BETTI TABLES OF *p*-BOREL-FIXED IDEALS

GIULIO CAVIGLIA AND MANOJ KUMMINI

ABSTRACT. In this note we provide a counter-example to a conjecture of K. Pardue [Thesis, Brandeis University, 1994.], which asserts that if a monomial ideal is *p*-Borel-fixed, then its N-graded Betti table, after passing to any field does not depend on the field. More precisely, we show that, for any monomial ideal *I* in a polynomial ring *S* over the ring \mathbb{Z} of integers and for any prime number *p*, there is a *p*-Borel-fixed monomial *S*-ideal *J* such that a region of the multigraded Betti table of $J(S \otimes_{\mathbb{Z}} \ell)$ is in one-to-one correspondence with the multigraded Betti table of $I(S \otimes_{\mathbb{Z}} \ell)$ for all fields ℓ of arbitrary characteristic. There is no analogous statement for Borel-fixed ideals in characteristic zero. Additionally, the construction also shows that there are *p*-Borel-fixed ideals with non-cellular minimal resolutions.

1. INTRODUCTION

Let x_1, \ldots, x_n be indeterminates over the ring \mathbb{Z} of integers and $S = \mathbb{Z}[x_1, \ldots, x_n]$. Let p be zero or a prime number. For any field \Bbbk , the general linear group $\operatorname{GL}_n(\Bbbk)$ acts on $S \otimes_{\mathbb{Z}} \Bbbk$. Say that a monomial S-ideal I is p-Borel-fixed if $I(S \otimes_{\mathbb{Z}} \Bbbk)$ is fixed under the action of the Borel subgroup of $\operatorname{GL}_n(\Bbbk)$ consisting of all the upper triangular invertible matrices over \Bbbk for any infinite field \Bbbk of characteristic p. (This definition does not depend on the choice of \Bbbk ; see Proposition 2.6.)

Let *I* be any monomial *S*-ideal. In Theorem 3.2 we will show that for any prime number *p*, there exists a (monomial) *S*-ideal *J* that is *p*-Borel-fixed and that, for any field ℓ , there is a region (independent of ℓ) in the multigraded Betti table of $J(S \otimes_{\mathbb{Z}} \ell)$ (as a module over $S \otimes_{\mathbb{Z}} \ell$) that is determined by the multigraded Betti table of $I(S \otimes_{\mathbb{Z}} \ell)$. This shows that, homologically, the class of Borel-fixed ideals in positive characteristic is as bad as the class of all monomial ideals.

There is a combinatorial characterization of p-Borel-fixed S-ideals; see Proposition 2.6. It follows from this characterization that if I is 0-Borel-fixed, then $I(S \otimes_{\mathbb{Z}} \ell)$ if Borel-fixed for all fields ℓ , irrespective of char ℓ ; the converse is not true. The Eliahou-Kervaire complex [EK90, Theorem 2.1] gives S-free resolutions of 0-Borel-fixed ideals in S, which specialize to minimal resolutions over any field field ℓ . In particular, the \mathbb{N}^n -graded Betti table (and, hence, the \mathbb{N} -graded Betti table) of a 0-Borel-fixed S-ideal remains unchanged after passing to any field. On the other hand, if we only assume that I is p-Borel-fixed, with p > 0, then little is known about minimal resolutions of $I(S \otimes_{\mathbb{Z}} \ell)$ for some field ℓ , including when char $\ell = p$.

A systematic study of Borel-fixed ideals in positive characteristic was begun by K. Pardue [Par94]. In positive characteristic, Proposition 2.6 was proved by him. He gave a conjectural formula for the (Castelnuovo-Mumford) regularity of principal *p*-Borel-fixed ideals. A. Aramova and J. Herzog [AH97, Theorem 3.2] showed that the conjectured formula is a lower bound for regularity; Herzog and D. Popescu [HP01, Theorem 2.2] finished the proof of the conjecture by showing that it is also an upper bound. V. Ene, G. Pfister and Popescu [EPP00] determined Betti numbers and Koszul homology of a class of Borel-fixed ideals in $k[x_1, \ldots, x_n]$, where char k = p > 0, which they called '*p*-stable'.

Our main result (Theorem 3.2) arose in the following way. It is known that the Eliahou-Kervaire resolution is cellular [Mer10]. Using algebraic discrete Morse theory, M. Jöllenbeck and V. Welker constructed minimal cellular free resolutions of principal Borel-fixed ideals in positive characteristic [JW09, Chapter 6]; see, also, [Sin08]. We were trying to see whether this extends to more general p-Borel-fixed ideals when we realized the possibility of the existence of p-Borel-fixed ideals whose Betti tables might depend on the characteristic.

Key words and phrases. Graded free resolutions, positive characteristic, Borel-fixed ideals, cellular resolutions.

The work of the first author was supported by a grant from the Simons Foundation (209661 to G. C.). The second author was partially supported by a CMI Faculty Development Grant. In addition, both the authors thank Mathematical Sciences Research Institute, Berkeley CA, where part of this work was done, for support and hospitality during Fall 2012.

As a corollary of our construction and the result of M. Velasco [Vel08] that there are monomial ideals with a non-cellular minimal resolution, we conclude that there are p-Borel-fixed ideals that admit a non-cellular minimal resolutions.

We remarked earlier that the N-graded Betti table of a 0-Borel-fixed S ideal remains identical over any field. Pardue [Par94, Conjecture V.4, p. 43] conjectured that this is true also for p-Borel-fixed ideals; see Conjecture 2.7 for the statement. (This conjecture also appears in [PS08, 4.3].) There has been some evidence that the conjecture is true. If J is a p-Borel-fixed S-ideal, then the projective dimension of $J(S \otimes_{\mathbb{Z}} \ell)$ is determined by the largest i such that x_i divides some minimal monomial generator of J. The regularity of $J(S \otimes_{\mathbb{Z}} \ell)$ does not depend on ℓ [Par94, Corollary VI.9]; this is part of the motivation for Pardue to make this conjecture. Later, Popescu [Pop05] showed that the extremal Betti numbers of $J(S \otimes_{\mathbb{Z}} \ell)$ does not depend on ℓ . However, Example 3.7 shows that the conjecture is not true.

We thank Ezra Miller and the anonymous referees for helpful comments. The computer algebra system Macaulay2 [M2] provided valuable assistance in studying examples.

2. Preliminaries

We begin with some preliminaries on estimating the graded Betti numbers of monomial ideals and on p-Borel-fixed ideals. By \mathbb{N} we denote the set of non-negative integers. When we say that p is a prime number, we will mean that p > 0. By $\mathbf{e}_1, \ldots, \mathbf{e}_n$, we mean the standard vectors in \mathbb{N}^n .

Let A be an \mathbb{N}^d -graded polynomial ring (for some integer $d \ge 1$) over a field \mathbb{k} , with $A_0 = \mathbb{k}$. Let M be an \mathbb{N}^d -graded A-module. (All the modules that we deal with in this paper are ideals or quotients of ideals.) The \mathbb{N}^d -graded Betti numbers of M are $\beta_{i,\mathbf{a}}^A(M) := \dim_{\mathbb{k}} \operatorname{Tor}_i^A(M, \mathbb{k})_{\mathbf{a}}$. The \mathbb{N}^d -graded Betti table of M is the element $(\beta_{i,\mathbf{a}}^A(M))_{i,\mathbf{a}} \in \mathbb{Z}^{\mathbb{N} \times \mathbb{N}^d}$. For $\mathbf{a} = (a_1, \ldots, a_d) \in \mathbb{N}^d$, we write $|\mathbf{a}| = a_1 + \cdots + a_d$.

Notation 2.1. Let A be a Noetherian ring and z an indeterminate over A. Let B = A[z]; it is a graded A-algebra with deg z = 1. For a graded B-ideal I, define A-ideals $I_{\langle i \rangle} = ((I : z^i) \cap A)$, for all $i \in \mathbb{N}$.

Note that for all $i \in \mathbb{N}$, $I_{\langle i \rangle} \subseteq I_{\langle i+1 \rangle}$. Moreover, since A is Noetherian, $I_{\langle i \rangle} = I_{\langle i+1 \rangle}$ for all $i \gg 0$.

Lemma 2.2. Adopt Notation 2.1. Suppose that A is a \mathbb{N}^d -graded polynomial ring (for some integer $d \ge 1$) over a field \Bbbk of arbitrary characteristic, with $A_0 = \Bbbk$. Let I be a graded B-ideal (in the natural \mathbb{N}^{d+1} -grading of B). Then for all $\mathbf{a} \in \mathbb{N}^d$,

$$\beta_{i,(\mathbf{a},j)}^{B}(I) = \begin{cases} 0, & \text{if } j < 0, \\ \beta_{i,\mathbf{a}}^{A}(I_{\langle 0 \rangle}), & \text{if } j = 0, \text{ and} \\ \beta_{i-1,\mathbf{a}}^{A}(I_{\langle j \rangle}/I_{\langle j-1 \rangle}), & \text{otherwise.} \end{cases}$$

Proof. Fix $\mathbf{a} \in \mathbb{N}^d$. Let $M := I_{\langle 0 \rangle} B \oplus \bigoplus_{l \geq 1} (I_{\langle l \rangle}/I_{\langle l-1 \rangle}) \otimes_A B(-(\mathbf{0}, l))$. We need to prove that $\beta_{i,(\mathbf{a},j)}^B(I) = \beta_{i,(\mathbf{a},j)}^B(M)$ for all i, j. Note that z is a non-zero-divisor on M. Moreover, $M/zM \simeq I_{\langle 0 \rangle} \otimes_A (B/zB) \oplus \bigoplus_{l \geq 1} (I_{\langle l \rangle}/I_{\langle l-1 \rangle}) \otimes_A (B/zB)(-(\mathbf{0}, l)) \simeq I/zI$. Therefore there are two exact sequences

$$0 \longrightarrow I(-(\mathbf{0},1)) \xrightarrow{z} I \longrightarrow I/zI \longrightarrow 0,$$

$$0 \longrightarrow M(-(\mathbf{0},1)) \xrightarrow{z} M \longrightarrow I/zI \longrightarrow 0.$$

The maps $\operatorname{Tor}_{i}^{B}(I(-(\mathbf{0},1)),\mathbb{k}) \xrightarrow{z} \operatorname{Tor}_{i}^{B}(I,\mathbb{k})$ and $\operatorname{Tor}_{i}^{B}(M(-(\mathbf{0},1)),\mathbb{k}) \xrightarrow{z} \operatorname{Tor}_{i}^{B}(M,\mathbb{k})$ are zero. Therefore, for all i and for all j > 0.

(2.3)
$$\beta_{i,(\mathbf{a},j)}^{B}(I) + \beta_{i-1,(\mathbf{a},j-1)}^{B}(I) = \beta_{i,(\mathbf{a},j)}^{B}(I/zI) = \beta_{i,(\mathbf{a},j)}^{B}(M) + \beta_{i-1,(\mathbf{a},j-1)}^{B}(M).$$

Note that outside a bounded rectangle inside \mathbb{Z}^2 , the functions $(i,j) \mapsto \beta^B_{i,(\mathbf{a},j)}(I)$ and $(i,j) \mapsto \beta^B_{i,(\mathbf{a},j)}(M)$ take the value zero. Therefore it follows from (2.3) that $\beta^B_{i,(\mathbf{a},j)}(I) = \beta^B_{i,(\mathbf{a},j)}(M)$ for all i, j.

Definition 2.4. Adopt Notation 2.1. Let $d = (d_0 < d_1 < \cdots)$ be an increasing sequence of natural numbers. Define an operation Φ_d on graded *B*-ideals by setting $\Phi_d(I)$ to be the *B*-ideal generated by $\bigoplus_{i \in \mathbb{N}} I_{\langle i \rangle} z^{d_i}$. **Proposition 2.5.** Adopt the hypothesis of Lemma 2.2. Then

$$\beta_{i,(\mathbf{a},j)}(\Phi_d(I)) = \begin{cases} \beta_{i,(\mathbf{a},l)}(I), & \text{if } j = d_l \\ 0, & \text{otherwise} \end{cases}$$

Proof. This follows immediately by noting that, for all $j \in \mathbb{N}$, $(\Phi_d(I))_{\langle j \rangle} = I_{\langle l \rangle}$ where l is such that $d_l \leq j < d_{l+1}$. (If $d_0 > 0$, then $(\Phi_d(I))_{\langle j \rangle} = 0$ for all $0 \leq j < d_0$.)

Borel-fixed ideals. For the duration of this paragraph and Proposition 2.6, assume that p is zero or a positive prime number. Given two non-negative integers a and b, say that $a \preccurlyeq_p b$ if $\binom{b}{a} \neq 0 \mod p$. Then there is the following characterization of Borel-fixed ideals; for positive characteristic, it was proved by Pardue [Par94, Proposition II.4]. For details, see [Eis95, Section 15.9.3].

Proposition 2.6 ([Eis95, Theorem 15.23]). Let \Bbbk be an infinite field of characteristic p. An ideal I of $\Bbbk[x_1, \ldots, x_n]$ is Borel fixed if and only I is a monomial ideal and for all i < j and for all monomial minimal generators m of I, $(x_i/x_j)^s m \in I$ for all $s \preccurlyeq_p t$ where t is the largest integer such that $x_i^t \mid m$.

Conjecture 2.7 ([Par94, Conjecture V.4, p. 43]). Let p be a prime number. Let I be a p-Borel-fixed monomial S-ideal. Then the \mathbb{N} -graded Betti table of $I(S \otimes_{\mathbb{Z}} \ell)$ is independent of char ℓ (equivalently, ℓ) for all fields ℓ (of arbitrary characteristic).

3. Construction

Recall that $S = \mathbb{Z}[x_1, \ldots, x_n]$ and that I is a monomial S-ideal. Fix a prime number p and let \Bbbk be any field of characteristic p. We now describe an algorithm that constructs an S-ideal J such that $J(S \otimes_{\mathbb{Z}} \Bbbk)$ is Borel-fixed.

Construction 3.1. Input: A monomial S-ideal I. Set i = 1 and $J_0 = I$.

(i) Pick r_i an upper bound for $\operatorname{reg}_{(S\otimes_{\mathbb{Z}}\ell)}(J_{i-1}(S\otimes_{\mathbb{Z}}\ell))$ that is independent of the field ℓ .

(ii) Pick a positive integer e_i such that $p^{e_i} > r_i$. Let $d = (0 < p^{e_i} < 2p^{e_i} < 3p^{e_i} < \cdots)$. Set $J_i = \Phi_d(J_{i-1} + (x_i^{p^{e_i}}))$ with $A = \mathbb{Z}[x_1, \ldots, x_i, x_{i+2}, \cdots, x_n]$, $z = x_{i+1}$ and B = S (Definition 2.4). Note that we are adding a large power of x_i but modifying the resulting ideal with respect to x_{i+1} .

(iii) If i = n - 1 then set $J = J_i$ and exit, else replace i by i + 1 and go to Step (i). Output: A monomial S-ideal J.

Before we state our theorem, we need to identify a region of the \mathbb{N}^n -graded Betti table of $J(S \otimes_{\mathbb{Z}} \ell)$ that captures the \mathbb{N}^n -graded Betti table of $I(S \otimes_{\mathbb{Z}} \ell)$. Let $\mathcal{A} = \{\mathbf{a} : |\mathbf{a}| \leq r_1\}$ (with r_1 as in Step (i)) and $\mathcal{B} = \{\mathbf{b} : b_j < p^{e_j} - 1\}.$

Theorem 3.2. The ideal J is p-Borel-fixed. Moreover, there is an injective map $\psi : \mathcal{A} \longrightarrow \mathcal{B}$ such that for all fields ℓ (of arbitrary characteristic), for all $1 \leq i \leq n$, and for all $\mathbf{b} \in \mathcal{B}$,

$$\beta_{i,\mathbf{b}}^{S\otimes_{\mathbb{Z}}\ell}(J(S\otimes_{\mathbb{Z}}\ell)) = \begin{cases} \beta_{i,\psi^{-1}(\mathbf{b})}^{S\otimes_{\mathbb{Z}}\ell}(I(S\otimes_{\mathbb{Z}}\ell)), & \text{if } \mathbf{b}\in\mathrm{Im}\,\psi, \\ 0, & \text{otherwise.} \end{cases}$$

Let us make some remarks about the construction. In Step (i), we may, for example, take r_i to be the degree of the least common multiple of the minimal monomial generators of J_{i-1} ; that this is a bound for regularity (independent of characteristic) follows from the Taylor resolution. There are stronger bounds, e.g., the largest degree of a minimal generator of the lex-segment ideal with the same Hilbert function as $J_{i-1}(S \otimes_{\mathbb{Z}} \ell)$. Additionally, one may insert a check at Step (iii) whether $J_i(S \otimes_{\mathbb{Z}} \mathbb{Z}/p)$ is Borel-fixed using Proposition 2.6. The algorithm will, then, terminate before or at the stage i = m - 1 where $m = \max\{i : x_i \text{ divides a minimal monomial generator of } I\}$.

The proofs of Theorem 3.2 and Proposition 3.6 hinge on the following lemma. See [Eis95, Section A3.12] for mapping cones and [MS05, Chapter 4] for cellular resolutions. In the proof of the theorem, we first describe the change in the \mathbb{N}^n -graded Betti table at Step (ii). Readers familiar with multigraded resolutions will be able to see that the Betti numbers of J in the region \mathcal{B} should be the Betti numbers of the ideal

obtained from I by replacing x_i with $x_i^{p^{e_i-1}}$ and hence contain information of the Betti numbers of I. For the sake of readability, we will abbreviate, for monomial S-ideals \mathfrak{a} , $\beta_{i,\mathbf{b}}^{S\otimes_{\mathbb{Z}}\ell}(\mathfrak{a}(S\otimes_{\mathbb{Z}}\ell))$ by $\beta_{i,\mathbf{b}}^{\ell}(\mathfrak{a})$ and $\operatorname{reg}_{(S\otimes_{\mathbb{Z}}\ell)}(\mathfrak{a}(S\otimes_{\mathbb{Z}}\ell))$ by $\operatorname{reg}_{\ell}(\mathfrak{a})$, from here till the end of the proof of theorem.

Lemma 3.3. Let $1 \le j \le n$ and ℓ be any field.

(*i*) $(J_{j-1}: x_j^{p^{e_j}}) = (J_{j-1}: x_j^{\infty}).$

(ii) Let F_{\bullet} and F'_{\bullet} be minimal $(S \otimes_{\mathbb{Z}} \ell)$ -free resolutions of $(S/J_{j-1}) \otimes_{\mathbb{Z}} \ell$ and $(S/(J_{j-1}:_S x_j^{p^{e_j}})) \otimes_{\mathbb{Z}} \ell$.

Write M_{\bullet} for the mapping cone of the comparison map $F'_{\bullet}(-x_j^{p^{e_j}}) \longrightarrow F_{\bullet}$ that lifts the injective map

 $(S/(J_{j-1}:_S x_j^{p^{e_j}})(-x_j^{p^{e_j}}) \xrightarrow{x_j^{p^{e_j}}} S/J_{i-1}) \otimes_{\mathbb{Z}} \ell$. Then for each *i*, the set of degrees of homogeneous minimal generators of $F'_i(-x_j^{p^{e_j}})$ is disjoint from that of F_i . In particular, M_{\bullet} is a minimal $(S \otimes_{\mathbb{Z}} \ell)$ -free resolution of $(S/(J_{j-1} + (x_j^{p^{e_j}}))) \otimes_{\mathbb{Z}} \ell$.

Proof. (i): Follows from the choice of e_j .

(ii): The assertion about generating degrees follows from the choice of e_j . As a consequence, we see that the map $F'_i(-x_j^{p^{e_j}}) \longrightarrow F_i$ is minimal, i.e., if we represent it by a matrix, all the entries are in the homogeneous maximal ideal. Therefore M_{\bullet} is minimal, and, hence a minimal resolution of $(S/(J_{j-1} + (x_j^{p^{e_j}}))) \otimes_{\mathbb{Z}} \ell$. \Box

Proof of the theorem. Without loss of generality, we may assume that k is infinite. Let $x_1^{a_1} \cdots x_n^{a_n}$ be a minimal monomial generator of J. For all $1 \leq i \leq n-1$, a_{i+1} is a multiple of p^{e_i} and $x_i^{p^{e_i}} \in J$. Note that for all integers $l \geq 1$, if $m \preccurlyeq_p lp^{e_i}$ for some integer m, then m is a multiple of p^{e_i} . By Proposition 2.6 J is p-Borel-fixed; note that $e_1 < e_2 < \cdots$. The assertion about the Betti numbers $\beta_{i,\mathbf{b}}^{\ell}(J)$ follows from the discussion below, repeatedly applying (3.5).

Fix $1 \leq j \leq n-1$. If $|\mathbf{b}| \geq i + p^{e_j}$ then $|\mathbf{b}| > i + \operatorname{reg}_{\ell}(J_{j-1})$, so the Betti numbers $\beta_{i,\mathbf{b}}^{\ell}(J_{j-1} + (x_j^{p^{e_j}}))$ are determined by the resolution of $(S/(J_{j-1}:s x_j^{\infty}))(-p^{e_j}\mathbf{e}_j)$; hence, in particular, for such \mathbf{b} , if $\beta_{i,\mathbf{b}}^{\ell}(J_{j-1} + (x_j^{p^{e_j}})) \neq 0$, then $b_j \geq i + p^{e_j}$. Putting this together, we obtain the following:

$$\beta_{i,\mathbf{b}}^{\ell}(J_{j-1} + (x_j^{p^{e_j}})) = \begin{cases} \beta_{i,\mathbf{b}}^{\ell}(J_{j-1}), & \text{if } b_j < i + p^{e_j} \\ \beta_{i-1,\mathbf{b}-p^{e_j}\mathbf{e}_j}^{\ell}(J_{j-1}:_S x_j^{\infty}), & \text{otherwise.} \end{cases}$$

Proposition 2.5 implies that for all $\mathbf{b} \in \mathbb{N}^n$,

(3.4)
$$\beta_{i,\mathbf{b}}^{\ell}(J_j) = \begin{cases} \beta_{i,\mathbf{b}'}^{\ell}(J_{j-1}), & \text{if } p^{e_j} \mid b_{j+1} \text{ and } b_j < i + p^{e_j}, \\ \beta_{i-1,\mathbf{b}''}^{\ell}(J_{j-1}:S x_j^{\infty}), & \text{if } p^{e_j} \mid b_{j+1} \text{ and } b_j \ge i + p^{e_j}, \\ 0, & \text{otherwise}, \end{cases}$$

where write $\mathbf{b}' = \mathbf{b} - (b_{j+1} - \frac{b_{j+1}}{p^{e_j}})\mathbf{e}_{j+1}$ and $\mathbf{b}'' = \mathbf{b}' - p^{e_j}\mathbf{e}_j$. We can recover the \mathbb{N}^n -graded Betti table of J_{j-1} from the \mathbb{N}^n -graded Betti table of J_j . To make this precise, suppose that $\beta_{i,\mathbf{b}}^{\ell}(J_j) \neq 0$. Then the resulting dichotomous situation from (3.4) has the following re-interpretation:

(3.5)
$$b_j < i + p^{e_j} \quad \text{if and only if} \quad \beta_{i,\mathbf{b}}^{\ell}(J_j) = \beta_{i,\mathbf{b}'}^{\ell}(J_{j-1}), \\ b_j \ge i + p^{e_j} \quad \text{if and only if} \quad \beta_{i,\mathbf{b}}^{\ell}(J_j) = \beta_{i-1,\mathbf{b}'}^{\ell}(J_{j-1}:_S x_j^{\infty}).$$

We will not explicitly construct the map ψ , but will observe that it can be done putting together the changes at each stage j.

Proposition 3.6. Let p be any prime number, k a field of characteristic p and $R := S \otimes_Z k = k[x_1, \ldots, x_n]$. Let I be any monomial S-ideal and J be as in Construction 3.1. If IR has a non-cellular minimal R-free resolution then so does JR. In particular, there exists a Borel-fixed R-ideal with a non-cellular minimal resolution. *Proof.* The second assertion follows from the first since there are monomial ideals that have non-cellular minimal resolutions [Vel08]; therefore we prove that if IR is a non-cellular minimal resolution then so does JR. As proposition does not involve looking at the behaviour of I and J in two different characteristics, so, for the duration of this proof, we may assume that Construction 3.1 is done over R instead of S. Hereafter, we assume that I and J are R-ideals.

Note that it suffices to show, inductively, that, in Construction 3.1, if J_{i-1} has a non-cellular minimal resolution, then so does J_i . It is immediate that J_i has a cellular minimal resolution if and only if $(J_{i-1} + (x_i^{p^{e_i}}))$ has one; this is because the same CW-complex supports minimal resolutions of $(J_{i-1} + (x_i^{p^{e_i}}))$ and $J_i := \Phi_d(J_{i-1} + (x_i^{p^{e_i}}))$. Therefore, it suffices to show that if J_{i-1} has a non-cellular minimal resolution then so does $(J_{i-1} + (x_i^{p^{e_i}}))$.

This is an immediate consequence of the choice of e_i and of Lemma 3.3. Let F_{\bullet} be a non-cellular minimal resolution of J_{i-1} . Let F'_{\bullet} be any minimal resolution of $S/(J_{j-1}:s_x_j^{p^{e_j}})$. Then the mapping cone M_{\bullet} is necessarily non-cellular: for, otherwise, if there is a CW-complex X that supports M_{\bullet} , then for $\mathbf{b} = (p^{e_i} - 1, \dots, p^{e_i} - 1), X_{\leq \mathbf{b}}$ supports F_{\bullet} .

Example 3.7 (Counter-examples to Conjecture 2.7). Note that, since graded Betti numbers are uppersemicontinuous functions of characteristic, for an S-ideal J, the N-graded Betti table of $(J(S \otimes_{\mathbb{Z}} \ell))$ depends on char ℓ if and only if the Nⁿ-graded Betti table depends on char ℓ . Let I be any monomial S-ideal such that its Nⁿ-graded Betti table depends on char ℓ . Let p be any prime number and k any field of characteristic p. Let J be the ideal from Construction 3.1. Then $J(S \otimes_{\mathbb{Z}} \ell)$ is Borel-fixed while its Nⁿ-graded Betti table depends on char ℓ . As a specific example, we consider the minimal triangulation of the real projective plane [BH93, Section 5.3]. We have

$$S = \mathbb{Z}[x_1, \dots, x_6]$$

$$I = (x_1 x_2 x_3, x_1 x_2 x_4, x_1 x_3 x_5, x_2 x_4 x_5, x_3 x_4 x_5, x_2 x_3 x_6, x_1 x_4 x_6, x_3 x_4 x_6, x_1 x_5 x_6, x_2 x_5 x_6).$$

With p = 2, $e_1 = 3$, $e_2 = 5$, $e_3 = 7$, $e_4 = 9$, and $e_5 = 11$, we obtain

$$\begin{split} J &= (x_1^8, x_2^{32}, x_1 x_2^8 x_3^{32}, x_1^{128}, x_1 x_2^8 x_4^{128}, x_5^{512}, x_1 x_3^{32} x_5^{512}, x_2^8 x_4^{128} x_5^{512}, x_3^{32} x_4^{128} x_5^{512}, \\ & x_5^{2048}, x_2^8 x_3^{32} x_6^{2048}, x_1 x_4^{128} x_6^{2048}, x_3^{32} x_4^{128} x_6^{2048}, x_1 x_5^{512} x_6^{2048}, x_2^8 x_5^{512} x_6^{2048}). \end{split}$$

Then the Betti numbers $\beta_{2,2729}^{S \otimes_{\mathbb{Z}} \ell}(J(S \otimes_{\mathbb{Z}} \ell))$ and $\beta_{3,2729}^{S \otimes_{\mathbb{Z}} \ell}(J(S \otimes_{\mathbb{Z}} \ell))$ (which correspond to $\beta_{2,6}^{S \otimes_{\mathbb{Z}} \ell}(I(S \otimes_{\mathbb{Z}} \ell))$ and $\beta_{3,6}^{S \otimes_{\mathbb{Z}} \ell}(I(S \otimes_{\mathbb{Z}} \ell))$, respectively) are nonzero precisely when char $\ell = 2$; otherwise they are zero.

After this paper was posted on the **arXiv**, Matteo Varbaro asked us whether there are *p*-Borel-fixed ideals minimally generated in a single degree that exhibit different Betti tables in different characteristics. There are: for instance, if we take J_1 to be the sub-ideal of the ideal J of the above example generated by the monomials of degree 2725 in J, i.e., $J_1 = J \cap (x_1, \ldots, x_6)^{2725}$. Being the intersection of two *p*-Borel-fixed ideals, J_1 is *p*-Borel-fixed. Moreover, for all i, for all j > 2725 and for all fields ℓ , $\beta_{i,i+j}^{S\otimes_{\mathbb{Z}}\ell}(J(S\otimes_{\mathbb{Z}}\ell)) = \beta_{i,i+j}^{S\otimes_{\mathbb{Z}}\ell}(J_1(S\otimes_{\mathbb{Z}}\ell))$.

References

- [AH97] A. Aramova and J. Herzog, p-Borel principal ideals, Illinois J. Math. 41 (1997), no. 1, 103–121. ↑1
- [BH93] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. ^{↑5}

[Eis95] D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. [↑]3

- [EK90] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), no. 1, 1–25. ↑1
- [EPP00] V. Ene, G. Pfister, and D. Popescu, Betti numbers for p-stable ideals, Comm. Algebra 28 (2000), no. 3, 1515–1531. ¹
- [HP01] J. Herzog and D. Popescu, On the regularity of p-Borel ideals, Proc. Amer. Math. Soc. **129** (2001), no. 9, 2563–2570. $\uparrow 1$
- [JW09] M. Jöllenbeck and V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer. Math. Soc. 197 (2009), no. 923, vi+74. ↑1

- [M2] D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, 2006. Available at http://www.math.uiuc.edu/Macaulay2/. ↑2
- [Mer10] J. Mermin, The Eliahou-Kervaire resolution is cellular, J. Commut. Algebra 2 (2010), no. 1, 55–78. ↑1
- [MS05] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. ↑3
- [Par94] K. Pardue, Nonstandard borel-fixed ideals, 1994. Thesis (Ph.D.)–Brandeis University. [↑]1, 2, 3
- [Pop05] D. Popescu, Extremal Betti numbers and regularity of Borel type ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), no. 1, 65–72. [↑]2
- [PS08] I. Peeva and M. Stillman, The minimal free resolution of a Borel ideal, Expo. Math. 26 (2008), no. 3, 237–247. ↑2
- [Sin08] A. Sinefakopoulos, On Borel fixed ideals generated in one degree, J. Algebra **319** (2008), no. 7, 2739–2760. ↑1
- [Vel08] M. Velasco, Minimal free resolutions that are not supported by a CW-complex, J. Algebra **319** (2008), no. 1, 102–114. ↑2, 5

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE IN 47907, USA *E-mail address*: gcavigli@math.purdue.edu

Chennai Mathematical Institute, Siruseri, Tamilnadu 603103, India $E\text{-}mail\ address:\ \texttt{mkummini@cmi.ac.in}$