with #P = #M (2)+#ρ(F )\B. Then since
ρ(F )≤e+a2−1

⊎
E is rev-lex, Corollary 4.6 shows

m
(
M (2)

⊎
ρ(F ) \B

)
= m

(
M (2)

)
+m

(
ρ(F )≤e+a2−1

⊎
E
)
≼ m(P ).(16)

(See the second step in Fig. 21.) We claim that

N = U
(1)
≤e−1

⊎
P
⊎

Q[+a2] ⊂ U

satisfies the desired conditions. Indeed, by (15) and (16),

m(N) ≽ m
(
U

(1)
≤e−1

⊎
M (2)

⊎(
ρ(F ) \B

)⊎(
B
⊎

M (≥3)
))

= m(M).
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(See Fig. 21). It remains to prove that N is a ladder set. If ρ(F ) \B = ∅ then P =
M (2), and therefore N is a ladder set since #Q ≥ #M (≥3). Suppose ρ(F ) \ B ̸= ∅.
Recall that ρ(F ) ∩M (2) = ∅. Since

#U
(2)
≤e ≤ #M (2) ≤ #P = #ρ(F )≤e+a2−1

⊎
E
⊎

M (2) ≤ #U
(2)
≤e+a2−1,

we have

U
(2)
≤e ⊂ P ⊂ U

(2)
≤e+a2−1.

Then by Lemma 5.10 what we must prove is

#Q ≥ #U
(≥3)
≤e+a2−1.

M

F

⇒⇒

⇒⇒

⇒

Q

U
(1)
≤e−1

⊎
(M (2) \ A)

⊎
E
⊎
M (≥3)

N = U
(1)
≤e−1

⊎
P
⊎
Q[+a2]

U
(1)
≤e−1 U

(1)
≤e−1

U
(1)
≤e−1U

(1)
≤e−1

U
(1)
≤e−1 U

(1)
≤e−1

M (≥3) M (≥3)

M (≥3)[−a2]

M (≥3)

M (2) M (2)

U
(1)
≤e−1

⊎
(M (2)

⊎
ρ(F ))

⊎
M (≥3)

U
(1)
≤e−1

⊎
(M (2) \ A)

⊎
E
⊎

M (≥3)[−a2]

P P
Q[+a2]

U≤e−1

⊎
P
⊎

Q

Figure 21

A B

E
B

E
B
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Since #S
(i)
k =

∑n
j=i#S

(j)
k−1 for all i > 0 and k > 0, we have

#U
(3)
k ≥

t∑
j=3

#U
(j)
k−1 = #U

(≥3)
k−1(17)

for all k > 0. Since ρ(F ) \B ̸= ∅, #B = #ρ(F )e+a2 \ A ≥ #U
(2)
e+a2 −#U

(2)
d+1. Thus

#B ≥ #U
(2)
e+a2 −#U

(2)
d+1 = #

e+a2⊎
j=d+2

U
(3)
j+a3

≥ #

e+a2⊎
j=d+2

U
(3)
j ≥

e+a2−1∑
j=d+1

#U
(≥3)
j ,

(we use (17) for the last step) and therefore

#Q = #M (≥3) +#B ≥ #U
(≥3)
≤d +

e+a2−1∑
d+1

U
(≥3)
j ≥ #U

(≥3)
≤e+a2−1

as desired.

(subcase 2-2) Suppose #B +#M (≥3) ≥ #U
(2)
e+a2 . We first prove

Lemma 6.11. ρ(F ) ̸⊃
⊎e+a2

j=d+2 U
(2)
j .

Proof. Suppose contrary that ρ(F ) ⊃
⊎e+a2

j=d+2 U
(2)
j . Then

#ρ(F ) \B = #
(
ρ(F ) \ (A

⊎
B)
)⊎

E = #

e+a2−1⊎
j=d+1

U
(2)
j

by the choice of E. Then

#
(
ρ(F ) \B

)⊎
M (2) = #U

(2)
≤e+a2−1

and

#M = #U
(1)
≤e−1

⊎
ρ(F )

⊎
M (2)

⊎
M (≥3) ≥ #U

(1)
≤e−1+#U

(2)
≤e+a2−1+#U

(2)
e+a2 = #U

(1)
≤e ,

where we use the assumption #B+#M (≥3) ≥ #U
(2)
e+a2 for the second step. However,

this contradicts (13). �
The above lemma says that e + a2 ≥ d + 2 and ρ(F )d+1 = ∅. Thus B does not

contain any monomial ue2 such that u is divisible by x
(e+a2)−(d+1)
2 . Hence

ρ(B) ⊂
e+a2+a3⊎
j=d+2+a3

U
(3)
j .(18)

Since M
(3)
d+1 ̸= U

(3)
d+1, by Lemma 5.15,

#M (≥3) < #U
(3)
≤d+2.

We claim
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Lemma 6.12. a3 = 0.

Proof. If a3 > 0 then

#B +#M (≥3) < #

e+a2+a3⊎
j=d+2+a3

U
(3)
j +#U

(3)
≤d+2 ≤ U

(3)
≤e+a2+a3

= #U
(2)
e+a2 ,

which contradicts the assumption of (subcase 2-2). �

Let

H = {h ∈ U
(≥3)
d+1 : h ̸∈ M (≥3)}.

(See Fig. 22.)

H

M

Figure 22

By Lemma 5.15,

#H +#M (≥3) < #U
(3)
≤d+2.

Since a3 = 0, by the assumption of (subcase 2-2)

#B ≥ #U
(2)
e+a2 −#M (≥3) = #U

(3)
≤e+a2

−#M (≥3) > #H +#

e+a2⊎
j=d+3

U
(3)
j .

Let

B = I
⊎

J
⊎

G

such that I is the set of lex-largest #H monomials in B and G is the rev-lex set

with ρ(G) =
⊎e+a2

j=d+3 U
(3)
j . (See Fig. 23.)

I J G

H

B
⊎
M (≥3)

Figure 23
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Since a3 = 0, (18) says ρ(B) ⊂
⊎e+a2

j=d+2 U
(2)
j . Hence ρ(I) ⊂ U

(3)
d+2. Let C ⊂ U

(3)
d+2 be

the lex set in U
(3)
d+2 with #C = #H. If we regard U (≥3) as an universal lex ideal in

K[x3, . . . , xn], then H and C are lex sets in K[x3, . . . , xn] with the same cardinality.
Hence C = x3H. Then, by the interval lemma,

m(H) = m(C) ≽ m
(
ρ(I)

)
= m(I)(19)

Let P ⊂ U (2) be the super rev-lex set with #P = #A + #J + #M (2). By the
choice of G, G is the set of all monomials ue2 ∈ ρ(F ) such that u is not divisible

by x
e+a2−(d+2)
2 . Also, since B does not contain any monomial ue2 such that u is

divisible by x
e+a2−(d+1)
2 , any monomial in J is divisible by x

e+a2−(d+2)
2 e2. Then

x
−(e+a2)+d+2
2 J ⊂ U

(2)
d+2 is a rev-lex set. Since M (2)

⊎
E
⊎
(x

−(e+a2)+(d+2)
2 J) is rev-lex,

m(P ) ≽ m
(
M (2)

⊎
E
⊎

x
−(e+a2)+(d+1)
2 J

)
= m

(
M (2)

⊎
A
⊎

J
)
.(20)

(See Fig. 24.)

JA J

M (2)
⊎

A
⊎

J

Figure 24

M (2)
⊎

E
⊎
J M (2)

⊎
E
⊎
x
−(e+a2)+d+2
2 J P

⇒⇒⇒ E E

M (2)M (2)M (2) P

Let
Q = ρ(F ) \ (A

⊎
B) = ρ(F )≤e+a2−1.

(subcase 2-2-a) Suppose that #P + #Q ≤ #U
(2)
≤e+a2−1. Let R ⊂ U (2) be the

super rev-lex set with #R = #P + #Q. Then since Q is an upper rev-lex set of
degree e+ a2 − 1, by Corollary 4.5 and (20)

R ≫ P
⊎

Q ≫ M (2)
⊎

A
⊎

J
⊎

Q(21)

On the other hand, by Lemma 5.15,

#H +#M (≥3) < #U
(3)
≤d+2.

Then since ρ(G) =
⊎e+a2

j=d+3 U
(3)
j ,

#I
⊎

G
⊎

M (≥3) = #G
⊎

H
⊎

M (≥3) < #U
(3)
≤e+a2

= #U
(2)
e+a2 .

Let U ′ = U (2)
⊎
(
⊎t

i=3 U
(i)[−a2]). Observe that M (3)[−a2] ⊃ U ′(≥3)

≤e+a2
. Then Corol-

lary 5.13 and (19) say that there exists the extremal set Z ⊂ U (≥3)[−a2] such that

Z ≫ G
⊎

H
⊎

(M (≥3)[−a2]) ≫ G
⊎

I
⊎

M (≥3)(22)
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(See Fig. 25.)

I G

H

I
⊎
G
⊎
M (≥3)

Figure 25

G

G
⊎
H
⊎
M (≥3) Z[+a2]

⇒⇒

We claim that
N = U

(1)
≤e−1

⊎
R
⊎

Z[+a2]

satisfies the desired conditions. Indeed, by (21) and (22),

N ≫ U
(1)
≤e−1

⊎(
M (2)

⊎
A
⊎

J
⊎

Q
)⊎

G
⊎

I
⊎

M (≥3)

≫ U
(1)
≤e−1

⊎
F
⊎

M (2)
⊎

M (≥3)

= M.

(We use ρ(F ) = A
⊎

I
⊎
J
⊎
G
⊎

Q and m(F ) = m(ρ(F )) for the second step.) It

remains to prove that N is a ladder set. Since U
(2)
≤d ⊂ R ⊂ U

(2)
≤e+a2−1 it is enough to

prove that Z[+a2] ⊃ U
(≥3)
≤e+a2−1. Since ρ(G) =

⊎e+a2
j=d+3 U

(3)
j ,

#Z = #
(
H
⊎

M (≥3)
⊎

G
)
≥ #U

(≥3)
≤d+1

⊎( e+a2⊎
j=d+3

U
(3)
j

)
≥ #U

(≥3)
≤e+a2−1.

(We use #U
(3)
j ≥ #U

(≥3)
j−1 for the last step.) Then Z[+a2] ⊃ U

(≥3)
≤e+a2−1 by Lemma

5.10 as desired.

(subcase 2-2-b) Suppose that #P +#Q > #U
(2)
≤e+a2−1. Note that

#P +#Q+#I +#G = #F +#M (2).

Then #M (2)
⊎
F > #U

(2)
≤e+a2−1. Let R be the super rev-lex set with #R = #M (2)+

#F . Then #R = #M (2) + #F ≤ #U
(2)
≤e+a2

by (14). Since #R ≥ #P + #Q >

U
(2)
≤e+a2−1, there exists a rev-lex set B′ ⊂ U

(2)
e+a2 such that

R = U
(2)
≤e+a2−1

⊎
B′.

Also by Corollary 4.5,

B′
⊎

U
(2)
≤e+a2−1 = R ≫ M (2)

⊎
ρ(F ).(23)

Since #F + #M (≥2) < #U
(2)
≤e+a2

, we have #B′ + #M (≥3) < #U
(2)
e+a2 . Then by

Corollary 5.13 there exists the extremal set Z ⊂ U (≥3)[−a2] such that

B′
⊎

(M (≥3)[−a2]) ≪ Z.(24)
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We claim that

N = U
(1)
≤e−1

⊎
U

(2)
≤e+a2−1

⊎
Z[+a2]

satisfies the desired conditions.
By (23) and (24),

N ≫ U
(1)
≤e−1

⊎
U

(2)
≤e+a2−1

⊎
B′
⊎

M (≥3)

≫ U
(1)
≤e−1

⊎
F
⊎

M (2)
⊎

M (≥3) = M.

(See Fig. 26.)

M U
(1)
≤e−1

⊎
ρ(F )

⊎
M (≥2)

U
(1)
≤e−1

⊎
R
⊎
M (≥3) N = U

(1)
≤e−1

⊎
U

(2)
≤e+a2−1

⊎
Z[+a2]

U
(1)
≤e−1

M (2) M (≥3)

U
(1)
≤e−1

M (≥3)U
(2)
≤e+a2−1

B′

U
(1)
≤e−1

U
(2)
≤e+a2−1 Z[+a2]

ρ(F )

⇒

⇒⇒

Figure 26

F

U
(1)
≤e−1

M (2) M (≥3)

It remains to prove that N is a ladder set. What we must prove is

Z[+a2] ⊃ U
(≥3)
≤e+a2−1.

By the assumption of (subcase 2-2-b),

#M (2) +#F −#
(
I
⊎

G
)
= #Q+#P > #U

(2)
≤e+a2−1.

Then

#B′ = #M (2) +#F −#U
(2)
≤e+a2−1 > #I

⊎
G.

Then in the same way as the computation of #Z in (subcase 2-2-a), we have

#Z = #M (≥3)
⊎

B′ ≥ #M (≥3)
⊎

(I
⊎

G) ≥ #U
(≥3)
≤e+a2−1.

Then by Lemma 5.10, Z[+a2] ⊃ U
(≥3)
≤e+a2−1 as desired.
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7. Examples

In this section, we give some examples of saturated graded ideals which attain
maximal Betti numbers for a fixed Hilbert polynomial. Observe that, by the decom-
position given before Definition 3.7, the Hilbert polynomial of a proper universal lex
ideal I = (δ1, δ2, . . . , δt) is given by

HI(t) =

(
t− b1 + n− 1

n− 1

)
+

(
t− b2 + n− 2

n− 2

)
+ · · ·+

(
t− bt + n− t

n− t

)
,

where bi = deg δi for i = 1, 2, . . . , t.

Example 7.1. Let S = K[x1, . . . , x4] and S̄ = K[x1, . . . , x3]. Consider the ideal
I = (x3

1, x
2
1x2, x1x

2
2, x

3
2, x

2
1x3) ⊂ S. Then

HI(t) =
1

6
t3 + t2 − 15

6
t+ 1 =

(
t+ 2

3

)
+

(
t− 4

2

)
+

(
t− 9

1

)
and the proper universal lex ideal with the same Hilbert polynomial as I is

L = (x1, x
6
2, x

5
2x

5
3).

Let

U = sat L̄ =
(
L̄ : x∞

3

)
= (x1, x

5
2) ⊂ S̄

and c = dimK U/L̄ = 5. Then the extremal set M ⊂ U with #M = 5 is

M = x1{1, x1, x2, x3}
⊎

x5
2{1}.

Then the ideal in S generated by all monomials in U \M is

J = x1(x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3) + x5

2(x2, x3) ⊂ S,

and J has the largest total Betti numbers among all saturated graded ideals in S
having the same Hilbert polynomial as I.

Example 7.2. Let S = K[x1, . . . , x5] and S̄ = K[x1, . . . , x4]. Consider the ideal
I = (x1, x

2
2, x2x

3
3, x2x

2
3x

15
4 ). Then I is a proper universal lex ideal. Let

U = sat Ī =
(
Ī : x∞

4

)
= (x1, x

2
2, x2x

2
3) ⊂ S̄

and c = dimU/Ī = 15. Then the extremal set M ⊂ U with #M = 15 is

M = x1{1, x1, x2, x3, x4, x2x3, x2x4, x
2
3, x3x4, x

2
4} ⊎ x2

2{1, x2, x3, x4} ⊎ x2x
2
3{1}.

Then the ideal in S generated by all monomials in U \M is

J = x1(x
2
1, x1x2, x1x3, x1x4, x

2
2, x2x

2
3, x2x3x4, x2x

2
4, x

3
3, x

2
3x4, x3x

2
4, x

3
4)

+x2
2(x

2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4) + x2x

2
3(x3, x4)

and J has the largest total Betti numbers among all saturated graded ideals in S
having the same Hilbert polynomial as I.
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