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Abstract. For a standard graded algebra R, we consider embeddings of the poset of Hilbert functions of
R-ideals into the poset of R-ideals, as a way of classification of Hilbert functions. There are examples of
rings for which such embeddings do not exist. We describe how the embedding can be lifted to certain
ring extensions, which is then used in the case of polarization and distraction. A version of a theorem of
Clements–Lindström is proved. We exhibit a condition on the embedding that ensures that the classification
of Hilbert functions is obtained with images of lexicographic segment ideals.

1. Introduction

Let R be a standard graded algebra over a field k, i.e., R '
⊕

d≥0 Rd as k-vector-spaces with R0 = k,
R = k[R1] and dimkR1 < ∞. When R is a polynomial ring, a theorem of F. Macaulay (see, e.g., [BH93,
Section 4.2]) provides a classification of the Hilbert functions of homogeneous R-ideals; more precisely, a
function H : N → N is the Hilbert function of some homogeneous ideal if and only if it is the Hilbert
function of an ideal generated by lex-segments. (lex denotes the graded lexicographic monomial order on
a polynomial ring.) lex-segment ideals in polynomial rings have been extensively studied. It is known that
such ideals have several extremal properties; see [Big93,Hul93,Par96,Sba01,Con04,CHH04].

Let A = k[x1, . . . , xn] be a polynomial ring, a = (xe1
1 , . . . , x

en
n ) and R = A/a. J. Kruskal [Kru63] and

G. Katona [Kat68] (for the case e1 = · · · = en = 2) and G. Clements and B. Lindström [CL69] (more
generally, for all 2 ≤ e1 ≤ · · · ≤ en ≤ ∞) proved that every homogeneous R-ideal has the same Hilbert
function as the image (in R) of a lex-segment A-ideal. The following conjecture of D. Eisenbud, M. Green
and J. Harris furthered the interest in studying images of lex-segment ideals in quotient rings: let A be
the polynomial ring, as above, and let I be a homogeneous A-ideal containing an A-regular sequence of
homogeneous polynomials f1, . . . , fn of degrees e1 ≤ · · · ≤ en; then there exists a lex-segment ideal L such
that the Hilbert functions of L + (xe1

1 , . . . , x
en
n ) and I are identical. (See [EGH96, Conjecture CB12] for

the original formulation, and [FR07] for a more recent survey.) In a similar vein, V. Gasharov, N. Horwitz,
J. Mermin, S. Murai and I. Peeva studied algebras R = A/a (where a is graded A-ideal) for which every
possible Hilbert function is attained by the images (in R) of lex-segment A-ideals: quotients by compressed-
monomial-plus-powers ideals [MP06], rational normal curves [GHP08], Veronese rings [GMP11] and quotients
by coloured square-free monomial ideals [MM10]. In these papers, such rings are called Macaulay-lex, to
emphasize the fact that every Hilbert function is attained by the image of a lex-segment ideal, analogous
to the theorem of Macaulay. Mermin, however, showed that most monomial complete intersections fail to
be Macaulay-lex, even after a reordering of variables [Mer10, Theorem 4.4].

Motivated by these results, we consider two problems:
(i) Is there another approach to classification of Hilbert functions in quotient rings?
(ii) What is the significance of lex-segment ideals?

To study this, we look at certain embeddings of the poset of Hilbert functions into the poset of R-ideals.
When such embeddings exist, they induce a filtration of the Rd by k-subspaces; for some R, this results in a
degree-wise total order (which we call an embedding order) on a standard basis of R. Further, the embedding
order respects multiplication precisely when all the Hilbert functions are given by images of lex-segment
ideals. We now describe this approach in detail.

By N we mean the set of non-negative integers. Let IR = {J : J is a homogeneous R-ideal}, considered
as a poset under inclusion. For I ∈ IR and t ∈ N, we will write It for the k-vector-space of the homogeneous
elements of I of degree t. (Note that I '

⊕
t∈N It, as k-vector-spaces.) The Hilbert function of I is the
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function N→ N, t 7→ dimk It the Hilbert series of I is the formal power series

HI(z) =
∑
t∈N

(dimk It) zt ∈ Z[[z]].

For H ∈ Z[[z]], we write Ht for the coefficient of zt in H, so H =
∑
tH

tzt. The poset of Hilbert series
of R-ideals is the set HR = {HJ : J ∈ IR} endowed with the partial order: H < H ′ ∈ HR if, for all
t ∈ N, Ht ≥ (H ′)t. For the sake of convenience, we work with HR instead of the analogous poset of Hilbert
functions of R-ideals.

Question 1.1. Is there an (order-preserving) embedding ε : HR ↪→ IR, as posets, such that H ◦ ε = idHR
,

where H : IR −→ HR is the function J 7→ HJ?

We will say that HR admits an embedding into IR (and often, by abuse of terminology, merely that HR
admits an embedding) if Question 1.1 has an affirmative answer. For example, if every Hilbert series in HR
is attained by the image of a lex-segment A-ideal, then HR admits an embedding, as is the case when
R = A (Macaulay) or R = A/(xe1

1 , . . . , x
en
n ) (Kruskal, Katona, Clements–Lindström) or R is belongs to

one of the classes of examples studied by Gasharov, Horwitz, Mermin, Murai and Peeva, listed earlier. In
Proposition 2.7, we prove a necessary condition for HR to admit an embedding, using which we exhibit a
few algebras whose posets of Hilbert series fail to admit embeddings. Proposition 2.16 describes when the
ideals that appear as images of a given embedding are lex-segment R-ideals. In Section 3, we prove that an
embedding can be lifted to certain ring extensions (Theorem 3.3), and use it for a special case of distractions
(Proposition 3.17) and for polarization (Theorem 3.23). Theorem 3.25 is an analogue, in the situation of
embeddings, of the result of Clements–Lindström mentioned above. In Section 4, we prove some lemmas
about obtaining stable ideals, which can be read independently of the previous sections, and are used in
Section 3.

Notation and terminology. We use [Eis95] as a general reference. In this paper, R will always denote a
standard graded algebra over a field k. The homogeneous maximal ideal of R is m =

⊕
d≥1 Rd. By A, we

mean a (standard graded) polynomial ring over k that has a surjective homogeneous k-algebra homomorphism
A

φ−→ R of degree 0. We fix this homomorphism. Let a = kerφ. We will further assume that the embedding
dimensions of A and R are the same; equivalently, a1 = 0. In particular, if R is a polynomial ring, then
A = R.

Definition 1.2. (The following definitions depend on the choice of basis of A1.) Fix a basis x1, . . . , xn of A1.
We write Mon(A) for the set of monomials in the xi in A. By a monomial of R, we mean the image of a
monomial of A under φ. A standard basis of R is a set B ⊆ Mon(A) such that {φ(f) : f ∈ B} forms a k-basis
of R. Let B be a standard basis of R; for d ∈ N, we write Bd for the set of monomials of B of degree d. For
a k-subspace V of Rd, we write |V | for dimk V . For a subset V of R, we write (V )R for the ideal generated
by V in the ring R. A graded total order on R is a pair (B, τ) consisting of a standard basis B of R and a
total order τ on B such that m ≺τ m′ if degm < degm′. For d ∈ N, the τ -segment of Rd of dimension r
is the k-vector-space generated by the images in R of the first r monomials in Bd in the order ≺τ . We say
that a graded total order (B, τ) is a monomial order if (i) for all f ∈ B and for all g | f , fg ∈ B, and, (ii) for
all f, f ′ ∈ B and for all g | gcd(f, f ′), f ≺τ f ′ if and only if f

g ≺τ
f ′

g . Suppose that a is a monomial ideal.
Then B = Mon(A)r a; therefore, while referring to any graded total order, we will drop the reference to the
standard basis. On the polynomial ring A, we will also need to use weight orders on the set of monomials,
induced by assigning weights inside N to the xi. Weight orders need not be total orders, in general. �

Remark 1.3. Note that whether HR admits an embedding or not does not depend on any choice of basis of
R1. As we will see in Proposition 2.4, the existence of an embedding is equivalent to a the existence of a
certain filtration of R as a k-vector-space. However, in Discussion 2.15 and what follows, we consider total
orders on rings defined by monomial ideals and on certain semigroup rings that correspond to embeddings;
in those cases, we have the basis of R1 given by the images of the variables of A in mind. �
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Remark 1.4. Suppose that R is defined by a monomial ideal or that it is an affine semigroup algebra all
of whose k-algebra generators are of the same degree (i.e., there is a injective k-algebra homomorphism
ξ : R −→ A′ for some polynomial ring A′ such that the ξ(φ(xi)) are monomials in A′, in some fixed basis
of A′1, of the same degree). If HR admits an embedding ε, then for all H ∈ HR, we may take ε(H) to be
a monomial ideal. To see this, write R = A/a. We can find a weight order ω on A such that a = inω(a)
(the initial ideal of a with respect to the weight order ω) and such that for every homogeneous ideal I with
a ⊆ I, inω(I) is generated by a and monomials. When R is defined by a monomial ideal, this is immediate.
For the details of the latter case, see [GHP08, Theorem 2.5]. �

2. Generalities

The poset IR of R-ideals is a lattice; if I, J ∈ IR, then their join, or least upper bound, is I ∨ J = I + J
and their meet, or greatest lower bound, is I ∧ J = I ∩ J . (We use [Sta97] as the reference on lattices.) We
will see that if HR admits an embedding, then it is a lattice with specific meet and join functions. Using
this criterion, we show that for certain standard graded algebras R, HR admits no embedding. First, we see
in the next lemma that an embedding (if it exists) can be done degree-by-degree.

Lemma 2.1. Suppose that HR admits an embedding ε. Let H, H̃ ∈ HR. Then for all d ∈ N, if Hd ≤ H̃d

then (ε(H))d ⊆ (ε(H̃))d.

Proof. Let I be an R-ideal such that HI = H. Define J to be the R-ideal generated by I and all the forms
of degree d + 1, and let K be the ideal generated by all the forms of J of degree greater than or equal to
d. The fact that HJ < HI and HJ < HK gives ε(HJ) ⊇ ε(HI) and ε(HJ) ⊇ ε(HK), while the equalities
Hd
I = Hd

J = Hd
K imply that (ε(HI))d = (ε(HJ))d = (ε(HK))d. Let I ′ be an R-ideal such that HI′ = H̃, and

define the ideals J ′ and K ′ in a way analogous to above. Since HK′ < HK we get the desired inequality. �

Remark 2.2. For a k-vector-space V ⊆ Rd, we write ε(V ) for (ε(H(V )R))d. (This depends only on |V | by
Lemma 2.1.) Hence for all I ∈ IR, ε(HI) =

⊕
d∈N ε(Id).

Definition 2.3. An embedding filtration of R is a collection of filtrations {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| =
Rd : d ∈ N} of R into k-vector-spaces that satisfies, for all d ∈ N and for all 0 ≤ r ≤ |Rd|,

(i) R1Vd,r = Vd+1,s for some 0 ≤ s ≤ |Rd+1|, and,
(ii) for all W ⊆ Rd, |R1Vd,|W || ≤ |R1W |.

Proposition 2.4. Let R be a standard graded algebra. Then HR admits an embedding into IR if and only
if R has an embedding filtration.

Proof. Suppose that HR admits an embedding ε. Let V = {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N} be
a collection of filtrations of R into k-vector-spaces. For all d and for all 0 ≤ r ≤ |Rd|, replace Vd,r by ε(Vd,r).
We will show that V is an embedding filtration of R.

Let W ⊆ Rd be a k-subspace. Let V = Vd,|W |. By Lemma 2.1, V = (ε(H(W )R))d, which gives
R1V ⊆ (ε(H(W )R))d+1. Note that |(ε(H(W )R))d+1| = |R1W |, so, |R1V | ≤ |R1W |. Now, applying the
above calculation with W = V , we get R1V ⊆ (ε(H(V )R))d+1. By Remark 2.2, ε(H(V )R)d = V and
ε(H(V )R)d+1 = ε(R1V ). Hence R1V ⊆ ε(R1V ), so R1V = ε(R1V ) = Vd+1,|R1V |.

Conversely, given an embedding filtration {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N}, we define
an embedding ε : HR −→ IR by setting ε(H) =

⊕
d∈N Vd,Hd . It follows, from the definition of embedding

filtrations, that ε(H) is an ideal. �

Remark 2.5. For a graded R-module M , its graded Betti numbers are βRi,j(M) = dimk TorRi (M,k)j . Let
ε : HR −→ IR be an embedding. Let I be an R-ideal. Then there is an inequality βR1,j(R/I) ≤ βR1,j(R/ε(HI)).
We see this as follows. Note that for any homogeneous R-ideal J , βR1,j(R/J) = (|Jj | − |R1Jj−1|). Now let
J = ε(HI). Let {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N} be the embedding filtration of R given by
ε, as in the proof of Proposition 2.4. Then, for all d ≥ 1, Jd = Vd,|Id|. Hence |R1Jd−1| ≤ |R1Id−1|, which
implies that βR1,j(R/I) ≤ βR1,j(R/J). Note, also, that the same argument shows that βR1,j(R/ε(HI)) depends
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only on HI and not on ε. For which i and j is the inequality βRi,j(R/I) ≤ βRi,j(R/ε(HI)) true? Mermin and
Murai [MM10, Proposition 3.2] showed that in general βAi,j(R/I) 6≤ βAi,j(R/ε(HI)). �

Definition 2.6. Let H, H̃ ∈ Z[[z]]. Define max(H, H̃) and min(H, H̃) in Z[[z]] by setting, for all t ∈ N,
(max(H, H̃))t = max{Ht, H̃t} and (min(H, H̃))t = min{Ht, H̃t}.

Note that the usual total order on Z makes Z[[z]] into a distributive lattice. We now derive a necessary
criterion so that we have an embedding.

Proposition 2.7. If HR admits an embedding then it is a sublattice of Z[[z]].

Proof. Let H, H̃ ∈ HR. Let ε : HR −→ IR be the embedding. Let I, Ĩ ∈ IR, H = HI and H̃ = HĨ .
Without loss of generality, we may assume that I = ε(H) and Ĩ = ε(H̃). Fix an embedding filtration
{0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N} of R. Write I =

⊕
d Vd,rd

and Ĩ =
⊕

d Vd,r̃d
. Note that

H(I+Ĩ) = H ∨ H̃ and H(I∩Ĩ) = H ∧ H̃. �

Remark 2.8. Suppose that HR admits an embedding ε. Let I = ε(H) for some H ∈ HR. Then IR/I '
{J ∈ IR : I ⊆ J} and HR/I ' {HJ : J ∈ IR, I ⊆ J}. In particular, ε induces an embedding of HR/I into
IR/I . Thus, if a is a lex-segment A-ideal then the embedding by lex-segment A-ideals gives an embedding
filtration on A; the images (in R) of lex-segment A-ideals give an embedding filtration of R. �

If HR admits an embedding, then we obtain a complete flag, and hence a basis, of R1. The next example
illustrates this. In the three examples that follow, we have represented the rings R with a given basis of
R1, only for the sake of concreteness. The assertion that the posets HR in those examples do not admit an
embedding is an inherent statement, independent of the bases.

Example 2.9. Let R = A/a be an Artinian Gorenstein k-algebra such that a is generated by quadratic forms
in A and HR = 1 + 4z1 + 4z2 + z3. We show that R has an embedding filtration. In the process of proving
that R is Koszul, A. Conca, M. Rossi and G. Valla observed that there exists a linear form l1 ∈ R1 such that
|R1l1| = 2 [CRV01, p.118], moreover for every other linear form l the inequality |R1l| ≥ 2 holds. They further
showed (see [CRV01, Lemma 6.14]) (i) that there exists a 2-dimensional k-vector-space V ⊆ R1 such that
l1 ∈ V , and |R1V | = 3, and, (ii) for every 2-dimensional k-vector-spaces W ⊆ R1 the inequality |R1W | ≥ 3
holds. Let l2 ∈ V be such that l1, l2 form a k-basis of V . Pick l3 6∈ V , if such a linear form exists, such that
R1V = R1V + R1l3; otherwise, let l3 6∈ V be any linear form. Let l4 be any linear form such that l1, . . . , l4
is a k-basis for R1. Choose q1, . . . , q4 a k-basis of R1 such that {q1, q2} is a k-basis of R1l1 and {q1, q2, q3}
is a k-basis of R1V . Let s be any generator of the socle of R (which is a one-dimensional k-vector-space).
Then kl1 ( k{l1, l2} ( k{l1, l2, l3} ( k{l1, . . . , l4}, kq1 ( k{q1, q2} ( k{q1, q2, q3} ( k{q1, . . . , q4}, ks is an
embedding filtration of R. �

Example 2.10 (Strongly stable ideals). If a is a strongly stable A-ideal (also called 0-Borel) and R = A/a,
then HR need not admit an embedding; contrast this with lex-segment ideals, in Remark 2.8. Take A =
k[x1, x2, x3], a = (x1, x2)2(x1, x2, x3)2. Consider I = (x2

1, x1x2, x
2
2)R and I ′ = (x2

1, x1x2, x1x3)R. Then
HI = 3z2 + 7z3 and HI′ = 3z2 + 6z3 +

∑
t≥4 z

t. Hence, if HR admitted an embedding, then there would be
an R-ideal J with HJ = 3z2 + 6z3; however, such an ideal does not exist. (We see this as follows. Let J be
any homogeneous R-ideal such that |J2| = 3 and |J4| = 0. In particular, |J2m

2| = 0 so J2 ⊆ (0 :Rm2)2 = I2.
Hence J2 = I2. Since I is generated by I2, I3 = I2m. Therefore |J3| ≥ |I3| = 7.) �

Example 2.11 (Gröbner flags). Let A = k[x1, . . . , x6] and a = x1(x1, . . . , x4)+(x2
2, x2x3)+(x2

3)+x4(x4, x5)+
x5(x5, x6). Let R = A/a. Then 0 ⊆ k{x1} ⊆ k{x1, x2} ⊆ · · · ⊆ R1 is a Gröbner flag for R; see [CRV01]
for the definition and properties. In particular R is Koszul. Note that H(x1) = z1 + 2z2 +

∑∞
t=3 z

t and that
H(x5) = z1 + 3z2. There is, however, no R-ideal I with HI = z1 + 2z2. (For, if I is such that |I1| = 1 and
|I3| = 0, then I ⊆ (0 :Rm2) = (x5). Hence I1 = kx5, and, therefore, |I2| ≥ 3.) �

Example 2.12 (Tensor products). Let A = k[x, y, z] and a = (x, y)3 + (z2). Then H(x) = z1 + 3z2 +
2z3 and H(z) = z1 + 2z2 + 3z3. However, there is no monomial R-ideal I with HR/I = z1 + 2z2 + 2z3,
for, if I is any monomial ideal with I1 6= 0, then HI < H(x) = H(y) or HI < H(z). Notice that R '
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k[x, y]/(x, y)3 ⊗k k[z]/(z2); both H k[x,y]
(x,y)3

and H k[z]
(z2)

admit embedding. (It suffices to consider monomial
ideals; see Remark 1.4.) �

Remark 2.13 (Veronese subrings, due to A. Conca). Embeddings of Hilbert functions restrict to Veronese
subrings. Let R be a standard graded algebra such that HR admits an embedding ε. Let m ∈ N. Let S be
the mth Veronese subring of R, i.e., S =

⊕
i∈N Si with Si = Rim for all i ∈ N. We define ε̄ : HS −→ IS as

follows. Let H ∈ HS . Let {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N} be the embedding filtration of
R given by ε. In degree d ∈ N, we define ε̄(H) by setting (ε̄(H))d = Vmd,Hd . Note that

⊕
d∈N Vmd,Hd is an

ideal of S, since RmVmd,Hd ⊆ Vm(d+1),Hd+1 . Hence {0 = Vmd,0 ( Vmd,1 ( · · · ( Vmd,|Rmd| = Sd : d ∈ N} is
an embedding filtration of S. �

Remark 2.14 (Gotzmann property). Suppose that R = A, a polynomial ring. Then the Gotzmann Persistence
Theorem [BH93, Theorem 4.3.3] asserts that for all homogeneous R-ideals I, if I is generated minimally in
degrees less than or equal to d and |mId| ≤ |mV | for all k-vector-spaces V ⊆ Rd satisfying |V | = |Id|, then
for all t ≥ d, |mIt| ≤ |mW | for all k-vector-spaces W ⊆ Rt satisfying |W | = |It|. Now suppose that R is
any standard graded algebra, such that HR admits an embedding ε. Reinterpreting the conclusion of the
Gotzmann Persistence Theorem, we say that R has the Gotzmann property (with respect to ε) if for all
homogeneous R-ideals I, if I is minimally generated in degrees than or equal to d and ε(HI) has no minimal
generators in degree d+ 1, then ε(HI) is generated minimally in degrees less than or equal to d as well. Note
that having the Gotzmann property is independent of the chosen embedding: as we observed in Remark 2.5,
the degrees and number of minimal generators of ε(I) depends only on HI .

There are standard graded algebras R such that R does not have the Gotzmann property while HR
admits an embedding. As an example, consider A = k[x] and a = (x3). It is immediate that the quotient
R = A/a has the Gotzmann property and that HR admits an embedding. Let S = R[y] and notice that it
has an embedding induced by lexicographic order on A[y]. On the other hand S fails to have the Gotzmann
property since both I = (y)S and ε(I) = (x, y3)S have no generators in degree 2. �

Discussion 2.15. Suppose that R is defined by a monomial ideal or that it is an affine semigroup algebra
all of whose generators are of the same degree. Suppose that R has an embedding filtration. Then, as in
Remark 1.4, we can take initial ideals, and obtain a graded total order (B, τ) that satisfies, for all d ∈ N
and for all τ -segments V of Rd, (i) R1V is a τ -segment of Rd+1, and, (ii) |R1V | ≤ |R1W | for all k-subspaces
W ⊆ Rd with |W | = |V |. We call such a graded total order an embedding order on R. Conversely, any
embedding order gives rise to an embedding filtration. We thus conclude that HR admits an embedding if
and only if there exists an embedding order on R. �

When R = A or R = A/(x2
1, . . . , x

2
n) the embedding orders on R are enumerated in [Mer06].

Proposition 2.16. Let (B, τ) be an embedding order of R. Suppose that it is a monomial order. Then there
exists a graded lexicographic order lex on A such that for all f, f ′ ∈ B, if f ≺τ f ′, then f ≺lex f

′.
Proof. Without loss of generality, we may assume (since a1 = 0) that x1 ≺τ · · · ≺τ xn. Let lex be the
graded lexicographic order on A with x1 ≺lex · · · ≺lex xn. Assume the contrary, and let t be the smallest
degree such that there exist monomials f and f ′ in A with t = deg f = deg f ′ such that f ≺τ f ′ and
f ′ ≺lex f . By the choice of t, we see that gcd(f, f ′) = 1.

Let i be the smallest index such that xi divides at least one of f and f ′. By going modulo (x1, . . . , xi−1)
and using Remark 2.8, we can assume, without loss of generality, that i = 1. Since f ′ ≺lex f , x1 | f ′.

Let {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N} be the embedding filtration of R induced by τ . Since
V1,1 is spanned by φ(x1), there exists s such that Vt,s is the span of the images of all the degree-t monomials
in B divisible by x1. Therefore φ(f ′) ∈ Vt,s, which implies that f ′ ≺τ f , a contradiction. �

Remark 2.17. If R has an embedding order τ , then for all τ -segment R-ideals I, R/I inherits the embedding
order τ (see Remark 2.8). Furthermore, (0 :R m) is a τ -segment ideal. For d ∈ N, let sd = dimk(0 :R m)d.
Let {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N} be the embedding filtration of R induced by τ .
Then |R1Vd,sd

| ≤ |R1(0 :R m)d| = 0, so Vd,sd
⊆ (0 :R m)d; since |Vd,sd

| = |(0 :R m)d|, we see further that
Vd,sd

= (0:Rm)d. Hence (0:Rm) = ⊕d(0 :Rm)d is a τ -segment ideal. �
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Example 2.18 (Embedding with no monomial orders). Let A = k[w, x, y, z], with homogeneous maximal
ideal n. Let a = (wxy,wxz,wyz, xyz) + n4 and R = A/a. Without loss of generality, we order R1 by
w ≺τ x ≺τ y ≺τ z. Note that |(w2R)3| = 4 > 2 = |(wxR)3|, so wx ≺τ w2. In fact, there is no embedding
order in which w2 precedes all the other monomials in R2. On the other hand, we have an embedding order
wx ≺τ wy ≺τ w2 ≺τ wz ≺τ xy ≺τ x2 ≺τ xz ≺τ y2 ≺τ yz ≺τ z2. Since n4 ⊆ a we can give any order on R3,
provided R1V is a τ -segment of R3 for every τ -segment V of R2. For example, we may take w2x ≺τ wx2 ≺τ
w2y ≺τ wy2 ≺τ w3 ≺τ w2z ≺τ wz2 ≺τ x2y ≺τ xy2 ≺τ x3 ≺τ x2z ≺τ xz2 ≺τ y3 ≺τ y2z ≺τ yz2 ≺τ z3. �

3. Extension rings

For certain R-free quotient rings S of R[z], we determine a sufficient condition (which we call z-stability,
see Definition 3.2) for extending an embedding filtration of R to S. We use it to extend embeddings under
polarization and distraction, and prove the following analogue of a theorem of Clements and Lindström.

Notation 3.1. In this section z is an indeterminate over A and R. Let t ∈ N ∪ {∞} and S = R[z]/(zt).
If t = ∞, the R[z]-ideal (zt) denotes the zero ideal. As usual R = A/a, where A is a polynomial ring.
We will denote by I the set {i ∈ Z|0 ≤ i < t}. Let B = A[z]; treat S as a quotient ring of B. Treat
B and S as multigraded using the natural decomposition B = ⊕i∈N ⊕j∈N Aizj as k-vector-spaces. By
F := {0 = Vd,0 ( Vd,1 ( · · · ( Vd,|Rd| = Rd : d ∈ N}, we mean the embedding filtration of R that
corresponds to the embedding of HR (by Proposition 2.4).

Definition 3.2. Let W ⊆ Sd be a multigraded k-vector-space. The R-coefficient sequence of W is
the sequence (Wd−i)i∈I of k-subspaces Wd−i ⊆ Rd−i defined by the k-vector-space decomposition W =⊕

i∈IWd−iz
i. We say that W is z-stable if R1Wd−i ⊆ Wd−i+1 for all positive i ∈ I. Let I ⊆ S be an ideal;

we say that I is z-stable if I is multigraded and Id is z-stable for all d ≥ 0.

Theorem 3.3. Let t ∈ N∪ {∞} and S = R[z]/(zt). Suppose that HR admits an embedding and that for all
H ∈ HS, there exists a z-stable S-ideal I such that HI = H. Then HS admits an embedding.

Definition 3.4. Let d ∈ N. A segment of Sd is a z-stable k-vector-space
⊕

i∈I Vd−i,rd−i
zi such that

Vd−i,rd−i
⊆ Rj−iVd−j,min{1+rd−j ,|Rd−j |}, for all i < j ∈ I; its length is

∑
i∈I rd−i.

Observation 3.5. Let W ⊆ Sd be a z-stable k-vector-space, with R-coefficient sequence (Wd−i)i∈I. Then

S1W = R1Wd

⊕⊕
i∈I
i>0

Wd−i+1z
i

If, further, W is a segment of Sd, S1W is a segment of Sd+1.

Definition 3.6. For a multigraded k-vector-space W ⊆ Sd with R-coefficient sequence (Wd−i)i∈I, let

dR(W ) =

 i∑
j=0
|Wd−j |


i∈I

.

Let Λd = {dR(W ) : W is a multigraded k-vector-space of Sd}. Give a partial order l on Λd by setting
(ai)i∈I l (bi)i∈I if ai ≤ bi for all i. For all (ai)i∈I ∈ Λd, ai = ad for all i ≥ d and ad ≤ |Sd|; hence Λd is a
finite set.

Lemma 3.7. Let W =
⊕

i∈I Vd−i,rd−i
zi ⊆ Sd be a z-stable k-vector-space such that dR(W ) is minimal in

(Λd,l). Then W is a segment.

Proof. By way of contradiction assume that W is not a segment. Pick i < j ∈ I such that Vd−i,rd−i
6⊆

Rj−iVd−j,min{1+rd−j ,|Rd−j |}. We may assume that j− i is minimal with this property. As Vd−j,|Rd−j | = Rd−j ,
we see that rd−j < |Rd−j | − 1. Hence Vd−i,rd−i

6⊆ Rj−iVd−j,1+rd−j
; since these vector-spaces belong to F ,

we observe that
(3.8) Rj−iVd−j,1+rd−j

( Vd−i,rd−i
.
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Define
W̃ =

⊕
h∈Ir{i,j}

Vd−h,rd−h
zh
⊕

Vd−i,rd−i−1z
i
⊕

Vd−j,rd−j+1z
j .

It is immediate that dR(W̃ ) l dR(W ) and that they are not equal to each other. Hence it suffices to show
that W̃ is z-stable. We consider two cases.

If j = i+ 1, then we need to show that R1Vd−i−1,1+rd−i−1 ⊆ Vd−i,rd−i−1, which is immediate from (3.8).
Otherwise, we first show that, for all i′, i < i′ < j, Vd−i′,rd−i′ = Rj−i′Vd−j,1+rd−j

. Both the vector-spaces
belong to F , so they are comparable (with respect to inclusion). Minimality of j − i implies Vd−i′,rd−i′ ⊆
Rj−i′Vd−j,1+rd−j

. If Vd−i′,rd−i′ ( Rj−i′Vd−j,1+rd−j
, then Vd−i′,1+rd−i′ ⊆ Rj−i′Vd−j,1+rd−j

, so, using (3.8),
we see that Ri′−iVd−i′,1+rd−i′ ⊆ Rj−iVd−j,1+rd−j

( Vd−i,rd−i
, contradicting the minimality of j − i. Taking

i′ = i+ 1 and i′ = j − 1, now, completes the proof of the assertion that W̃ is z-stable. �

Lemma 3.9. Let W,W ′ be segments in Sd. If |W | ≤ |W ′|, then W ⊆ W ′. In particular, for every
1 ≤ s ≤ |Sd|, there exists a unique segment of length s.

Proof. Write W =
⊕

i∈I Vd−i,rd−i
zi and W ′ =

⊕
i∈I Vd−i,sd−i

zi. We need to show that rd−i ≤ sd−i for all
i ∈ I. Assume, by way of contradiction, that there exists i such that rd−i > sd−i. Then we observe that
1 + sd−i ≤ |Rd−i| and, hence, that

Vd−i,sd−i′ ⊆ Ri−i′Vd−i,1+sd−i
⊆ Ri−i′Vd−i,rd−i

⊆ Vd−i′,rd−i′ ,

for all i′ < i. Hence sd−i′ ≤ rd−i′ for all i′ < i. However, since
∑
j∈I rd−j =

∑
j∈I
j≤d

rd−j ≤
∑

j∈I
j≤d

sd−j =∑
j∈I sd−j , there exists j > i such that sd−j > rd−j . Repeating the above argument, now reversing the roles

of W and W ′, we see that sd−i > rd−i, contradicting our assumption. Hence rd−i ≤ sd−i for all i ∈ I.
Let 1 ≤ s ≤ |Sd|. The existence of a segment of length s follows from Lemma 3.7. Uniqueness is immediate

from the first assertion of this lemma. �

Proof of Theorem 3.3. Let H ∈ HS . Let I be a z-stable S-ideal such that HI = H. Let d ∈ N. Let Jd
be the (unique) segment of Sd of length |Id|, which exists by Lemma 3.9. By Observation 3.5, S1Jd is a
segment of Sd+1. By the minimality of dR(Jd) (among all the z-stable subspaces of Sd of length |Id|) and
Observation 3.5, we see that |S1Jd| ≤ |S1Id| ≤ |Id+1| = |Jd+1| and that S1Jd is a segment of Sd+1. Hence,
by Lemma 3.9, S1Jd ⊆ Jd+1. Therefore J =

⊕
d Jd is an S-ideal. Now the map ε : HS −→ IR sending

H 7→ J is an embedding. �

We note that Lemmas 3.7 and 3.9 makes no reference to the hypothesis of Theorem 3.3. Consequently,
applying them and arguing as in the proof of Theorem 3.3, we obtain the following:

Theorem 3.10. Let t ∈ N ∪ {∞} and S = R[z]/(zt). Suppose that HR admits an embedding ε. Let I be a
z-stable S-ideal and J = ε(HI). Then H(I,zi) < H(J,zi) for all i ∈ I.

Proof. Let I be a z-stable S-ideal such that HI = H. We construct the ideal J by minimizing the function
dR(Jd) for all d as in the proof of Theorem 3.3; see the proof of Lemma 3.7. Note that J depends only on
H. Let i ∈ I and d ∈ N. We want to show that |(I, zi)d| ≥ |(J, zi)d|. Let (Wd−j)j∈I and (Vd−j,rd−j

)j∈I be,
respectively, the R-coefficient sequences of Id and Jd. Then |(I, zi)d| ≥ |(J, zi)d| if and only if∑

j∈I
j<i

|Wd−j | ≥
∑
j∈I
j<i

rd−j

which, indeed, is true by the construction of Jd. �

In Discussion 2.15 we noted that if R is defined by a monomial ideal that it is an affine semigroup algebra
all of whose generators are of the same degree, HR admits an embedding if and only if there exists an
embedding order on R. In this situation, we can strengthen Theorem 3.3, to conclude that if the embedding
order on R is induced by a graded lexicographic order on A (in the sense of Proposition 2.16), then the
extension to S is induced by a graded lexicographic order on B.
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Definition 3.11. Let (B, σ) be an embedding order on R. Let B′ = {fzi : f ∈ B, i ∈ I}. Define a total
order τ on B′ as follows. Let fza, gzb ∈ B′ with f, g ∈ B, deg f + a = deg g + b and a ≤ b. Set fza ≺τ gzb if
there exists g′ ∈ B with deg g′ = deg g such that f ∈ Ab−ag′ and g′ ≺σ g. Otherwise set gzb ≺τ fza.

Theorem 3.12. With notation as above, (B′, τ) is an embedding order for S; the embedding of HS from
Theorem 3.3 is induced by (B′, τ). Moreover, if x1, . . . , xn are the variables of A and (B, σ) is a monomial
order with x1 ≺σ · · · ≺σ xn then (B′, τ) is a monomial order with x1 ≺τ · · · ≺τ xn ≺τ z.

Proof. Indeed, B′ is a standard basis for S. To show that (B′, τ) is an embedding order, it suffices to show
that (B′, τ) induces the embedding from Theorem 3.3.

Recall that B = A[z]; write φ for the surjective homomorphism B → S. Consider f, g ∈ B, f 6= g and
0 ≤ a ≤ b < t with deg f + a = deg g + b = d. By Lemma 3.9, there exist segments W (W ′ ⊆ Sd such that
W ′ = W + k · 〈φ(gzb)〉. As in Definition 3.2 write W =

⊕
i∈I Vd−i,rd−i

zi (with Rj−iVd−j,rd−j
⊆ Vd−i,rd−i

⊆
Rj−iVd−j,1+rd−j

, for all 0 ≤ i < j < t ). Hence

W ′ =
b−1⊕
i=0

Vd−i,rd−i
zi
⊕

Vd−b,1+rd−b
zb
⊕⊕

i∈I
i>b

Vd−i,rd−i
zi.

Since W ′ is a segment, we see that Vd−i,rd−i
= Rb−iVd−b,1+rd−b

for all 0 ≤ i ≤ b− 1 and that Vd−b,1+rd−b
⊆

Rj−bVd−j,1+rd−j
, for all b+ 1 ≤ j < t. Note that Vd−b,1+rd−b

= k · 〈φ(g)〉
⊕
Vd−b,rd−b

.
Since a ≤ b, φ(fza) ∈ W if and only if f ∈ Ab−ag

′ for some monomial g′ ∈ B with deg g′ = deg g
and g′ ≺σ g, i.e., if and only if fza ≺τ gzb, so the embedding of HS is induced by τ . Now, in order to
prove that (B′, τ) is a monomial order if (B, σ) is, consider, as above, f, g ∈ B and 0 ≤ a ≤ b < t with
deg f +a = deg g+ b = d. When fza ≺τ gzb, h ∈ B and 0 ≤ c+a < t, it follows directly from Definition 3.11
that fhza+c ≺τ ghzb+c. On the other hand if gzb ≺τ fza we know that whenever g′ ∈ B with deg g′ = deg g
and f ∈ Ab−ag′ we also must have g ≺σ g′, hence ghzb+c ≺τ fhza+c. �

Distractions. A distraction is a k-linear automorphism φ of a polynomial ring that has the property that
if m and n are monomials and m divides n, , then φ(m) divides φ(n). We follow the formulation of [BCR05],
and show that embedding the Hilbert functions can be extended to distractions. (For earlier work using
distractions, see [BCR05, Introduction].) We consider a special case, and describe how embeddings of Hilbert
series can be extended to distractions.

Notation 3.13. Let k be an infinite field and A = k[x1, . . . , xn], with N2-grading given by deg x1 = (1, 0) and
deg xi = (0, 1), for all 2 ≤ i ≤ n. Let a be a multigraded ideal. As earlier, R = A/a.

Definition 3.14 ([BCR05, Definitions 2.1, 2.2]). Let N ∈ N. A distraction matrix is an infinite matrix
L = (li,j : 1 ≤ i ≤ n, j ∈ N) such that (i) li,j ∈ A1 for all i, j, (ii) for all j1, . . . , jn ∈ N, {l1,j1 , . . . , ln,jn

} spans
A1 (as a k-vector-space), and, (iii) there exists N ∈ N such that li,j = li,N for all j ≥ N . The distraction
associated to L, DL, is the k-vector-space morphism DL : A −→ A such that

∏n
i=1 x

ai
i 7→

∏n
i=1
∏ai

j=1 li,j .

Remark 3.15. We observe that, for all d ∈ N, DL|Ad
: Ad → Ad is an isomorphism of vector spaces. Therefore

for all subspaces V, V ′ of Ad with V ∩ V ′ = 0, DL(V + V ′) = DL(V )⊕DL(V ′). In particular, DL preserves
Hilbert functions.

In [BCR05], the authors consider monomial ideals. We, however, need the results in bigraded ideals. The
following lemma can be proved following their ideas, but for the sake of completeness, we include a proof.
We will use this lemma, again, in the proof of Theorem 3.23.

Lemma 3.16. Let a be a multigraded ideal, and L = (li,j : 1 ≤ i ≤ n, j ∈ N) be a distraction matrix such
that li,j = xi for all 2 ≤ i ≤ n and for all j ∈ N. Then DL(a) is an ideal.

Proof. Let a(j) = ((I :A xj1) ∩ k[x2, . . . xn]), j ∈ N. They are ideals in k[x2, . . . xn], and, as k-vector-spaces,
a =

⊕
j∈N a(j)x

j
1. Hence, by Remark 3.15, DL(a) =

⊕
j∈N

(
a(j)

∏j
t=1 l1,t

)
. Since the a(j) are ideals, note that

xiDL(a) ⊆ DL(a) for 2 ≤ i ≤ n. To finish the proof, it suffices to show that x1a(j)
∏j
t=1 l1,t ⊆ DL(a). Let
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f ∈ a(j). We want to show that fx1
∏j
t=1 l1,t ∈ DL(a). Since a(j) ⊆ a(j+1), we know that f

∏j+1
t=1 l1,t ∈ DL(a).

Moreover, fxi
∏j
t=1 l1,t ∈ DL(a) for all 2 ≤ i ≤ n (since xia(j) ⊆ a(j)). Therefore fx1

∏j
t=1 l1,t ∈ DL(a). �

Proposition 3.17. Let a be a multigraded ideal, and L = (li,j : 1 ≤ i ≤ n, j ∈ N) be a distraction matrix
such that li,j = xi for all 2 ≤ i ≤ n and for all j ∈ N. If HR admits an embedding, then H A

DL(a)
admits an

embedding.

Proof. (Indeed, by Lemma 3.16, DL(a) is an ideal.) Write S = A
DL(a) . Let ω be the weight order with

w(x1) = 1 and w(xi) = 0 for all 2 ≤ i ≤ n. Then inω (DL(a)) = a. (To see this, note that it is enough
to show that a ⊆ inω (DL(a)). Let f ∈ a be a multigraded element with deg f = (a, b). Write f = xa1g,
with g a homogeneous polynomial of degree b in x2, . . . , xn. Then DL(f) = (

∏a
j=1 l1,j) · g. Note that xa1

appears with a non-zero coefficient in
∏a
j=1 l1,j . Hence f = inω(DL(f)) ∈ inω (DL(a)).) Let H ∈ HS . Let

I ∈ IA be such that DL(a) ⊆ I and HIS = H. Then a ⊆ inω(I). Define ε′ : HS −→ IA/DL(a) by sending
H 7→ (DL(ε(inω(I))))S; this is an embedding. �

Remark 3.18. The same proof will work for a more general distraction matrix, in which, for all i and j, li,j is
a linear form in xi, xi+1, . . . , xn, with xi appearing with a non-zero coefficient. However, unlike polarization
(discussed below), where working with one variable generalizes to the general case, the distraction matrix in
Proposition 3.17 is not general. �

Polarization. We use Theorem 3.3 to show that polarization preserves embeddability of Hilbert functions.
Let A = k[x1, . . . , xn, y] be a polynomial ring. Polarization [MS05, Exercise 3.15] is an operation that
converts an A-ideal a to an A[z]-ideal b. We will show that every embedding of HA/a gives rise to an
embedding of HA[z]/b. Any polarization can be achieved by repeatedly applying partial polarizations, so we
will restrict our discussion to this case.

Notation 3.19. Let A and z be as above. We give A the N2-grading with deg xi = (1, 0), for all i, and
deg y = (0, 1). Write B = A[z], graded with deg xi = (1, 0, 0) for all i, deg y = (0, 1, 0) and deg z = (0, 0, 1).
Homogeneous elements, ideals and modules in these gradings will be referred to as multigraded. For a
multigraded element f (of A or B), we will denote its degrees by degx f , degy f and degz f . By a, we will
mean a multigraded A-ideal.

Definition 3.20. A polarization is a k-vector-space morphism pAy,d,z : A −→ A[z], for some d ∈ N, such
that, for all homogeneous forms f ∈ A with degy f = 0,

pAy,d,z : fyi 7→
{
fyi, if i < d,

fyi−1z, otherwise.

Remark 3.21. Let a be a multigraded A-ideal, and let b = (pAy,d,z(a))A[z]. Then b is a multigraded B-ideal.
Moreover, y − z is a non-zero-divisor on B/b. Hence HA/a(z) = (1− z)HB/b(z). �

Lemma 3.22. Let ω be the weight vector on B with ω(xi) = 1 for all i, ω(y) = 1 and ω(z) = 0. Let
g : B −→ B be the k-algebra morphism induced by the change of coordinates xi 7→ xi for all i, y 7→ y and
z 7→ y + z. Then inω (g(py,d,z(a))) = aB.

Proof. It follows from the definition that aB ⊆ inω (g(py,d,z(a))). Observe that the Hilbert series of py,d,z(a)
and of inω (g(py,d,z(a))) are identical. It is easy to see, from Remark 3.21, that the Hilbert series of aB and
of py,d,z(a) are identical. Therefore aB = inω (g(py,d,z(a))). �

Theorem 3.23. If HR admits an embedding, then HB/(pA
y,d,z

(a)) admits an embedding.

Proof. Write S = B/(pAy,d,z(a)). First, for every homogeneous B-ideal I containing aB, there exists a
homogeneous B-ideal J containing aB such that J(B/aB) is z-stable; see Lemma 4.1. Now, by Theorem 3.3,
there is an embedding ε′ : HB/aB −→ IB/aB . Let H ∈ HS . Let I be an B-ideal such that pAy,d,z(a) ⊆ I and
H = HIS . Applying Lemma 3.22, we find I ′ ⊆ B such that aB ⊆ I ′ and HI′(B/aB) = H. We may assume
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that I ′(B/aB) = ε′(H). Taking the initial ideal with respect to a suitable weight order, we may further
assume that I ′ is multigraded (in the grading of B).

Let L be the following distraction matrix (Definition 3.14):



1 2 · · · d− 1 d d+ 1 · · ·
x1 x1 x1 · · · x1 x1 x1 · · ·
...

...
...

. . .
...

...
...

. . .
xn xn xn · · · xn xn xn · · ·
y y y · · · y y + z y · · ·
z z z · · · z z z · · ·


By Lemma 3.16 we see that both DL(aB) and DL(I ′) are B-ideals; additionally, DL(aB) ⊆ DL(I ′). Let ω
be a weight order with ω(xi) = 1 for all i, ω(y) = 0 and ω(z) = 0. Then inω (DL(aB)) = pAy,d,z(a). Define
ε : HS −→ IS by setting ε : H 7→ inω(DL(I ′))S. �

Remark 3.24. Mermin showed that if a monomial complete intersection R = A/a (i.e., a is generated by an
A-regular sequence of monomials) has the property that every Hilbert function is attained by the image of
a lex-segment ideal, then a = (xe1

1 , . . . , x
er−1
r xi) for some e1 ≤ · · · ≤ er and i ≥ r [Mer10, Theorem 4.4].

Theorem 3.23 shows that if we allow for other graded term orders, then HR admits an embedding for every
monomial complete intersection R. �

A Clements–Lindström type theorem for embeddings. We prove an analogue of the following theorem
of Clements and Lindström: If A = k[x1, . . . , xn] and a = (xe1

1 , . . . , x
en
n ) with 2 ≤ e1 ≤ · · · ≤ en ≤ ∞, then

for every homogeneous A-ideal I with a ⊆ I, there exists a lex-segment ideal L such that Hilbert functions
of L + a and I are identical. If t = ∞, then the theorem below (even without the hypothesis that a is a
monomial ideal) follows from the argument that proved the existence of the embedding ε′ in the beginning
of the proof of Theorem 3.23. Note that, in that context, we may take a to be homogeneous in the standard
grading of A to apply Lemma 4.1 and Theorem 3.3.

Theorem 3.25. Let A = k[x1, . . . , xn] and t ∈ Z ∪ {∞}. Let a be a monomial A-ideal such that xti ∈ a for
all 1 ≤ i ≤ n. Let B = A[z], where z is an indeterminate. If HR admits an embedding, then HB/(aB,zt)
admits an embedding.

Proof. Since a is a monomial ideal, in order to to study embeddings, we need to consider only monomial
ideals (Remark 1.4); hence we may assume that k = C. Write S = B/(aB, zt). For every H ∈ HS , there
exists a z-stable S-ideal I such that HI = H; see Lemma 4.2. By Theorem 3.3 HS admits an embedding. �

4. Stabilization

The results of this section do not depend on the previous sections, and are used in Section 3.
We adopt the following notation for this section. Let A = k[x1, . . . , xn] be a standard graded polynomial

ring. Let a be an A-ideal. Let B = A[z], with N2-grading given by deg xi = (1, 0), for all 1 ≤ i ≤ n and
deg z = (0, 1). Let ω be the weight vector on B with ω(xi) = 1 for all i and ω(z) = 0.

Lemma 4.1. Let I be an B-ideal such that aB ⊆ I. Then there exists B-ideal J such that aB ⊆ J , HI = HJ

and J(B/aB) is z-stable.

Proof. Write S = B/aB. Let ω be the weight vector on B with ω(xi) = 1 for all i and ω(z) = 0. By
replacing I by inω(I), we may assume that I is a multigraded B-ideal.

For 1 ≤ l ≤ n, let Ll be the distraction matrix


1 2 · · · t t+ 1 · · ·

x1 x1 x1 · · · x1 x1 · · ·
...

...
...

. . .
...

...
. . .

xn xn xn · · · xn xn · · ·
z xl + z z · · · z z · · ·

.
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Write Φ = inω ◦DL1 ◦ · · · ◦ inω ◦DLn
. Let J (r) = Φr(I). We will show that J (r) = J (r+1) for all r � 0.

Note that Φ(aB) = aB. Write J (r) =
⊕

d∈N
⊕

i∈N J
(r)
d,d−iz

i as k-vector-spaces. For all d ∈ N and all i ∈ N
(equivalently, 0 ≤ i ≤ d), we have

∑i
j=0 |J

(r+1)
d,d−j | ≥

∑i
j=0 |J

(r)
d,d−j |; equality holds for all i ∈ N (equivalently,

0 ≤ i ≤ d) if and only if J (r)
d is z-stable.

Since |J (r+1)
d | = |J (r)

d |, we see that there exists r such that J (r)
d is z-stable. Let rd be such that J (rd)

t is
z-stable for all 0 ≤ t ≤ d. For d ≥ 0, let b(d) be the ideal generated by

⊕d
t=0 J

(rd)
t . Since S is Noetherian,

the ascending chain b(1) ⊆ b(2) ⊆ · · · stabilizes, so J (r) = J (r+1) for all r � 0. Set J to be the stable value.
�

Lemma 4.2. Let t > 1 be an integer, and suppose that k contains a primitive tth root of unity ζ. Assume
that a is an A-ideal such that xti ∈ a for all 1 ≤ i ≤ n. Let I be an B-ideal such that (aB, zt) ⊆ I. Then
there exists B-ideal J such that (aB, zt) ⊆ J , HI = HJ and J(B/(aB, zt)) is z-stable.

Proof. Let ω be the weight vector on B with ω(xi) = 1 for all i and ω(z) = 0. Replacing I by inω(I), we
may assume that I is multigraded. Let Lj be the distraction matrix:


1 2 · · · t t+ 1 · · ·

x1 x1 x1 · · · x1 x1 · · ·
...

...
...

. . .
...

...
. . .

xn xn xn · · · xn xn · · ·
z xj − z xj − ζz · · · xj − ζt−1z z · · ·


From [MM11, Lemma 3.6] we see the following: (i) DLj(zt) = xtj − zt (ii) For all fzi ∈ B, with f ∈ A and
i ≤ t, xjzi−1 appears with a nonzero coefficient in DLj

(fzi)). Moreover, (inω ◦DLj
)(aB, zt) = (aB, zt). Let

J (r) = (inω ◦DLj
)r(I). Then, arguing as in the proof of Lemma 4.1, we see that for all r � 0, J (r) = J (r+1)

and that for all fzi ∈ J (r) with z - f and i ≤ t, fxjzi−1 ∈ J (r). Repeating this argument for all 1 ≤ j ≤ n,
we complete the proof. �
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