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Abstract. We study the set of circuits of a homogeneous ideal and that of its truncations,
and introduce the notion of generic circuits set. We show how this is a well-defined invariant
that can be used, in the case of initial ideals with respect to weights, as a counterpart of the
(usual) generic initial ideal with respect to monomial orders. As an application we recover
the existence of the generic fan introduced by Römer and Schmitz for studying generic
tropical varieties. We also consider general initial ideals with respect to weights and show,
in analogy to the fact that generic initial ideals are Borel-fixed, that these are fixed under
the action of certain Borel subgroups of the general linear group.

Introduction

In the study of homogeneous ideals in a polynomial ring it is a standard technique to pass
to initial ideals. Also, in order to work with a monomial ideal more closely related to a given
homogeneous ideal I, i.e., with a monomial ideal which shares with I important numerical
invariants other than the Hilbert function, one can choose to work in generic coordinates
or, in other words, to consider a generic initial ideal of I with respect to some monomial
order. Even though some of the ideas underlying the notion of generic initial ideal were
already present in the works of Hartshorne [Ha] and Grauert [Gt], a proper definition as
well as the study of some of its main properties is to be found only later in the work of
Galligo [Ga], where characteristic zero is assumed, and the subsequent paper of Bayer and
Stillman [BaSt], where the assumption on the characteristic is dropped. It is also shown
there that generic initial ideals are invariant under the action of the Borel subgroup of the
general linear group of coordinates changes GLn(K); thus, they are endowed with interesting
combinatorial properties which depend on the characteristic, but are well understood (see
for instance [Pa], also for the study of other group actions). More can be said if one considers
generic initial ideals with respect to some special monomial orders such as the lexicographic
and the reverse-lexicographic orders. The generic initial ideal of I with respect to the revlex
order has the same depth as I; therefore, it has the same projective dimension as I and its
quotient ring is Cohen-Macaulay exactly when that of I is Cohen-Macaulay; furthermore, it
shares with I the same Castelnuovo-Mumford regularity and, in general, the same positions
and values of extremal Betti numbers, cf. [BaSt] and [BaChPo]. On the other hand, when
one considers the lex order, the generic initial ideal of I captures other geometric invariants
of the projective variety defined by I, see for instance [Gr] Section 6, [CoSi] and [AhKwSo].
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The interested reader is referred to the standard references [Gr] and [Ei] and will also find
the dedicated parts of Herzog and Hibi’s book [HeHi] useful to understand the connection
with extremal Betti numbers and with shifting operations.

The main question we address in this paper is the following: How can one define the
generic initial ideal with respect to a weight? The initial ideal with respect to a weight ω of
gI is not necessarily constant on a non-empty Zariski open subset of GLn(K) as, for instance,
if ω = (1, . . . , 1) then inω(gI) = gI for all coordinates changes g. We provide an answer to
the above question by introducing some new invariants of I.

This paper is organized as follows. The first section is dedicated to introducing some
notation and recalling some well-known properties of monomial orders, initial ideals with
respect to weights, reduced and universal Gröbner bases. In the second section, Definitions
2.1 and 2.4, we introduce the notion of circuits set and generic circuits set, we explain their
basic properties, cf. Lemma 2.2 and Theorem 2.9, and we relate the circuits set and the
generic circuits set of a homogeneous ideal I to its reduced Gröbner bases and Gröbner fan,
cf. Lemma 2.11, Corollaries 2.12 and 2.14. As an application, we recover in Corollary 2.15
one of the main results of [RöSc], Corollary 3.2, where the generic Gröbner fan is introduced.
In the third and last section we explain why what would be the natural definition of generic
initial ideal with respect to weights does not return an invariant of a homogeneous ideal, and
we suggest what provides, in our opinion, valid alternatives to generic initial ideals when
working with weights: generic and general circuits set, their truncations, their initial circuits
set and general initial ideals. Finally, in analogy with what is known in the case of monomial
orders, we show that general initial ideals with respect to weights are stable under the action
of certain subgroups of the general linear group.

We would like to dedicate this paper to Jürgen Herzog, teacher and collaborator, to his
ability for sharing his passion for Commutative Algebra with so many students all over the
world.

1. Notation and preliminaries

Let A = K[X1, . . . , Xn] be a polynomial ring over a field K. Given a non-zero polynomial
f ∈ A, we write it uniquely as sum of monomials with non-zero coefficients and we call the
set of all such monomials, denoted by supp(f), the (monomial) support of f . When S ⊆ A
is a set, supp(S) will be the set of all monomial supports of the polynomials in S. When I
is a homogeneous ideal of A and d an integer, by Id and I≤d we denote the degree d part of
I and the truncation ⊕j≤dIj of I at (and below) d respectively.

1.1. Monomial orders. We recall that a monomial order on A is a total order ≺ on the
monomials of A which is also compatible with multiplication, i.e., for all Xa, Xb, Xc mono-
mials of A with Xc 6= 1 and Xa ≺ Xb one has Xa ≺ XaXc ≺ XbXc. Given a monomial
order ≺, we denote by in≺(f) the greatest with respect to ≺ monomial in supp(f); we call
it the initial monomial (or leading monomial) of f. Accordingly, given a homogeneous ideal
I, we call initial ideal of I with respect to ≺ and denote it by in≺(I), the ideal generated
by all the initial monomials of elements of I. A finite set G = {f1, . . . , fr} of elements of I
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such that {in≺(f1), . . . , in≺(fr)} is a set of generators for in≺(I) is called a Gröbner basis of
I (with respect to ≺). Furthermore, if f1, . . . , fr are monic (with respect to ≺) and in≺(fi)
does not divide any monomial in supp(fj) for i 6= j then we call G the reduced Gröbner basis
of I (with respect to ≺). It is not difficult to see that such a basis always exists and it is
uniquely determined by ≺ and I; moreover, if ≺ and ≺′ are two monomial orders such that
in≺(I) = in≺′(I) then the reduced Gröbner bases of I with respect to ≺ and to ≺′ are the
same. It is well-known that a given homogeneous ideal has only a finite number of initial
ideals; therefore, it has finitely many reduced Gröbner bases. A subset G of A is called a
universal Gröbner basis of I if G is a Gröbner basis of I with respect to all monomial orders
simultaneously. Such a basis can be obtained, for instance, as the union of all the reduced
Gröbner bases of I (cf. [St], Corollary 1.3) in which case we call it the canonical universal
Gröbner basis of I.

1.2. Initial ideals with respect to weights. We now consider the general case of initial
ideals defined by using weights and summarize some of the basic properties and constructions;
our main references are, as before, the books of Eisenbud [Ei] and Sturmfels [St]. We shall
call a vector of Rn a weight vector or, simply, a weight. Given a polynomial f =

∑
i αiX

ai,
one lets the initial form of f with respect to ω be the sum of all terms αjX

aj of f which have
maximal weight, i.e., such that the scalar product ω ·aj is maximal. Accordingly, one defines
the initial ideal with respect to ω of a given ideal I as the ideal inω(I) generated by all the
initial forms of polynomials in I. This ideal will not be monomial in general. Similarly, one
defines inω(W ) for a K-vector subspace W of A.
Let now ≺ be a monomial order; it is natural to define a new monomial order ≺ω by refining
ω by means of ≺, so that for all f ∈ A one has in≺ω

(f) = in≺(inω(f)) and, similarly, for all
ideals I ⊆ A one has in≺ω

(I) = in≺(inω(I)), which also yields that I and inω(I) share the
same Hilbert function. Furthermore, if G = {f1, . . . , fr} is a (reduced, universal) Gröbner
basis of I with respect to ≺ω, then {inω(fi) : i = 1, . . . , r} is a (reduced, universal) Gröbner
basis of inω(I) with respect to ≺. The use of weights generalizes monomial orders also in
the following sense: for any monomial order ≺ and any homogeneous ideal I, there exists
a non-negative integral weight ω such that in≺(I) = inω(I), by [St], Proposition 1.11 (see
also [Ro]). We also observe that, if I ⊆ A is a homogeneous ideal, ≺ is a monomial order
and ω, ω′ ∈ Rn are such that inω(·) and inω′(·) coincide on all elements of a reduced Gröbner
basis of I with respect to ≺ω, then the initial ideal of I with respect to ω and ω′ coincide,
since both have the same Hilbert function as I.

1.3. A flat family argument. We would like to conclude this section with a technical
observation we shall need later when we use a classical flat family argument, as of [Ei]
Theorem 15.17. Let ω ∈ Zn, I a given ideal of A and A[t] a polynomial ring over A. Let ei

denote the ith element of the standard basis of Zn; for all f =
∑

i αiX
ai ∈ I we denote the

homogenization tmaxi{ω·ai}f(t−ω·e1X1, . . . , t−ω·enXn) of f with respect to ω by f̃ ; also, Ĩ will
denote the ideal of A[t] generated by all f̃ with f ∈ I. The ideal Ĩ is the homogenization of
I with respect to ω. One can thus build a family {Ia : a ∈ K} of ideals of A, where Ia = Ĩt=a

is the ideal Ĩ evaluated at t = a. It is important to notice that I1 = I, I0 = inω(I), and
that for all a 6= 0 the ideal Ia is the image of I under the diagonal change of coordinates Da
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which maps Xi to a−ω·eiXi. This family is flat because the Hilbert function is constant on
its elements, see also Definition 1.17 and Theorem 1.18 in [Gr].

2. Generic circuits sets

In this section we define the notion of circuits set and generic circuits set of homogeneous
ideals and show how to use these definitions to compute reduced and universal Gröbner
bases, and Gröbner fans.

Definition 2.1. Let I be a subset of A. We define the circuits set of I, denoted by cs(I),
to be the set of all minimal (with respect to inclusion) elements of supp(I). We say that a
set T is a circuits set if T = cs(I) for some subset I of A. In particular, T is a collection of
finite sets of monomials of A.

The name we chose in the above definition comes from Matroid Theory, see [Ox] or any other
standard reference: a circuit in a matroid is a minimal dependent subset, i.e a dependent
set whose proper subsets are all independent. When I is a K-vector subspace of A, as it
is for instance when I is a homogeneous ideal, one can define a matroid by considering the
set S of all monomials of A and declaring a subset of S independent (resp. dependent) if
its image in A/I consists of linearly independent (resp. dependent) elements. The support
of a polynomial f ∈ I is minimal among all the supports of elements of I if and only if it
is a circuit in the above matroid. It is immediately seen that if I is finite then so is cs(I).
Moreover, if I is a homogeneous ideal of A then cs(I) = ⊔d cs(Id) and cs(I≤d) = ⊔h≤d cs(Ih).
Also, we notice that if I is a monomial ideal then cs(I) is just the set of all monomials in
I. Clearly, when I and J are monomial ideals then cs(I) = cs(J) if and only if I = J ,
a fact which is false in general, e.g., in A = K[X1, X2], where char(K) 6= 2, the ideals
(X1 + X2) + (X1, X2)

2, (X1 − X2) + (X1, X2)2 are distinct and have same circuits sets. It is
useful to point out that if {f1, . . . , fr} is a Gröbner basis with respect to a monomial order
≺, then supp(fi) is not necessarily an element of cs(I), take for instance A = K[X1, X2] and
I = (X1 + X2, X2). In fact, if {f1, . . . , fr} is a reduced Gröbner basis then supp(fi) ∈ cs(I)
for all i = 1, . . . , r: If supp(fh) 6∈ cs(I) for some h, then there would exist g ∈ I with
supp(g) ( supp(fh); it is easily seen that this would contradict the fact that {f1, . . . , fr} is
reduced, whether in≺(g) = in≺(fh) or not. We have thus proven the following lemma.

Lemma 2.2. Let I be a homogeneous ideal, ≺ a fixed monomial order and G the reduced
Gröbner basis of I with respect to ≺. Then, supp(G) ⊆ cs(I).

Let now y = (yij)i,j=1,...,n be a matrix of indeterminates and K(y) an extension field of K.
In the following we shall denote by γ the K-algebra homomorphism
(2.3)

γ : K(y)[X1, . . . , Xn] −→ K(y)[X1, . . . , Xn], γXi 7→
n∑

j=1

yijXj for all i = 1, . . . , n.

Definition 2.4. Let I be a homogeneous ideal of A. We define the generic circuits set of I
as cs(γI), and we denote it by gcs(I). Given a non-negative integer d, we let the generic
circuits set of I truncated at d, denoted by gcs(I≤d), be the circuits set cs(γI≤d).

It is easy to see that gcs(I≤d) = cs((γI)≤d) = cs(γI)≤d = gcs(I)≤d.
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Remark 2.5. The generic circuits set of a homogeneous ideal I is invariant under coordinates
changes, i.e., for all h ∈ GLn(K) one has gcs(hI) = gcs(I). To this end, observe that if z

is the matrix associated with γh then K(y) and K(z) are the same field; in particular, the
entries of z are algebraically independent over K. Moreover, γhI is the image of I under
the map K(z)[X1, . . . , Xn] −→ K(z)[X1, . . . , Xn], with Xi 7→

∑n
j=1 zijXj for all i = 1, . . . , n.

Hence, supp(γf) = supp(γhf) for all f ∈ A.

Notation 2.6. Let S be a finite set of monomials of A and W a K-vector subspace of A.
We set

rankS W := dimK(W + 〈S〉)/W, rankS W := dimK(W + 〈S〉)/〈S〉.

Evidently, rankS W = rankS(W ) + dimK W − dimK〈S〉.

Remark 2.7. It is an easy observation completing the discussion before Lemma 2.2 that
the circuits set of a homogeneous vector space can be determined using ranks: Given a
K-vector space W ⊆ Ad, a set S is an element of cs(W ) if and only if rankS W < |S| and
rankS′(W ) = |S ′| for all ∅ 6= S ′ ( S.

Let W be a K-vector subspace of Ad with basis B. Consider an ordered monomial basis
of Ad, and let MW be the dimK W × dimK Ad matrix whose (i, j)th entry is the coefficient of
the jth-monomial in the ith basis element of W. Clearly, a minor of MW is an element of K.
Now we consider γW together with its basis γB, where γ is as in (2.3). The minors of the
matrix MγW are polynomials in K[y] which specialize to the minors of MW when all of the
yij are evaluated at 1 if i = j and at 0 otherwise.

When S is a set of monomials in Ad we may thus conclude that rankS W ≤ rankS γW ; if
K is infinite, then there exists a non-empty Zariski open set U ⊆ GLn(K) ⊂ Kn2

such that
if g ∈ U then

(2.8) rankS gW = rankS γW = max{rankS hW : h ∈ GLn(K)}, for all S ⊆ Ad.

Theorem 2.9. Let K be an infinite field, d a positive integer and I ⊆ A a homogeneous
ideal. Then, there exists a non-empty Zariski open set U ⊆ GLn(K) ⊂ Kn2

such that
gcs(I≤d) = cs(gI≤d) for all g ∈ U .

Proof. For any integer i, a set S belongs to cs(γIi) if and only if the condition on ranks
of Remark 2.7 holds for the K-vector space γIi or for gIi, where g belongs to a non-empty
Zariski open set, say Ui, for which (2.8) holds. The desired open set U can be taken simply
as the intersection of all Ui, i = 0, . . . , d. �

We do not know at the present time whether there exists a non-empty Zariski open set U
such that gcs(I) = cs(gI) for all g ∈ U , or whether there exists any such g at all.

Let I be a homogeneous ideal of A and consider now the following equivalence relation
on Rn: two weights ω and ω′ are said to be equivalent if and only if inω(I) = inω′(I).
The closures with respect to the Euclidean topology of such equivalence classes are convex
polyhedral cones and the collection of all such cones form a fan, which is called the Gröbner
fan of I, see [MoRo], [St].

Notation 2.10. Let S be a finite set of monomials of A and ω a weight. We denote by
inω(S) the set of all elements of S with maximal weight. Similarly, for a collection T of
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finite sets of monomials we denote by inω(T ) the set of all inω(S) for S in T. When I is a
subset of A we will refer to inω(cs(I)) as the initial circuits set of I with respect to ω. It is
not hard to see that when I is a homogeneous ideal inω(cs(I)) = cs(inω(I)), and also that
inω(cs(I≤d)) = cs((inω(I))≤d).

The following technical result will be useful in the remaining part of the section. See also
Proposition 2.3 in [St] and Proposition 2.6 in [FuJeTh].

Lemma 2.11. Let I be a homogeneous ideal of A, ω, ω′ ∈ Rn be two weights and ≺ a given
monomial order. If {f1, . . . , fr} is a reduced Gröbner basis of I with respect to ≺ω, then

inω(I) = inω′(I) if and only if inω(supp(fi)) = inω′(supp(fi)) for i = 1, . . . , r.

Proof. We first assume that inω(I) = inω′(I). Since in≺(inω(I)) = in≺ω
(I), we immedi-

ately have that in≺ω
(I) = in≺ω′

(I), hence in≺ω′
(fi) ∈ in≺ω

(I). Since in≺ω′
(fi) is a mono-

mial of fi and {f1, . . . , fr} a reduced Gröbner basis with respect to ≺ω, this implies that
in≺ω

(fi) = in≺ω′
(fi) for i = 1, . . . , r. Now, we assume by contradiction that inω(supp(fi)) 6=

inω′(supp(fi)) for some i, and accordingly inω(fi) − inω′(fi) is a non-zero element of inω(I)
which does not contain in≺ω

(fi) in its support. Thus, in≺(inω(fi) − inω′(fi)) ∈ in≺ω
(I) con-

tradicts the fact that {f1 . . . , fr} is a reduced Gröbner basis of I with respect to ≺ω.
Vice versa, when inω(supp(fi)) = inω′(supp(fi)) then inω(I) = (inω(fi) : i = 1, . . . , r) =
(inω′(fi) : i = 1, . . . , r) ⊆ inω′(I), and equality is forced by the Hilbert function. �

From the previous result it follows as a corollary that the set of all supports of all reduced
Gröbner bases of a homogeneous ideal I determines the equivalence relation on weights that
defines the Gröbner fan of I.

Corollary 2.12. Let I and J be homogeneous ideals of A with canonical universal Gröbner
bases G1 and G2 respectively. If supp(G1) = supp(G2) then Gf(I) = Gf(J).

Proposition 2.13. Let I and J be homogeneous ideals with same Hilbert function, ≺ a
fixed monomial order, G1 and G2 the reduced Gröbner bases (with respect to ≺) of I and J
respectively. If d is an integer greater than or equal to the largest degree of an element of G1

and cs(I≤d) = cs(J≤d) then supp(G1) = supp(G2).

Proof. Let G1 = {f1, . . . , fr}. We know that G1 ⊆ I≤d, and by Lemma 2.2 supp(G1) ⊆
cs(I≤d) = cs(J≤d). Thus, there exists a subset H2 = {h1, . . . , hr} of J with supp(hi) =
supp(fi) for i = 1, . . . , r, and we may assume that the initial monomials of h1, . . . , hr with
respect to ≺ have coefficients equal to 1. Now, (in≺(hi) : i = 1, . . . , r) has the same Hilbert
function as I and, thus, as J ; consequently, H2 is a Gröbner basis of J and it is clearly
reduced. Since such a basis is unique, H2 = G2 and we are done. �

Corollary 2.14. Let I and J be homogeneous ideals with the same Hilbert function, and
let d be the largest degree of a minimal generator of the lex-segment ideal with same Hilbert
function as I and J . If cs(I≤d) = cs(J≤d) then Gf(I) = Gf(J).

As a special case of the above corollary, we now recover one of the main results of [RöSc],
namely Corollary 3.2, where the existence of generic Gröbner fans is proven.

Corollary 2.15. Let I be a homogeneous ideal of A. Then, there exists a non-empty Zariski
open set U ⊆ GLn(K) such that Gf(gI) = Gf(hI) for all g, h ∈ U .
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Proof. It is a direct consequence of the previous corollary and Theorem 2.9. �

3. General initial ideals with respect to weights

As we have explained in the introduction, the generic initial ideal of I with respect to
a given monomial order ≺ is an important invariant of I and one would like to have a
similar invariant when using weights. There are two naive definitions of what a generic
initial ideal with respect to a given weight could be. One might set ginω(I) to be inω(γI) ⊆
K(y)[X1, . . . , Xn], where γ is as in (2.3) and Definition 2.4. The disadvantage here is that
to define ginω(I) in this way would not provide a coordinate-independent invariant, as the
following easy example shows. If we take I = (X1) ⊆ K[X1, X2], a coordinates change
such that X1 7→ X1 + X2 and ω = (1, 1) then we have inω(X) = (y11X1 + y12X2) 6=
((y11+y21)X1+(y12+y22)X2) = inω(γ(X1+X2)). Moreover, with this definition, the resulting
generic initial ideal could not be viewed as an ideal of K[X1, . . . , Xn]. Alternatively, when K
is infinite one might be tempted to let ginω(I) be inω(gI) for a general g ∈ GLn(K), but this
is in some sense meaningless because it relies on the existence of a non-empty Zariski open
set U where inω(hI) is constant for all h ∈ U . In the above example, clearly such an open set
does not exist. Therefore, we would like to emphasize that the expression a general initial
ideal with respect to ω should be used in the same way as a general linear form or a general
hyperplane section is used: always in combination with a specific and well-defined property
P of inω(gI) which is constant on a Zariski open set of GLn(K). Keeping this in mind, it is
correct to phrase Theorem 3.2 in the following way: a general initial ideal with respect to ω is
fixed under the action of the group Bω. We have seen in the previous section how the generic
circuits set of an ideal I can be used as an invariant of I. Also, rather than defining the
generic initial ideal of I with respect to a weight, one can consider the generic initial circuits
set gcs(inω(I)) = inω(gcs(I)) and its truncations gcs(inω(I)≤d) at some d ∈ N, see Notation
2.10. Remark 2.5 yields that any such gcs(inω(I)≤d) is an invariant of I. Moreover, when
K is infinite a truncated generic circuits set of I can be defined using general changes of
coordinates: One can let gcs(inω(I≤d)) be inω(cs(gI≤d)) for a general change of coordinates
g and this makes sense because of Theorem 2.9.

3.1. The subgroup Bω of the Borel group. In the usual setting, generic initial ideals in
any characteristic have the property of being fixed under the action of the Borel subgroup B of
GLn(K) consisting of invertible n × n upper-triangular matrices. Let ω = (ω1, . . . , ωn) ∈ Zn

be a fixed weight. By relabeling the variables if necessary, we will further assume that
ω1 ≥ · · · ≥ ωn. We define a subset of B by taking all n × n matrices M = (mij) in B such
that mii = 1 for i = 1, . . . , n and mij = 0 if ωi = ωj, and denote it by Bω. Obviously, the
identity matrix belongs to Bω. If M, N ∈ Bω and ωi = ωj for i 6= j, then the (i, j)th entry of
MN is zero; it is also easy to verify that every M ∈ Bω has an inverse in Bω by computing
the row-echelon form of M augmented with the identity. We have thus verified that Bω is a
subgroup of B. The main result we want to prove next, and we do in Theorem 3.2, is that
general initial ideals with respect to a non-negative weight ω are fixed under the action of
Bω.

We now let d be a positive integer and, as before, let Ad be the degree d part of the
polynomial ring A. The largest weight of a monomial in Ad is ω1d. For all 0 ≤ a ≤ ω1d + 1



8 GIULIO CAVIGLIA AND ENRICO SBARRA

we let Sa be the set of all monomials of Ad of weight strictly less then a. Given a vector
subspace W of Ad, we let αω(W ) denote the vector

αω(W ) := (rankSω1d W, rankSω1d−1 W, . . . , rankS1 W ).

Clearly, when V, W are K-vector subspaces of Ad and cs(V ) = cs(W ) then αω(V ) = αω(W ),
by Remark 2.7. Next, we write αω(V ) ≥ αω(W ) when the inequality holds pointwise; when
in addition αω(V ) 6= αω(W ) we write αω(V ) > αω(W ).

Recall that a K-vector subspace W of Ad is homogeneous with respect to ω if it is spanned
by polynomials which are homogeneous with respect to ω.

Proposition 3.1. Let W be a K-vector subspace of Ad and ω = (ω1, . . . , ωn) be a weight
with ω1 ≥ · · · ≥ ωn ≥ 0. Then, for every integer 0 ≤ a ≤ ω1d, the dimension of the
homogeneous component of inω(W ) of weight a is rankSa W − rankSa+1 W . Furthermore, if
W is homogeneous with respect to ω and b ∈ B is an upper-triangular change of coordinates
then αω(bW ) ≥ αω(W ).

Proof. Let ≺ be a monomial order. We consider, as we did to prove (2.8), the matrix MW

associated with W after having ordered a monomial basis of Ad by means of ≺ω . The
first part of the statement can be verified by computing the row-echelon form of MW . The
desired inequality follows from the definition of αω, since the image under b of a monomial is
the sum of that monomial and a linear combination of other monomials of equal or greater
weight. �

Theorem 3.2. Let I be a homogeneous ideal of A = K[X1, . . . , Xn], with |K| = ∞. Let
also ω = (ω1, . . . , ωn) be a weight with ω1 ≥ · · · ≥ ωn. Then, a general initial ideal of I
with respect to ω is Bω-fixed, i.e., there exists a non-empty Zariski open set U such that
b (inω(g(I)) = inω(g(I)), for all g ∈ U and all b ∈ Bω.

Proof. Observe that, if f is a homogeneous polynomial, ω a weight and we let ω′ := ω +
(1, 1, . . . , 1), then inω(f) = inω′(f); therefore we may assume that ω ∈ Rn

≥0. Now notice that
there exists an upper bound D for the generating degrees of all the ideals with the same
Hilbert function as I. Thus, if ω and ω′ induce the same partial order on all monomials of
degree less than or equal to D, then inω(J) = inω′(J) for every homogeneous ideal J with
such Hilbert function. Hence, we may further assume that ω ∈ Zn, with ω1 ≥ . . . ≥ ωn ≥ 0.
By Theorem 2.9, we let U be a non-empty Zariski open set such that gcs(I≤D) = cs(gI≤D)
for all g ∈ U. Clearly, it is enough to prove the equality degree by degree up to the degree
D. Let W be the degree d component of inω(gI) with 0 ≤ d ≤ D. First, we decompose
Ad as a direct sum of vector spaces Vp ⊕ Vp−1 ⊕ · · · ⊕ V0, where Vi is generated by all
polynomials in Ad which are homogeneous with respect to ω and of weight i. Accordingly,
p = dω1, Vp = K[X1, . . . , Xj]d with j = max{i : ωi = ω1}, and b acts as the identity on
Vp. Now, if we decompose W in an analogous manner as ⊕0

i=pWi, we immediately have that
Wp ⊆ Vp and Wp is fixed under the action of b. We may thus assume by induction that
b (⊕i<jWp−i) = ⊕i<jWp−i and we need to prove that b (⊕i≤jWp−i) is equal to ⊕i≤jWp−i. In
order to see this it is enough to prove a containment. Assume Wj 6= 0, otherwise the result
follows from the inductive hypothesis. When 0 6= f ∈ Wj we can write b(f) as f+q, where q is
a sum of polynomials of weight larger than j, i.e., q ∈ Vp⊕· · ·⊕Vj+1, and it is left to show that
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q ∈ Wp ⊕ · · · ⊕ Wj+1. If this would not be the case, then inω(f) = inω(q) 6∈ Wp ⊕ · · · ⊕ Wj+1.

Thus, by Proposition 3.1 we would have rankSj+1(b(W )) > rankSj+1(W ) and in particular
αω(bW ) > αω(W ).

On the other hand, by definition of W and Subsection 1.3 we have that

αω(bW ) = αω(b(inω(gI)d)) = αω

(
b((̃gI)t=0)d

)
,

where g̃I denotes the homogenization of the ideal gI with respect to ω. By arguing as
before (2.8) we see that this quantity is determined by the ranks of the non-zero minors of
the matrix M

b((̃gI)t=0
)d

, each such minor corresponding to a non-zero minor of the matrix

M
b((̃gI))d

, which has entries in K[t]. In particular, we can find an a ∈ K such that all the

non-zero minors of M
b((̃gI))d

do not vanish after applying the substitution t = a. Hence,

αω(bW ) ≤ αω

(
b(((̃gI)t=a)d

)
= αω (b(Da(gI))d). Accordingly,

αω(bW ) ≤ max{αω(hId) : h ∈ GLn(K)} = αω(gId),

where the last equality follows from the choice of g ∈ U and (2.8). Proposition 3.1 implies
that αω(gId) = αω(inω((gId)), which is by definition αω(W ). We have thus obtained that
αω(bW ) ≤ αω(W ) and the desired contradiction. �

If we consider a homogeneous ideal I of A and take for instance ω to be the weight
(1, 1, . . . , 1, 0), then by the previous theorem a general initial ideal of I with respect to
ω is fixed under any coordinates change which is the identity on X1, . . . , Xn−1; this fact can
be useful in applications, see for instance [CaKu] Section 4 and [CaSb] Proposition 1.6.
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