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Abstract. We study inequalities between graded Betti numbers of ideals in a standard graded algebra
over a field and their images under embedding maps, defined earlier by us in [Math. Z. 274 (2013), no. 3-4,
pp. 809-819; arXiv:1009.4488]. We show that if graded Betti numbers do not decrease when we replace ideals
in an algebra by their embedded versions, then the same behaviour is carried over to ring extensions. As
a corollary we give alternative inductive proofs of earlier results of Bigatti, Hulett, Pardue, Mermin-Peeva-
Stillman and Murai. We extend a hypersurface restriction theorem of Herzog-Popescu to the situation of
embeddings. We show that we can obtain the Betti table of an ideal in the extension ring from the Betti table
of its embedded version by a sequence of consecutive cancellations. We further show that the lex-plus-powers
conjecture of Evans reduces to the Artinian situation.

1. Introduction

This paper is part of our study of embeddings of the poset of Hilbert series into the poset of ideals, in a
standard-graded algebra R over a field k. In our earlier paper [CK13], we looked into ways of embedding
the set HR of all Hilbert series of graded R-ideals (partially ordered by comparing the coefficients) into the
set IR of graded R-ideals (partially ordered by inclusion). Here we look at the behaviour of graded Betti
numbers when we replace an ideal by an ideal (with the same Hilbert function) that is in the image of the
embedding.

Examples of such embeddings, studied classically, are polynomial rings and quotient rings of polynomial
rings by regular sequences generated by powers of the variables. If R is a polynomial ring, then for every
R-ideal I, there exists a lex-segment ideal L in R such that the Hilbert functions of I and L are identical (a
theorem of F. S. Macaulay, see [BH93, Section 4.2]) and, moreover, each of the graded Betti numbers of L is
at least as large as the corresponding graded Betti numbers of I (A. M. Bigatti [Big93], H. A. Hulett [Hul93]
and K. Pardue [Par96]). Similarly, if R = k[x1, . . . , xn]/(xe1

1 , . . . , x
en
n ) for some integers 2 ≤ e1 ≤ · · · ≤ en,

then for every R-ideal I there exists a lex-segment k[x1, . . . , xn]-ideal L such that I and LR have identical
Hilbert functions (J. B. Kruskal [Kru63] and G. Katona [Kat68] for the case e1 = · · · = en = 2, and
G. F. Clements and B. Lindström [CL69], in general). Again, as k[x1, . . . , xn]-modules, each graded Betti
number of R/LR is at least as large as the corresponding graded Betti number of R/I; this was proved by
J. Mermin, I. Peeva and M. Stillman [MPS08] for the case e1 = · · · = en = 2 in characteristic zero, by
S. Murai [Mur08] in the general case for strongly stable ideals and by Mermin and Murai [MM11] in full
generality. In both these cases, mapping the Hilbert series of I to L (or to LR in the second case) gives
an embedding of HR into IR, such that the graded Betti numbers do not decrease after the embedding.
See [GMP11a,GMP11b, IP99] for comparing the graded Betti numbers of R/I and R/LR over k[x1, . . . , xn]
and [MP12] for comparing the graded Betti numbers over R.

Before we spell out what is done in this paper, let us fix some notation. By z we mean an indeterminate
over R. Set S = R[z]/(zt), where t ≥ 1 ∈ N or t = ∞; if t = ∞, we mean that zt = 0. By A we
denote a standard-graded polynomial ring over k that minimally presents R, i.e., ker(A −→ R) does not
have any linear forms. Let B = A[z]. The graded Betti numbers of a finitely generated graded R-module
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M are βRi,j(M) = dimk TorRi (M,k)j . The Betti table of M , denoted βR(M), is
∑
i,j β

R
i,j(M)ei,j , where

{ei,j , i ∈ N, j ∈ Z} is the standard basis of ZN×Z.
In this paper, we show that if graded Betti numbers do not decrease when we replace R-ideals by their

embedded versions, then the same behavior extends to S-ideals; see Theorem 3.1 for the precise statement.
This generalizes analogous results of Bigatti, Hulett, Pardue and Murai mentioned above. Moreover, our
technique gives short and self-contained proofs of [MPS08, Theorem 1.1] (more precisely, the key intricate
step for proving it for strongly-stable-plus-squares ideals — see [MPS08, Section 3 and 4]) and [Mur08,
Theorem 1.1] (which generalizes the above theorem to arbitrary powers); see Corollary 3.7.

We show that we can obtain the Betti table of an S-ideal from the Betti table of its embedded version
by a sequence of consecutive cancellations. This is analogous to, and motivated by, the similar result proved
by Peeva comparing the Betti table of an arbitrary homogeneous ideal in a polynomial ring with the Betti
table of the lex-segment ideal with the same Hilbert function [Pee04, Theorem 1.1]. Additionally, we show
that a minimal graded B-free resolution of an ideal in the image of the embedding map can be seen as an
iterated mapping cone. The simplest instance of this is the Eliahou-Kervaire resolution (see [EK90,PS08]) of
strongly-stable monomial ideals in polynomial rings. Similar iterated mapping cones have been considered
for ideals containing monomial regular sequences, and have been used to obtain exact expressions for graded
Betti numbers; see [MPS08,Mur08,GMP11a]. As an application of Theorem 3.1, we show that the lex-plus-
powers conjecture of E. G. Evans reduces to the Artinian situation (Theorem 4.1).

A word about the proofs. Problems on finding bounds for Betti numbers such as those studied in much
of the body of work above can be, inductively, reduced to studying polynomial extensions by one variable,
or their quotients. This is what we address in Theorem 3.1. Its proof makes crucial use of [CK13, Theo-
rem 3.10] (reproduced as Theorem 2.1(ii) below) which is an analogue of the Hyperplane Restriction Theorem
of M. Green [Gre89], and of similar results of J. Herzog and D. Popescu [HP98] and of Gasharov [Gas99].
Caviglia and E. Sbarra [CS12, Theorem 3.1] use Theorem 2.1(ii), again, to prove a result similar to The-
orem 3.1, where graded Betti numbers are replaced by Hilbert series of local cohomology modules. Also
see [CGP02] for a proof of the aforementioned result of Bigatti and Hulett, in characteristic zero, using
Green’s Hyperplane Restriction Theorem.

We thank the referee for a careful reading and suggestions that improved the exposition. The computer
algebra system Macaulay2 [M2] provided valuable assistance in studying examples.

2. Embeddings

We recall some notation and definitions from [CK13]. Let k be a field and A a finitely generated polynomial
ring over k. We treat A as standard graded, i.e., the indeterminates have degree one. Let a be a homogeneous
A-ideal and R = A/a. Let IR = {J : J is a homogeneous R-ideal}, considered as a poset under inclusion.
For a finitely generated graded R-module M = ⊕t∈ZMt, the Hilbert series of M is the formal power series

HM (z) =
∑
t∈Z

(dimkMt) zt ∈ Z[[z]].

The poset of Hilbert series of homogeneous R-ideals is the set HR = {HJ : J ∈ IR} endowed with the
following partial order: H < H ′ (or H ′ 4 H ′) if, for all t ∈ Z, the coefficient of zt in H is at least as large
as that in H ′.

In [CK13] we studied the following question: given such a standard-graded k-algebra R, is there an (order-
preserving) embedding ε : HR ↪→ IR as posets, such that H ◦ ε = idHR

, where H : IR −→ HR is the function
J 7→ HJ? We will say that HR admits an embedding into IR (and often, by abuse of terminology, merely
that HR admits an embedding) if this question has an affirmative answer.

Recall (from Section 1) that R = A/a, B = A[z] and S = R[z]/(zt) = B/(aB + (zt)) where t is a positive
integer or is ∞. Let I = {i ∈ N : i < t}. Treat B as multigraded, with deg xi = (1, 0) and deg z = (0, 1) and
let the grading on S be the one induced by this choice. (In order to study embeddings of HS , we think of S
as standard-graded, but we will use its multigraded structure, which is a refinement of the standard grading,
to construct them.)
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Let J be a multigraded S-ideal. It is isomorphic, as an R-module, to
⊕

i∈I J〈i〉z
i, where for every

i ∈ I, J〈i〉 = (J :S zi) ∩ R. Notice that for all i ∈ I, i > 0, J〈i−1〉 ⊆ J〈i〉. We say that J is z-stable if
mRJ〈i〉 ⊆ J〈i−1〉, for all i ∈ I, i > 0 where mR denotes the homogeneous maximal ideal of R. We denote the
set {HJ : J is a z-stable S-ideal} by Hstab

S . The main results from our earlier work [CK13] are:

Theorem 2.1. Let t be a positive integer or ∞. Let S = R[z]/(zt). Suppose that HR admits an embedding
εR. Then:

(i) There exists an embedding of posets εS : Hstab
S ↪→ IS such that for all H ∈ Hstab

S , the Hilbert
function of ε(H) is H.

(ii) If J is a z-stable S-ideal and L = εS(HJ), then H(J+(zi)) < H(L+(zi)) for all i ∈ I.

Part (i) is the content of [CK13, Theorem 3.3], where we further assume that for all S-ideals J , there
is a z-stable S-ideal with the same Hilbert function (i.e., Hstab

S = HS) and conclude that HS admits an
embedding. If t = ∞, then Hstab

S = HS [CK13, Lemma 4.1]. When t is finite, if k contains a primitive tth
root of unity, a is a monomial ideal in some k-basis B of A1, lt ∈ a for all l ∈ B then, again, Hstab

S = HS [CK13,
Lemma 4.2]. Part (ii), which can be viewed as a hypersurface restriction theorem, is [CK13, Theorem 3.10];
see Discussion 2.4.

Remark 2.2. Let J be a multigraded S-ideal. Write J =
⊕

i∈I J〈i〉z
i. Then J ′ :=

⊕
i∈I εR(HJ〈i〉)zi

is an S-ideal. If J is additionally z-stable, then so is J ′. To see this, we note that, since J is z-stable,
HJ〈i−1〉 < HmRJ〈i〉 , and therefore εR(HJ〈i−1〉) ⊇ εR(HmRJ〈i〉) ⊇ mRεR(HJ〈i〉), where the last inclusion follows
by using embedding filtrations [CK13, Definition 2.3]. �

Remark 2.3. The map εS : Hstab
S ↪→ IS constructed in the proof of Theorem 2.1 has additional properties

inherited from εR, namely, if an S-ideal L is in the image of εS , it is multigraded, z-stable and, when written
as L =

⊕
i∈I L〈i〉z

i, the ideal L〈i〉 is in the image of εR for all i ∈ I, i.e. εR(HL〈i〉) = L〈i〉. �

Discussion 2.4 (Restriction to general hypersurfaces). The Hyperplane Restriction Theorem of
Green [Gre89] (see, also, [Gre98, Theorem 3.4]) asserts that if k is an infinite field, J is a B-ideal and
L the lex-segment B-ideal with HI = HL, then for any general linear form f ∈ S, HJ+(f) < HL+(z). (In the
lexicographic order on B, z is the last variable.) Herzog and Popescu [HP98, Theorem in Introduction] (in
characteristic zero) and Gasharov [Gas99, Theorem 2.2(2)] (in arbitrary characteristic) generalized this to
forms of arbitrary degree: HJ+(f) < HL+(zd) for all general forms f of degree d for all d ≥ 1. Restated in
the language of embeddings, this is HJ+(f) < HεB(HJ )+(zd). Therefore, we may wonder whether this is true
more generally than for polynomial rings. More precisely, putting ourselves in the context of Theorem 2.1,
we show that if char k = 0, then
(2.5) HJ+(f) < HεS(HJ )+(zd)

for all general homogeneous elements f ∈ S of degree d and for all d ∈ I. We also show that the conclusion
fails in positive characteristic. In characteristic zero, the argument is as follows: Firstly, HJ+(f) = Hg·J+(g·f)
where g is a change of coordinates, fixing all the xi and sending z to a general linear form. Secondly, by
[Cav04, 7.1.2 and 7.1.3], Hg·J+(g·f) < Hinw(g·J)+(g·f), where w is the weight w(xi) = 1 for all i and w(z) = 0.
Now, in characteristic zero, inw(g ·J) is z-stable. (The proofs of [CK13, Lemmas 4.1 and 4.2] use many
steps of distraction and taking initial ideals with respect to w, but in characteristic zero, they can be
replaced by a single step.) Thirdly, Hinw(g·J)+(g·f) < Hinw(g·J)+(zd), which can be seen by applying g−1 to
both term of the inequality and by recalling that f is general. Finally, using Theorem 2.1(ii), we see that
Hinw(gJ)+(zd) < HεS(Hinw(gJ))+(zd). Note that εS(Hinw(gJ)) = εS(HJ).

Now to show that the conclusion does not hold in positive characteristic, consider R = k[x, y]/(xp, yp)
where p = char k. Let S = R[z], l a general linear form in x, y and J = zpS. Then, εS denoting the
embedding induced by the lexicographic order on k[x, y, z], we have

HJ+(z+l) 4 HεS(HJ )+(z) and HJ+(z+l) 6= HεS(HJ )+(z);
contrast this with (2.5). To see this, let us look at the corresponding quotients: S/J + (z + l) ' R and,
since xp−1y ∈ εS(HJ), we have S/εS(HJ) + (z) is a homomorphic image of R/(xp−1y). �
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Remark 2.6. Suppose that HR admits an embedding ε. Let I = ε(H) for some H ∈ HR. Then IR/I '
{J ∈ IR : I ⊆ J} and HR/I ' {HJ : J ∈ IR, I ⊆ J}. In particular, ε induces an embedding of HR/I into
IR/I [CK13, Remark 2.8]. Let S = R[z]. Then HS admits an embedding εS , by Theorem 2.1. (See, also, the
paragraph following the theorem.) Let J be an S-ideal that is in the image of εS . By above, HS/J admits
an embedding εS/J . Moreover suppose that εR is given by images of lex-segment ideals of A, i.e., for all
H ∈ HR, there is a lex-segment A-ideal L such that εR(H) = LR. Then for all H ∈ HS/J , there exists a
lex-segment A[z]-ideal L such that εS/J(H) = L(S/J); see [CK13, Theorem 3.12 and Proposition 2.16]. (In
the lexicographic order on A[z], z is the last variable.) We remark here that in [MP06, Theorems 4.1 and 5.1]
Mermin and Peeva had shown that if R is the quotient of A by a monomial ideal, then the lex-segment ideals
of A[z] give an embedding of HS/J . �

Remark 2.7. Let A = k[x1, . . . , xn] and B = A[xn+1]. Let 2 ≤ e1 ≤ · · · ≤ en+1 ≤ ∞. Let a =
(xe1

1 , . . . , x
en
n )A, b = (xe1

1 , . . . , x
en+1
n+1 )B, R = A/a and S = B/b. Assume that we have inductively constructed

an embedding εR of HR such that for all R-ideals I, there exists a lex-segment A-ideal L such that εR(HI) =
LR. Then Hstab

S admits an embedding εS , by Theorem 2.1. We now argue that Hstab
S = HS . Let J be any

B-ideal containing b. Replacing J by an initial ideal, we may assume that J is a monomial ideal. Therefore
it suffices to prove that for all monomial B-ideals J containing b, there is a B-ideal J ′ such that J ′S is z-
stable and HJS = HJ′S . For this we may assume that k = C. Now, the remarks in the paragraph following
Theorem 2.1 imply thatHstab

S = HS , so we have an embedding εS ofHS . Again, by [CK13, Theorem 3.12 and
Proposition 2.16] we see that for all S-ideals J , there exists a lex-segment B-ideal L such that εS(HJ) = LS.
As a corollary, we get the theorem of Clements-Lindström mentioned in Section 1. �

3. Graded Betti numbers

We are now ready to state and prove the main result of this paper. Let εR : HR −→ IR be an embedding
and I be an R-ideal. Then βR1,j(R/I) ≤ βR1,j(R/εR(HI)) [CK13, Remark 2.5]. We do not know whether
βRi,j(R/I) ≤ βRi,j(R/εR(HI)) for all i and j. We show that if βAi,j(R/I) ≤ βAi,j(R/εR(HI)) for all i, j, then a
similar inequality holds for the extension rings considered in Theorem 2.1. (In general, there are examples
with βAi,j(R/I) < βAi,j(R/εR(HI)) [MM10, Proposition 3.2].)

Theorem 3.1. Let t be a positive integer or ∞. Let S = R[z]/(zt). Suppose that HR admits an embedding
εR and that βAi,j(R/I) ≤ βAi,j(R/εR(HI)) for all R-ideals I and for all i, j. Then for all i, j and for all
z-stable S-ideals J , βBi,j(S/J) ≤ βBi,j(S/εS(HJ)).

Suppose that t, k and A1 satisfy the conditions discussed after Theorem 2.1 that ensure that Hstab
S = HS .

Then for all S-ideals J , there exists a z-stable S-ideal J ′ such that HJ′ = HJ and βBi,j(S/J) ≤ βBi,j(S/J ′).
This inequality of Betti numbers follows from the proofs of [CK13, Lemmas 4.1 and 4.2], and the upper-
semi-continuity of graded Betti numbers in flat families. Hence, in these situations, we can conclude from
Theorem 3.1 that for all i and j and for all S-ideals J , βBi,j(S/J) ≤ βBi,j(S/εS(HJ)).

We begin with a (somewhat inefficient) bound on the Hilbert series of Tor modules.

Lemma 3.2. Let R′ be any positively graded k-algebra of finite type. Let M and N be finitely generated
graded R′-modules. Then HTorR′

i
(M,N) 4 HMHTorR′

i
(N,k). In particular, if N is a graded R′-submodule of M

or a graded homomorphic image of M , then HTorR′
i

(M,k) 4 HTorR′
i

(N,k) + (HM −HN )HTorR′
i

(k,k).

Proof. Let F• be a minimal graded R′-free resolution of N . ThenHTorR′
i

(M,N) 4 HM⊗R′Fi = HMHTorR′
i

(N,k),
proving the first assertion. For the second assertion, let L = coker(N −→M) or L = ker(M −→ N), as the
case is. Then HTorR′

i
(M,k) 4 HTorR′

i
(N,k) +HTorR′

i
(L,k) 4 HTorR′

i
(N,k) +HLHTorR′

i
(k,k) where the first inequality

follows from the exact sequence of Tor and the second one follows from the first part of this proposition.
Now note that HL = HM −HN . �

The following lemma is perhaps well-known to many readers, but we give a proof for the sake of com-
pleteness.
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Lemma 3.3. Identify A with the quotient ring B/(zB). Then for all B-ideals b, TorBi (b,k) ' TorAi (b/zb,k).

Proof. Let F• be a graded free B-resolution of b. We can compute the Tor modules TorBi (b, B/(zB)) either
as the homology of F• ⊗B B/(zB) or as the homology of

(0 −→ B(−1) z−→ B −→ 0)⊗B b = (0 −→ b(−1) z−→ b −→ 0).

Notice that z is a non-zerodivisor on b, so TorBi (b, B/(zB)) = 0 for all i > 0, i.e, F• ⊗B B/(zB) is a graded
(B/(zB))-free resolution of b/zb. Now, TorBi (b,k) = Hi(F• ⊗B k) = Hi((F• ⊗B B/(zB)) ⊗B/(zB) k) =
TorB/(z)i (b/zb,k) ' TorAi (b/zb,k). �

Proof of Theorem 3.1. We will work with B-ideals. Let J be a B-ideal containing aB + (zt) such that JS
is z-stable. Write L for the preimage in B of the S-ideal εS(HJS). We need to show that HTorB

i
(J,k) 4

HTorB
i

(L,k). By Lemma 3.3, it suffices to show that HTorA
i

(J/zJ,k) 4 HTorA
i

(L/zL,k). Write J =
⊕

i∈N J〈i〉z
i

and L =
⊕

i∈N L〈i〉z
i as A-modules. Let J ′ be the preimage of the S-ideal

⊕
i∈N εR(HJ〈i〉R)zi.

Define graded A-modules

M1 =
⊕
j∈I

(J〈j〉/J〈j−1〉)(−j) and

M2 =
{
A/J〈t−1〉(−t), if t ∈ N,
0, if t =∞.

Then, as an A-module, J/zJ = J〈0〉 ⊕M1 ⊕M2. Similarly define A-modules M ′1 and M ′2 for J ′ and N1 and
N2 for L. Notice that mAM1 = mAM

′
1 = mAN1 = 0, since JS, J ′S and LS are z-stable, by hypothesis, by

Remark 2.2 and by Remark 2.3 respectively. (Here mA is the homogeneous maximal ideal of A.) Therefore
M1, M ′1 and N1 are (as A-modules) direct sums of shifted copies of k, so

(3.4) HTorA
i

(M1,k) = HM1HTorA
i

(k,k), HTorA
i

(M ′1,k) = HM ′1
HTorA

i
(k,k) and HTorA

i
(N1,k) = HN1HTorA

i
(k,k).

Moreover,

(3.5) HTorA
i

(J/zJ,k) = HTorA
i

(J〈0〉,k) +HTorA
i

(M1,k) +HTorA
i

(M2,k).

Similar expressions exist for J ′ and L. By the hypothesis and the fact that HM1 = HM ′1
, we see that

HTorA
i

(J/zJ,k) 4 HTorA
i

(J′/zJ′,k). Therefore we may replace J by J ′ and assume that J〈i〉R is in the image of
εR for all i ∈ N. Hence, by Theorem 2.1(ii), L〈0〉 ⊆ J〈0〉, and, if t < ∞ then J〈t−1〉 ⊆ L〈t−1〉. Hence, for all
values of t, there is a surjective A-homomorphism M2 −→ N2. Since HJ = HL, we see that

(3.6) HJ〈0〉 +HM1 +HM2 = HJ/zJ = HL/zL = HL〈0〉 +HN1 +HN2 .

Therefore
HTorA

i
(J/zJ,k) = HTorA

i
(J〈0〉,k) +HTorA

i
(M1,k) +HTorA

i
(M2,k)

4 HTorA
i

(L〈0〉,k) +HTorA
i

(M1,k) +HTorA
i

(M2,k) + (HJ〈0〉 −HL〈0〉)HTorA
i

(k,k)

4 HTorA
i

(L〈0〉,k) +HTorA
i

(M2,k) + (HJ〈0〉 −HL〈0〉 +HM1)HTorA
i

(k,k)

= HTorA
i

(L〈0〉,k) +HTorA
i

(M2,k) + (HN1 +HN2 −HM2)HTorA
i

(k,k)

4 HTorA
i

(L〈0〉,k) +HTorA
i

(N2,k) +HN1HTorA
i

(k,k)

= HTorA
i

(L〈0〉,k) +HTorA
i

(N1,k) +HTorA
i

(N2,k)

= HTorA
i

(L/zL,k)

where the second line uses Lemma 3.2, the third line uses (3.4), the fourth line uses (3.6), the fifth line uses
Lemma 3.2 and the next line uses (3.4). �

The proof shows that, for fixed i and j, if βAi,j(R/I) ≤ βAi,j(R/εR(HI)) and βAi−1,j(R/I) ≤ βAi−1,j(R/εR(HI))
for all R-ideals I, then for all z-stable S-ideals J , βBi,j(S/J) ≤ βBi,j(S/εS(HJ)).
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Now, as a corollary, we give a quick proof of a theorem of Mermin-Peeva-Stillman and its generalization
by Murai. First, we relabel z as xn+1 and write B = k[x1, . . . , xn+1]. We say that a monomial B-ideal J is
strongly stable if for all monomials m ∈ I and for all 2 ≤ j ≤ n + 1 such that xj divides m, xi(m/xj) ∈ I,
for all i ≤ j.

Corollary 3.7 ([MPS08, Theorem 3.5], [Mur08, Theorem 1.1]). Let J be a strongly stable monomial B-ideal.
Let b = (xe1

1 , . . . , x
en+1
n+1 ), with 2 ≤ e1 ≤ · · · ≤ en+1 ≤ ∞. Then

(i) For all i, j, the value of βBi,j(J + b) does not depend on k.
(ii) For all i, j, βBi,j(J + b) ≤ βBi,j(L+ b) where L is the lex-segment B-ideal such that HL+b = HJ+b.

Proof. (i): We may compute the Betti numbers using Lemma 3.3 and (3.5). Note that J〈0〉 and J〈en−1〉 are
strongly-stable-plus-(xe1

1 , . . . , x
en
n ). The assertion now follows by induction. (ii): From Remark 2.7, whose

notation we adopt, we have embeddings εR and εS of HR and Hstab
S = HS respectively. By induction on

the number of variables, we see that the hypothesis of Theorem 3.1 is satisfied. Now εS(HJS) = LS, so
Theorem 3.1 completes the proof. �

Starting with a ring whose poset of Hilbert functions admits an embedding, it is possible to construct
new examples of rings with the same property, by using Theorem 2.1 and Remark 2.6 recursively. We thus
recover the following result of D. A. Shakin.

Corollary 3.8 ([Sha03, Theorems 3.10 and 4.1]). Let ai be a lex-segment ideal in the ring k[x1, . . . , xi],
i = 1 ≤ n, then let a =

∑n
i=1 aiA, with A = k[x1, . . . , xn]. Let R = A/a. Then HR admits an embedding εR

induced by the lexicographic order on A. Moreover βAi,j(R/I) ≤ βAi,j(R/εR(HI)), for all R-ideals I and for
all i, j.

Consecutive cancellation in Betti tables. We say that a Betti table βR(M) is obtained by consecutive
cancellations from βR(N) if there exists a collection Λ of triples (i, j, ni,j) ∈ N× Z× N such that βR(N) =
βR(M) +

∑
Λ ni,j(ei,j + ei+1,j). (Note that ei,j + ei+1,j is the Betti table of a complex R(−j) 1−→ R(−j)

concentrated in homological degrees i+ 1 and i.) Now revert to the situation of Theorem 3.1. We have the
following:

Proposition 3.9. If βA(R/I) can be obtained from βA(R/εR(HI)) by consecutive cancellations for all R-
ideals I, then βB(S/J) can be obtained from βB(S/εS(HJ)) by consecutive cancellations for all z-stable
S-ideals J .

Proof. As in the proof of Theorem 3.1, which we follow closely, we work with B-ideals. Let J be a B-ideal
containing aB + (zt) such that JS is z-stable. Write L for the preimage of the S-ideal εS(HJS). Let J ′
be the preimage of the S-ideal

⊕
i∈N εR(HJ〈i〉R)zi, as in the proof of the theorem. We need to show that

βB(J) can be obtained from βB(L) by consecutive cancellations. Note that, by our hypothesis, βB(J) can
be obtained from βB(J ′) by consecutive cancellations, since these Betti tables are equal to βA(J/zJ) and
βA(J ′/zJ ′) respectively. Therefore, we may replace J by J ′ and assume that J〈i〉R is in the image of εR for
all i ∈ N. Then L〈0〉 ⊆ J〈0〉, N2 is a graded homomorphic image of M2 (for a morphism of degree zero) and
HN1 −HM1 = HJ〈0〉 −HL〈0〉 +HM2 −HN2 . Hence we may place ourselves in the context of Lemma 3.2. We
have

βB(L)− βB(J) = βA(L〈0〉)− βA(J〈0〉) + βA(N2)− βA(M2) + βA(N1)− βA(M1)
= βA(L〈0〉)− βA(J〈0〉) + βA(N2)− βA(M2) + (HN1 −HM1)βA(k)
= [βA(L〈0〉)− βA(J〈0〉) + (HJ〈0〉 −HL〈0〉)β

A(k)]
+ [βA(N2)− βA(M2) + (HM2 −HN2)βA(k)].

Lemma 3.10 below, now, completes the proof of the proposition. �

Lemma 3.10. Let A be a standard-graded polynomial ring. Let M and N be finitely generated graded A-
modules. If N is a graded A-submodule of M or a graded homomorphic image of M , then βA(M) can be
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obtained from βA(N) + (HM −HN )βA(k) by consecutive cancellations. Here, for a series h =
∑
i∈N hiz

i, we
mean, by hβA(k), the (infinite) Betti table

∑
i∈N β

A(k(−i)⊕hi).
Proof. We will prove this when N is a graded submodule of M ; the other case is similar. From minimal
graded A-free resolutions of N and M/N , we can construct a graded A-free resolution of M that is not
necessarily minimal. Every non-minimal graded A-free resolution of M is a direct sum of a minimal graded
A-free resolution of M with copies of exact complexes of the form 0 −→ A(−j) 1−→ A(−j) −→ 0 that is
concentrated in homological degrees i and i+1 [Eis95, Theorem 20.2]; therefore βA(M) can be obtained from
βA(N) + βA(M/N) by consecutive cancellations. Since HM/N = HM −HN , it suffices to show that, after
relabelling the modules, for any graded A-moduleM , βA(M) can be obtained from HMβ

A(k) by consecutive
cancellations.

Let (K•, ∂•) be a Koszul complex that is a minimal graded A-free resolution of k. Note that
HTorA

i
(M,k) = Hker(∂i⊗AM) −HIm(∂i+1⊗AM)

= HKi⊗RM −HIm(∂i⊗AM) −HIm(∂i+1⊗AM).

The series HTorA
i

(M,k), 0 ≤ i ≤ n determine βA(M). Similarly HKi⊗RM , 0 ≤ i ≤ n determine HMβ
A(k). The

lemma now follows by noting that for each i, HIm(∂i⊗AM) is subtracted from HMβ
A(k) twice, at i and at

i− 1. �

An Eliahou-Kervaire type resolution for z-stable ideals. When I is a strongly stable A-ideal (see
the paragraph above Corollary 3.7 for definition), a minimal graded A-free resolution of I is given by the
Eliahou-Kervaire complex (see [EK90, Theorem 2.1]), which can be constructed as an iterated mapping cone
for a specific order on the set of minimal monomial generators of I. Iterated mapping cones can always
be used to construct free resolutions, but they need not be minimal in general. When they give minimal
resolutions, they can be used to obtain exact expressions for Betti numbers. See, for instance, [Mur08], which
uses an iterated mapping cone from [MPS08]. This section does not use explicit results on embeddings, but
only the calculations in the proof of Theorem 3.1. We first make an observation:
Observation 3.11. Let φ : M −→ N be an injective map of finitely generated graded B-modules and let
F• and G• be minimal graded free B-resolutions of M and N respectively. Denote the comparison map
F• −→ G• by Φ. Then the mapping cone C• of Φ is a graded free B-resolution of cokerφ. Moreover if
rankB Ci = dimk TorBi (cokerφ, k), then C• is a minimal resolution. �

Suppose that J is a z-stable S-ideal. We give an interpretation of a minimal graded B-free resolution of
S/J as an iterated mapping cone. Replace J by its preimage in B. For i ∈ I, set J〈i〉 = (J :B zi)∩A. If t is
finite, then, for all i ≥ t, set J〈i〉 = J〈t−1〉. Let J ′ =

⊕
i∈N J〈i〉z

i. Note that if t is finite then J = (J ′ + (zt))
while if if t is infinite then J = J ′. Note also that J ′R[z] is z-stable.

We first construct a minimal resolution of J ′. Let f1z
j1 , . . . , frz

jr , fzj be a set of minimal multigraded
generators of J ′ ordered such that j1 ≤ · · · ≤ jr ≤ j. We may assume that j > 0, for, otherwise, a
minimal B-free resolution of J ′ can be obtained by applying − ⊗A B to a minimal A-free resolution of
(J ′ ∩ A). Further, J〈i〉 = J〈j〉 for all i ≥ j. Write d = deg f . Let J ′′ = (f1z

j1 , . . . , frz
jr ). Then for

all 0 ≤ i < j, (J ′′ :B zi) ∩ A = J〈i〉, and for all i ≥ j, (J ′′ :B zi) ∩ A = (J ′′ :B zj) ∩ A. Moreover,
(J ′′ :B fzj) ⊇ (J〈j−1〉 :A f)B = mAB, so (J ′′ :B fzj) = mAB. Also, J〈j〉/((J ′′ :B zj) ∩ A) ' k(−d). There
is a graded exact sequence

0 −→ B

mAB
(−d− j) fzj

−−→ B

J ′′
−→ B

J ′
−→ 0

of B-modules. Arguing as in the proof of Theorem 3.1, we see that βB(J ′) = βA(J ′/zJ ′) = βA(J〈0〉) +∑
i≤j z

iH J〈i〉
J〈i−1〉

βA(k) = βB(J ′′) + βA(k(−d − j)). By Observation 3.11, the mapping cone of a comparison

morphism from a minimal B-free resolution of B
mAB

(−d− j) to that of B
J′′ gives a minimal B-free resolution

of B
J′ .
If t is infinite, then we have by now constructed a minimal B-free resolution of S/J as an iterated mapping

cone.
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Now suppose that t is finite. Then, as we noted earlier, J = (J ′ + (zt)). Observe that j < t and hence
that (J ′ :B zt) = J〈t−1〉B. We have a graded exact sequence

0 −→ B

J〈t−1〉B
(−t) zt

−→ B

J ′
−→ B

J
−→ 0

of B-modules. As we saw above, βB(J ′) = βA(J〈0〉) +
∑

1≤i<t z
iH J〈i〉

J〈i−1〉

βA(k). Since βB( B
J〈t−1〉B

(−t)) =

βA( A
J〈t−1〉

(−t)), we see from (3.5) that βB(J) = βB(J ′) + βB( B
J〈t−1〉B

(−t)). Again, by Observation 3.11,
the mapping cone for the comparison map of the minimal B-free resolutions of B

J〈t−1〉B
(−t) and B

J′ gives a
minimal B-free resolution of B/J .

4. The lex-plus-powers conjecture reduces to the Artinian situation

In this section, we discuss some examples of applications of Theorem 3.1. We begin with a recursive
application of the result. Then we use the theorem to reduce the lex-plus-powers conjecture to the Artinian
situation.

Let f = f1, . . . , fc be a homogeneous A-regular sequence (where A = k[x1, . . . , xn]) of degrees e1 ≤ · · · ≤
ec. Let a be the ideal generated by f and let b be the ideal generated by xe1

1 , . . . , x
ec
c . We say f satisfies the

Eisenbud-Green-Harris conjecture if there exists an inclusion of posets HA/a ⊆ HA/b. (Since HA/b admits
an embedding induced by the lexicographic order on A by the Clements–Lindström theorem, this definition
is equivalent to the seemingly stronger condition that for each H ∈ HA/a there exists a lex-segment A-ideal L
such that HLA/b = H.) It is known that the Eisenbud-Green-Harris conjecture reduces to the Artinian case.
More precisely, after a linear change of coordinates (by replacing k by a suitable extension field, if necessary),
we may assume that f1, . . . , fc, xc+1, . . . , xn is a maximal regular sequence. Now, write f = f1, . . . , f c for
the image of f after going modulo xc+1, . . . , xn. Then f is a maximal regular sequence in k[x1, . . . , xc]. If f
satisfies the Eisenbud-Green-Harris conjecture, then so does f [CM08, Proposition 10].

The lex-plus-powers conjecture of Evans (see [FR07]) asserts that if f satisfies the Eisenbud-Green-Harris
conjecture, I is an A-ideal containing f and L is the lex-segment A-ideal such that HI = HLA/b, then
βAi,j(I) ≤ βAi,j(L+ b) for all i, j. We show now that, similarly, the lex-plus-powers conjecture reduces to the
Artinian case. We keep the notation from above, and, further denote L+ b by lppf (I).

Theorem 4.1. If f satisfies the Eisenbud-Green-Harris and the lex-plus-powers conjectures, then so does f .

Proof. By [CM08, Proposition 10], f satisfies the Eisenbud-Green-Harris conjecture. Hence we need to show
that if J is an A-ideal containing f , then HTorA

i
(J,k) 4 HTorA

i
(lppf (J),k). We may assume that c < n. Let

f̃ = f̃1, . . . , f̃c the images of f in Ã := k[x1, . . . , xn−1]. Inductively we can assume that for all Ã-ideals I
containing f̃ , HTorÃ

i
(I,k) 4 HTorÃ

i
(lppf̃ (I),k). Let J be an A-ideal containing f . By taking the initial ideal with

respect to a weight w, w(x1) = · · · = w(xn−1) = 1 and w(xn) = 0, we may assume that J contains f̃ and that
it has a decomposition (as an Ã-submodule of A) J =

⊕
i J<i>x

i
n where the J<i> are Ã-ideals containing f̃ .

By applying [CK13, Lemma 4.1] we may assume that J(A/a) is xn-stable. The proof of this lemma involves
taking initial ideals and applying distraction. The values of βAi,j(−) do not decrease while taking initial
ideals (which can be argued, e.g., the same way as in [Eis95, Theorem 15.17]), and remain unchanged while
applying distraction (since distraction can be interpreted as polarization followed by going modulo a regular
element [CS12, Section 1.3]). Let J ′ =

⊕
i lppf̃ (J<i>)xin, where, for each i, lppf̃ (J<i>) is the lex-plus-powers

ideal of Ã for the sequence f̃ . Note that we can obtain the ideals lppf̃ (J<i>)Ã/b by embedding their Hilbert
functions, so J ′A/b is xn-stable. We now claim that for all i, HTorA

i
(J′,k) < HTorA

i
(J,k). Assume the claim.

Now lppf (J) is the preimage of εA/b(HJ′), so by Theorem 3.1, HTorA
i

(lppf (J),k) < HTorA
i

(J,k).
Now to prove the claim, we follow the strategy of the proof of Theorem 3.1. Note that since J ′ and J are

xn-stable,
J ′/xnJ

′ = lppf̃ (J<0>)⊕M and J/xnJ = J<0> ⊕N
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for some Ã-modules M and N that are annihilated by (x1, . . . , xn−1). Since Hlppf̃ (J<0>) = HJ<0>
, we see

that HM = HN . By the induction hypothesis, HTorÃ
i

(lppf̃ (J<0>),k) < HTorÃ
i

(J<0>,k). Hence HTorA
i

(J′,k) <
HTorA

i
(J,k). �
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