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Abstract. Let V ⊂ P9 be the Veronese cubic surface. We classify the pro-

jections of V to P8 whose coordinate rings are Koszul. In particular we obtain

a purely theoretical proof of the Koszulness of the pinched Veronese, a result
obtained originally by Caviglia using filtrations, deformations and computer

assisted computations. To this purpose we extend, to certain complete inter-

sections, results of Conca, Herzog, Trung and Valla concerning homological
properties of diagonal algebras.

1. Introduction

Koszul algebras were originally introduced by Priddy [18] in his study of ho-
mological properties of graded (non-commutative) algebras arising from various
constructions in algebraic topology. Given a field K, a positively graded K-algebra
A = ⊕i∈NAi with A0 = K is Koszul if the field K, viewed as a A-module via the
identificationK = A/A+, has a linear free resolution. In the very interesting volume
[17] Polishchuk and Positselski discuss various surprising aspects of Koszulness.

In the commutative setting Koszul algebras can be characterized by means of the
relative Castelnuovo-Mumford regularity. Paraphrasing Hochster [13, p. 887], one
can say that life is worth living in standard graded algebras when all the finitely gen-
erated graded modules have finite (relative) Castelnuovo-Mumford regularity. Such
algebras are exactly the commutative Koszul algebras, see Avramov and Eisenbud
[3] and Avramov and Peeva [4].

Let K be a field and R = K[x0, x1, x2]. The pinched Veronese is the K-
subalgebra of R generated by all the monomials of degree 3 with the exception
of x0x1x2. It can be seen as the coordinate ring of a projection from a point of
the Veronese cubic surface V2,3 of P9, that is, the embedding of P2 in P9 with the
forms of degree 3. It is a “generic” projection with respect to the stratification of
the ambient space by the secant varieties of V2,3. That is, the center of the projec-
tion is outside the second secant variety sec2(V2,3) of V2,3 and the third secant is
the ambient space P9.
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In the nineties Sturmfels asked, in a conversation with Peeva, whether the
pinched Veronese is Koszul and the problem became quickly known as a bench-
mark example to test new theorems and techniques. The first author of the present
paper proved in [5] that the pinched Veronese is indeed Koszul by using a com-
bination of arguments based on filtrations, deformations and computer assisted
computations.

More generally, one can ask the same question for any projection of V2,3 to P8.
In particular, one can ask whether the projection of V2,3 to P8 from a point that
does not belong to sec2(V2,3) is Koszul. The goal of the paper is to show that this
is indeed the case. As a special case, we obtain a entirely theoretical proof of the
Koszulness of the pinched Veronese.

To achieve this result we develop in Section 2 homological arguments that gen-
eralize results of Conca, Herzog, Trung and Valla [7]. Given a standard Z2-graded
K-algebra S and a cyclic subgroup ∆ of Z2 one considers the “diagonal” subalgebra
S∆ of S defined as ⊕v∈∆Sv. Similarly, for every Z2-graded S-module M one defines
the S∆-module M∆ as ⊕v∈∆Mv. For every element w ∈ Z2, the shifted copy S(w)
of S is defined as the Z2-graded S module whose v-th component is Sv+w.

In the transfer of homological information from S to S∆ it is crucial to bound
the homological invariants of the shifted-diagonal modules S(w)∆ as S∆-modules.
When S is is a bigraded polynomial ring, it is proved in [7] that the modules
S(w)∆ have a linear S∆-free resolution. We extend this result to the main diagonal
∆ = (1, 1)Z of certain bigraded complete intersections, see Section 2.

In Section 3 we prove that, given a complete intersection I of 3 quadrics in a
polynomial ring R, the K-subalgebra of R generated by the cubics in I is Koszul.
This is done by constructing a complex whose homology vanishes along the relevant
diagonal. Finally in Section 4 we reinterpret the result of Section 3 to get the
classification of the projections to P8 of the cubic Veronese surface with a Koszul
coordinate ring.

We thank Alexandru Constantinescu, Giorgio Ottaviani, Euisung Park, Claudiu
Raicu, Takafumi Shibuta and Peter Schenzel for several useful discussions concern-
ing the various aspects of the paper.

2. Generalities and preliminary results

Let K be a field and A be a standard graded K-algebra, that is, a commutative
algebra of the form A = ⊕i∈NAi such that A0 = K, dimK A1 is finite and A is
generated as a K-algebra by A1. In other words, a standard graded K-algebra
can be written as A = S/I where S = K[x1, . . . , xn] is a polynomial ring over
K equipped with the graded structure induced by the assignment deg(xi) = 1 for
every i and I is a homogeneous ideal. The algebra A is said to be quadratic if its
defining ideal I is generated by quadrics and G-quadratic if I has a Gröbner basis
of quadrics (with respect to some coordinate system of S and some term order).

Given a non-zero graded A-module M one defines the (relative) Castelnuovo-
Mumford regularity as

regA(M) = sup{j − i : TorAi (M,K)j 6= 0} ∈ Z ∪ {+∞}.

One says that M has a linear A-resolution if M is generated in a single degree,
say d, and regA(M) = d. Also, A is Koszul if the residue field K has a linear
A-resolution, i.e. regAK = 0. It turns out that a standard graded K-algebra A is
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Koszul if and only if regA(M) is finite for every finitely generated graded A-module
M , see [3, Theorem 1] and [4, Theorem 2].

It is known that Koszul algebras are quadratic and that G-quadratic algebras are
Koszul. Both implications are, in general, strict, see Eisenbud, Reeves and Totaro
[11].

One defines the graded Poincaré series of M as

PA
M (t, s) =

∑
i,j

dimK TorAi (M,K)js
jti ∈ Z[s][|t|].

Lemma 2.1. Let A be a standard graded K-algebra and let B be a graded quotient
of A. Let M be a finitely generated graded B-module. Assume regA(B) ≤ 1. Then:

(1) regB(M) ≤ regA(M).
(2) If M has a A-linear resolution then M has a B-linear resolution.
(3) If A is Koszul then B is Koszul as well.

Proof. Notice that (3) is a special case of (2) and (2) is a special case of (1). To
prove (1) we may assume regA(M) is finite (otherwise there is nothing to prove),
say a = regA(M). The Cartan-Eilenberg spectral sequence, in the graded setting,
induces a coefficientwise inequality

PB
M (t, s) ≤ PA

M (t, s)

1 + t− tPA
B (t, s)

,

see Avramov [2, Proposition 3.3.2]. Set G(t, s) = tPA
B (t, s) − t so that, by as-

sumption, we may write G(t, s) =
∑

i≥2 gi(s)t
i with gi(s) polynomials of degree

≤ i. It follows that the terms sjti that appear with a non-zero coefficient in
1/(1 − G) =

∑
k≥0G

k satisfy j ≤ i. But then the terms sjti that appear with a

non-zero coefficient in PA
M (t, s)/(1−G) satisfy j ≤ i+ a and the desired inequality

follows. �

Let R = ⊕(i,j)∈Z2R(i,j) be a bigraded standard K-algebra. Here standard means
that R(0,0) = K and that R is generated as a K-algebra by the K-vector spaces

R(1,0) and R(0,1) of finite dimension. Let ∆ be the diagonal (1, 1)Z ⊂ Z2. We
set R∆ = ⊕i∈ZR(i,i) and observe that R∆ is the K-subalgebra of R generated by
R(1,1) and hence it is a standard graded K-algebra. For every bigraded R-module
M = ⊕(i,j)∈Z2M(i,j) we set M∆ = ⊕i∈ZM(i,i). Notice that M∆ is a module over
R∆. We may think of −∆ as a functor from the category of bigraded R-modules
and maps of degree 0 to that of graded R∆-modules with maps of degree 0. Clearly
−∆, being a selection of homogeneous components, is an exact functor.

For (a, b) ∈ Z2 let R(−a,−b) be the shifted copy of R. The diagonal module
R(−a,−b)∆ is a R∆-submodule of R. The homological properties of R(−a,−b)∆

play an important role in the transfer of homological information from R to R∆.
Note that R(−a,−b)∆ is generated by R(0,a−b) if a ≥ b and by R(b−a,0) if b ≥ a.
More precisely, one has:

R(−a,−b)∆ =

{
R(0, a− b)∆(−a) if a ≥ b
R(b− a, 0)∆(−b) if b ≥ a.

We have the following:

Proposition 2.2. Let S = K[x1, . . . , xm, t1, . . . , tn] be the polynomial ring bigraded
by deg xi = (1, 0) for i = 1, . . . ,m and deg ti = (0, 1) for i = 1, . . . , n. Let I be an
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ideal of S generated by a regular sequence of elements of S all of bidegree (2, 1) and
R = S/I. Then:

(1) R∆ is Koszul.
(2) For every (a, b) ∈ Z2 the module R(−a,−b)∆ has a linear R∆-resolution,

i.e., regR∆
R(−a,−b)∆ = max(a, b).

Proof. Let h be the codimension of I. We argue by induction on h. If h = 0 then
R∆ is the Segre product of K[x1, . . . , xm] and K[t1, . . . , tn] that is Koszul, indeed
G-quadratic, see for instance [11]. In this case, statement (2) is proved in [7, proof
of Thm 6.2]. Assume h > 0. We may write R = T/(f) where f is a T -regular
element of bidegree (2, 1) and where T is defined by a S-regular sequence of length
h− 1 of elements of bidegree (2, 1). We have a short exact sequence of T -modules:

(2.1) 0→ T (−2,−1)→ T → R→ 0

and applying ∆ we have an exact sequence of T∆-modules:

0→ T (−2,−1)∆ → T∆ → R∆ → 0.

By induction we know T∆ is Koszul and that regT∆
T (−2,−1)∆ = 2. Hence

regT∆
R∆ ≤ 1.

By Lemma 2.1(3) we may conclude that R∆ is Koszul. In order to prove (2) we
divide the discussion in three cases.

Case 1. a = b. Just observe that R(−a,−a)∆ = R∆(−a).

Case 2. b > a. We first shift (2.1) by (−a,−b) and then apply ∆. We get a short
exact sequence of T∆-modules:

0→ T (−a− 2,−b− 1)∆ → T (−a,−b)∆ → R(−a,−b)∆ → 0.

So we have:

regT∆
R(−a,−b)∆ ≤ max{regT∆

T (−a,−b)∆, regT∆
T (−a− 2,−b− 1)∆ − 1}.

By induction and since we are assuming b > a we deduce that

regT∆
R(−a,−b)∆ = b.

Since we have shown already that regT∆
R∆ ≤ 1, by Lemma 2.1(1) we can deduce

that regR∆
R(−a,−b)∆ = b.

Case 3. a > b. Set P = (t1, . . . , tn) ⊂ S. As already observed we have
R(−a,−b)∆ = R(0, a − b)∆(−a). So we have to prove that regR∆

R(0, u)∆ = 0
for every u > 0. We consider the minimal free (bigraded) resolution of S/Pu as an
S-module (that is a Eagon-Northcott complex)

F : 0→ Fn → Fn−1 → · · · → F1 → F0 → 0

with F0 = S and Fi = S#(0,−u − i + 1) for i > 0 where # denotes some integer
depending on n, u and i that is irrelevant in our discussion. The homology of F⊗R
is TorS(S/Pu, R). We may as well compute TorS(S/Pu, R) as the homology of
S/Pu ⊗G where G is a free resolution of R as an S-module. By assumption, we
may take G to be the Koszul complex on a sequence of elements of bidegree (2, 1).
It follows that:

Hi(F⊗R) =

{
a subquotient of (S/Pu)#(−2i,−i) if 0 ≤ i ≤ h
0 if i > h.
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Shifting with (0, u) and applying ∆ we have a complex (F ⊗ R(0, u))∆ that, we
claim, has no homology at all. Shifting and applying ∆ are compatible operations
with taking homology. Therefore to prove that (F⊗R(0, u))∆ has no homology we
have only to check that

[(S/Pu)(−2i,−i+ u)]∆ = 0

for all i and that is obvious by degree reasons. So we have an exact complex of
R∆-modules:

0→ R#(0,−n)∆ → · · · → R#(0,−1)∆ → R#
∆ → R(0, u)∆ → 0.

Since we know (by Case 2) that regR∆
R(0,−i)∆ = i we may conclude (see [7,

Lemma 6.3]) that regR∆
R(0, u)∆ = 0 as desired. �

3. Diagonal algebras of cubics forms

Let I be a homogeneous complete intersection ideal of codimension r generated
by elements of degree d in a polynomial ring R over a field K. Let c, e ∈ N and
consider the K-subalgebra Ac,e of R generated by the forms of degree c+ ed in Ie,
i.e. Ac,e = K[(Ie)ed+c]. If one gives the standard Z2-graded structure to the Rees
algebra Rees(I) of I, then the ring Ac,e can be seen as the (c, e)-diagonal subalgebra
of Rees(I), that is, Ac,e = ⊕i∈N Rees(I)(ic,ie).

Corollary 6.10 in [7] asserts that Ac,e is quadratic if c ≥ d/2 and Koszul if
c ≥ d(r − 1)/r. The authors of [7] ask (at p. 900) whether Ac,e is Koszul also for
d/2 ≤ c < d(r−1)/r. The first instance of this problem occurs for d = 2 and r = 3,
i.e. 3 quadrics, where the only possible value for c is 1. The goal of this section
is to treat this case that, as we will see in the following section, is also the crucial
case for the classification problem discussed in the introduction.

Let I = (g1, g2, g3) be a complete intersection of quadrics in R = K[x1, . . . , xn].
Consider the Rees algebra

Rees(I) = R[g1t, g2t, g3t] ⊂ R[t]

of I with its standard bigraded structure induced by deg xi = (1, 0) and deg git =
(0, 1). It can be realized as a quotient of the polynomial ring

S = K[x1, . . . , xn, t1, t2, t3]

bigraded with deg xi = (1, 0) and deg ti = (0, 1), by the ideal J generated by the
2-minors of

X =

(
g1 g2 g3

t1 t2 t3

)
.

Let f1, f2, f3 be the 2-minors of X with the appropriate sign, say fi equals to
(−1)i+1 times the minor of X obtained by deleting the i-th column. Hence

J = I2(X) = (f1, f2, f3).

The sign convention is chosen so that the rows of the matrix X are syzygies of
f1, f2, f3. By construction we have

Rees(I)∆ = K[I3] = K[xigj : i = 1, . . . , n, j = 1, 2, 3]

where ∆ = (1, 1)Z ⊂ Z2. Our goal is to prove that K[I3] is Koszul.
For later use we record the following:

Lemma 3.1. (1) f1, f2 form a regular S-sequence.
(2) (f1, f2) : f3 = (g3, t3).
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(3) (f1, f2) : t3 = J .
(4) (t3, f1, f2) : g3 = (t1, t2, t3).

Proof. (1): the ideal J is prime and hence f1, f2 have no common factors.
(2): the inclusion ⊇ follows because the rows of X are syzygies of f1, f2, f3.

Clearly (g3, t3) ⊇ (f1, f2). Hence the equality follows if one shows that g3, t3, f3 is
a regular sequence. But that is obvious because the variable t3 does not appear
in the polynomials g3 and f3, and f3 is irreducible being a minimal generator of a
prime ideal.

(3): the inclusion ⊇ follows because the second row of X is a syzygy of f1, f2, f3.
The equality follows because J is prime and contains (f1, f2).

(4): for the inclusion ⊇ simply note that f1 = −g3t2 mod (t3) and f2 = g3t1
mod (t3). The other inclusion follows because (t1, t2, t3) is a prime ideal containing
(t3, f1, f2). �

Set B = S/(f1, f2). Since f1, f2 is a regular S-sequence of elements of bidegree
(2, 1) we may apply to B the results of Proposition 2.2. One has also B/f3B =
Rees(I). We will prove that:

Theorem 3.2. We have:

(1) regB∆
(Rees(I)∆) = 1,

(2) Rees(I)∆ is Koszul.

Since, by construction, K[I3] = Rees(I)∆, as a corollary of Theorem 3.2 we have:

Corollary 3.3. Let I be a complete intersection of 3 quadrics in K[x1, . . . , xn].
Then K[I3] is Koszul.

Proof of Theorem 3.2. First of all we note that (2) follows from (1) and Lemma
2.1 since, by Proposition 2.2, we know that B∆ is Koszul.

It remains to prove (1). Since f3t3 = 0 in B we have a complex

F : · · · → B(−4,−4)
t3−→ B(−4,−3)

f3−→ B(−2,−2)
t3−→ B(−2,−1)

f3−→ B → 0,

i.e. Fi = B(−i,−i) if i is even, Fi = B(−i− 1,−i) if i is odd. The homology of F
can be described by using Lemma 3.1:

Hi(F) =

 Rees(I) if i = 0
0 if i is even and positive
S/(t1, t2, t3)(−i− 3,−i) if i is odd and positive.

The assertion for i = 0 holds by construction, and for i even and positive it holds
because of Lemma 3.1(3). Finally for i odd and positive by Lemma 3.1(2) we have

Hi(F) = (t3, g3)/(t3, f1, f2)(−i− 1,−i).

Hence Hi(F) is cyclic generated by the residue class of g3 mod (t3, f1, f2) that has
degree (−i − 3,−i). Using Lemma 3.1(4) and keeping track of the degrees we get
the desired result. Note that we have Hi(F∆) = Hi(F)∆ = 0 for every i > 0 and
H0(F∆) = Rees(I)∆. We may deduce from [7, Lemma 6.3] that

regB∆
Rees(I)∆ ≤ sup{regB∆

(Fi)∆ − i}.
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Since B is defined by a regular sequence of elements of bidegree (2, 1) we may apply
Proposition 2.2 and get

regB∆
(Fi)∆ =

{
i if i is even
i+ 1 if i is odd.

Summing up, we obtain regB∆
(Rees(I)∆) = 1. �

Remark 3.4. (1) In 3.2(2) one cannot replace Rees(I) with a ring of the form
S/I2(Y ) where Y = (yij) is a 2×3 matrix with deg y1j = (2, 0) and deg y2j = (0, 1)
and I2(Y ) has codimension 2. For instance for

H = I2

(
x2

1 x2
2 0

0 t2 t3

)
and S = K[x1, x2, x3, t1, t2, t3] one has that (S/H)∆ is not Koszul as can be checked
by using Macaulay 2 [12]. In other words, in the proof of 3.2 the fact that J is a
prime ideal plays a crucial role.

(2) The coordinate ring of the pinched Veronese can be realized as S∆/J∆, where

J = I2

(
x2

1 x2
2 x2

3

t1 t2 t3

)
.

Within the Segre product S∆ = K[xitj : 1 ≤ i, j ≤ 3] the ideal J∆ has a Gröbner
deformation to H∆ = (x2

1t2ti, x
2
1t3ti, x

2
2t3ti : i = 1, 2, 3). In particular, this shows

that the pinched Veronese has a nice quadratic Gröbner deformation within the
Segre ring S∆. But this is, unfortunately, not enough to prove that it is Koszul.

Remark 3.5. With the notation introduced at the beginning of the section, we have
shown above that A1,1 is Koszul for r = 3 and d = 2. The statements and the proofs
of Proposition 2.2 and Theorem 3.2 generalize immediately to the case of diagonal
(1, e)Z and one obtains that A1,e is Koszul as well. Moreover the case c = 0 is
obvious because A0,e is the e-th Veronese ring of a polynomial ring in 3 variables.
So we may conclude that, for r = 3 and d = 2, Ac,e is Koszul for all c and e.

4. Projections to P8 of the Veronese cubic embedding of P2

Let c, n be positive integers and V be a vector space of dimension n + 1 over a
field K of characteristic 0 or > c. The Veronese embedding of P(V ) with the forms
of degree c can be identified with the map

vn,c : P(V )→ P(Sc(V ))

sending [x] to [xc]. Here Sc(V ) denotes the degree c component of the symmetric
algebra S(V ). The coordinate ring of P(V ) is S(V ∗). Denote by Vn,c the image of
vn,c. Denote by (g, f)→ g ◦ f the natural bilinear form

Sc(V
∗)× Sc(V )→ K

that is GL(V )-equivariant. By taking a non-zero F ∈ Sc(V ) we may consider the
projection φF from P(Sc(V )) to P(W ) where W = Sc(V )/〈F 〉. The coordiante
ring (of the closure of) the image of the composition φF ◦ vn,d gets identified with
the K-subalgebra of S(V ∗) generated by UF = {g ∈ Sc(V

∗) : g ◦ F = 0}, a
space of forms of degree c of codimension 1. After fixing a basis y0, . . . , yn for
V and the dual basis x0, . . . , xn for V ∗, then S(V ) = K[y0, . . . , yn] and S(V ∗) =
K[x0, . . . , xn]. Furthermore g(x0, . . . , xn) ◦ f(y0, . . . , yn) gets identified with the
action of the differential operator g(∂/∂y0, . . . , ∂/∂yn) on f(y0, . . . , yn).
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Returning now to the Veronese cubic embedding V2,3 of P2 in P9, we may
summarize the discussion above as follows. The projection of V2,3 to P8 from
a point [F ] ∈ P9 = P(S3(V )), where S3(V ) = K[y0, y1, y2]3, has coordinate ring
K[UF ] where UF = {g ∈ K[x0, x1, x2]3 : g◦F = 0}. The construction is compatible
with the PGL3(K) action, hence forms F and F1 that are in the same PGL3(K)-
orbit will give projections with isomorphic coordinate rings.

Denote by seci(V2,3) the i-th secant variety of V2,3. One knows that sec1(V2,3) is
a 5-dimensional variety defined by the 3-minors of a 3× 6 matrix of linear forms, a
catalecticant matrix, see Kanev [15] and Raicu [19]. It is also known that sec2(V2,3)
is a quartic hypersurface, defined by the Aronhold invariant, that coincides with the
Zariski closure of the PGL3(K)-orbit of the Fermat cubic, see Dolgachev and Kanev
[10] or Ottaviani [16]. Furthermore sec1(V2,3)\V2,3 consists of two PGL3(K)-orbits,
the orbit of the following polynomials:

F1 = y1y
2
2 , F2 = y3

1 + y3
2

while sec2(V2,3) \ sec1(V2,3) consists of three orbits, the orbits of:

F3 = y1y
2
0 + y2y

2
1 , F4 = y2

2y1 + y3
0 , F5 = y3

0 + y3
1 + y3

2 ,

see [10, 5.13.2]. We have:

Theorem 4.1. Let F ∈ K[y0, y1, y2]3 and let AF be the coordinate ring of the
projection of V2,3 to P8 from the point [F ]. We have:

(1) If [F ] ∈ V2,3 then AF is Koszul. More precisely, it is G-quadratic.
(2) If [F ] ∈ sec2(V2,3) \ V2,3 then AF is not quadratic (and hence not Koszul).
(3) If [F ] 6∈ sec2(V2,3) then AF is Koszul.

Proof. For (1) we may assume that F = y3
2 and then AF is the toric ring generated

by all the monomials of degree 3 in K[x0, x1, x2] different from x3
2. That such a

ring is defined by a Gröbner basis of quadrics can be proved by direct computations
but follows also from the result [9, 2.13] of De Negri because the vectors space UF

is a lexicographic segment.
For (2) we have to check that for each Fi (with i = 1, . . . , 5) described above the

corresponding ring AFi
is not quadratic. One can compute explicitly a presentation

of AFi
by elimination using, for instance, CoCoA [6] or Macaulay 2 [12]. And

then one checks that there is a cubic form the among generators of the defining
ideal. Indeed there is exactly one cubic generator in each case, while the number
of quadrics is either 17 (for i = 3, 5) or 18 (for i = 1, 2, 4). That there is a cubic
generator in the case of the Fermat cubic F5 has been verified also by Alzati and
Russo in [1, Example 4.5] by a theoretical argument. Also the case F1 and F2

can be treated easily because they are “cones”. For them it is enough to prove
that projections of the rational normal curve V1,3 ∈ P3 from the corresponding
points are cubic hypersurfaces in P2, and this is well-known. One obtains the
cuspidal cubic with F1 and the nodal cubic with F2. Finally for (3) one notes
that is [F ] 6∈ sec2(V2,3) then the ideal I of the forms g ∈ K[x0, x1, x2] such that
g ◦ f = 0 is a complete intersection of three quadrics, see Conca, Rossi and Valla
[8, Cor.6.12]. Since AF = K[I3], we may apply Corollary 3.3 and conclude that AF

is Koszul. �

Remark 4.2. In view of Theorem 4.1(3) one can ask whether for F 6∈ sec2(V2,3)
the ring AF is G-quadratic. It is known that the pinched Veronese does not have
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a Gröbner basis of quadrics in the toric presentation but we do not know how
to exclude a Gröbner basis of quadrics in every other possible coordinate system.
Some of the well-known necessary conditions that a monomial ideal U ⊂ K[z] =
K[z1, . . . , z9] must satisfy to be the initial ideal of the defining ideal of AF include:

(1) K[z]/U must have the same Hilbert series as AF and the graded Betti num-
bers at least as big as those of AF ,

(2) the radical of U must be pure and connected in codimension 1,

see Kalkbrener and Sturmfels [14] or Varbaro [20]. But there are plenty of quadratic
monomial ideals satisfying those conditions and we do not know how to exclude that
they are the initial ideal of the defining ideal of the pinched Veronese, not to mention
other AF .

Remark 4.3. For F 6∈ sec2(V2,3) another quite natural question is whether the
ring AF can be deformed, via a Sagbi deformation, to the pinched Veronese. As it
follows from [8, Cor.6.12], the answer is positive if and only if F is singular. So
the “general” AF does not have a Sagbi deformation to the pinched Veronese.

Remark 4.4. An interesting question suggested by the proof of Theorem 4.1 is the
following. Suppose F is a form of degree d in K[y0, . . . , yn] that does not involve
the variable yn. We may consider the coordinate ring A of the projection of Vn,d
from F and also the coordinate ring B of the projection of Vn−1,d from F . Is it
true that A is Koszul or quadratic if B is so? That the opposite implication holds
true follow easily from the fact that B is an algebra retract of A.
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