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A Theorem of Eakin and Sathaye and
Green’s Hyperplane Restriction Theorem
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Abstract

A Theorem of Eakin and Sathaye relates the number of generators of a

certain power of an ideal with the existence of a distinguished reduction for

that ideal. We prove how this result can be obtained as a special case of

Green’s General Hyperplane Restriction Theorem.

1 Introduction

The purpose of these notes is to show how the following Theorem 2.1, due to

Eakin and Sathaye, can be viewed, after some standard reductions, as a corol-

lary of Green’s General Hyperplane Restriction Theorem.

Theorem 2.1[Eakin-Sathaye] Let (R,m) be a quasi-local ring with infinite residue

field. Let I be an ideal of R. Let n and r be positive integers. If the number of

minimal generators of Ii, denoted by v(Ii), satisfies

v(Ii) <

(

i+ r

r

)

,

then there are elements h1, . . . , hr in I such that Ii = (h1, . . . , hr)I
i−1.
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Before proving Theorem 2.1 we have to recall some general facts about Macaulay

representation of integer numbers. This is needed for the understanding of Green’s

Hyperplane Restriction Theorem. For more details on those topics we refer the

reader to [3] and [4].

1.1 Macaulay representation of integer numbers

Let d be a positive integer. Any positive integer c can then be uniquely expressed

as

c =

(

kd
d

)

+

(

kd−1

d− 1

)

+ · · ·+

(

k1
1

)

,

where the ki’s are non-negative and strictly increasing i.e kd > kd−1 > · · · > k1 ≥ 0.

This way of writing c is called the d’th Macaulay representation of c, and the ki’s

are called the d’th Macaulay coefficients of c. For instance, setting c = 13 and d = 3

we get 13 =
(

5

3

)

+
(

3

2

)

+
(

0

1

)

.

Remark 1.1 An important property of Macaulay representation is that the usual

order on the integers corresponds to the lexicographical order on the arrays of

Macaulay coefficients. In other words, given two positive integer c1 =
(

kd

d

)

+
(

kd−1

d−1

)

+

· · · +
(

k1

1

)

and c2 =
(

hd

d

)

+
(

hd−1

d−1

)

+ · · · +
(

h1

1

)

we have c1 < c2 if and only if

(kd, kd−1, . . . , k1) is smaller lexicographically than (hd, hd−1, . . . , h1).

Definition 1.2 Let c and d be positive integers. We define c<d> to be

c<d> =

(

kd − 1

d

)

+

(

kd−1 − 1

d− 1

)

+ · · ·+

(

k1 − 1

1

)

where kd, . . . , k1 are d’th Macaulay coefficients of c. We use the convention that
(

a
b

)

= 0 whenever a < b.

Remark 1.3 It is easy to check that if c1 ≤ c2 then c1<d> ≤ c2<d>. This property,

as we see in the following, allows us to iteratively apply Green’s Theorem and prove

Corollary 1.5.

1.2 Green’s General Hyperplane Restriction Theorem

Let R be a standard graded algebra over an infinite field K. We can write R as

K[X1, . . . , Xn]/I where I is an homogeneous ideal. Given a generic linear form L

we will denote by RL = K[X1, . . . , Xn−1]/IL the restriction of R to the hyperplane

given by L. Note that since L is generic we can write it as L = l1X1 + · · ·+ lnXn

where ln 6= 0, therefore IL is defined as

IL = (P (X1, . . . , Xn−1, (L/ln)−Xn)|P ∈ I).

We will denote by Rd the d’th graded component of R. Mark Green proved the

following Theorem.



Theorem 1.4 (Green’s General Hyperplane Restriction Theorem) Let R

be a standard graded algebra over an infinite field K, and let L be a generic linear

form of R. Setting S to be RL, we have

dimk Sd ≤ (dimK Rd)<d>.

The General Hyperplane Restriction Theorem first appeared in [4], where it was

proved with no assumption on the characteristic of the base field K.

A different, and more combinatorial, proof can be found in [3] where the charac-

teristic zero assumption is a working hypothesis. A person interested in reading this

last proof can observe that the arguments in [3] also work in positive characteristic

with a few minor changes.

A direct corollary of Green’s Theorem is the following

Corollary 1.5 Let R be a standard graded algebra over an infinite field K, and

let L1, . . . , Lr be generic linear forms of R. Let
(

kd

d

)

+
(

kd−1

d−1

)

+ · · · +
(

k1

1

)

be the

Macaulay representation of dimRd, and define S = R/(L1, . . . , Lr). Then

dimKSd ≤

(

kd − r

d

)

+

(

kd−1 − r

d− 1

)

+ · · ·+

(

k1 − r

1

)

Proof: Note that RL is isomorphic to R/(L) and by Theorem 1.4 one deduces

dimK(R/(L))d ≤
(

kd−1

d

)

+
(

kd−1−1

d−1

)

+ · · · +
(

k1−1

1

)

. On the other hand by Remark

1.3 we can apply Green’s Theorem again and obtain the result by induction.

2 The Eakin-Sathaye Theorem

We now prove Theorem 2.1. First of all note that since v(Ii) is finite, without loss

of generality we can assume that I is also finitely generated: in fact if J ⊆ I is a

finitely generated ideal such that J i = Ii, the result for J implies the one for I.

Moreover, by the use of Nakayama’s Lemma, we can replace I by the homogeneous

maximal ideal of the fiber cone S =
⊕

i≥0
Ii/mIi. Note that S is a standard graded

algebra finitely generated over the infinite field R/m = K.

Theorem 2.1 can be rephrased as:

Theorem 2.1 (E-S) Let R be a standard graded algebra finitely generated over an

infinite field K. Let i and r be positive integers such that

dimK(Ri) <

(

i+ r

r

)

.

Then there exist homogeneous linear forms h1, . . . , hr such that (R/(h1, . . . , hr))i is

equal to zero.



Proof: First of all note that dimK Ri ≤
(

i+r

r

)

−1 =
(

i+r

i

)

−1 =
(

i+r−1

i

)

+
(

i+r−2

i−1

)

+

· · · +
(

i+r−j
i−j+1

)

+ · · · +
(

r
1

)

. This can be proved directly or by using Remark 1.1. In

fact one can first order the array of Macaulay coefficients using the lexicographic

order and then note that the previous array of (i + r, 0, . . . , 0) is given by (i + r −

1, i+ r − 2, . . . , r).

Let L1, . . . , Lr be generic linear forms. By Corollary 1.5 we have

dimK(R/(L1, . . . , Lr))i ≤

(

i− 1

i

)

+

(

i− 2

i− 1

)

+ · · ·+

(

0

1

)

The term on the right hand side is zero and therefore the theorem is proved.
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