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Abstract. We estimate the Castelnuovo-Mumford regularity of ideals in a polynomial ring
over a field by studying the regularity of certain modules generated in degree zero and with
linear relations. In dimension one, this process gives a new type of upper bounds. By means
of recursive techniques this also produces new upper bounds for ideals in any dimension.

1. Introduction

Let S = k[x1, . . . , xn] be standard graded polynomial ring over a field k, and I be a homoge-
neous ideal generated in degree at most D. The Castelnuovo-Mumford regularity is a measure
of the complexity of the ideal I, and has been extensively studied in the literature.

Upper bounds for reg(I) in terms of D and n have been proved by Galligo [Gal74, Gal79]
and Giusti [Giu84] over fields of characteristic zero, then extended to all characteristics by
Bayer and Mumford [BM93] and by the first named author and Sbarra [CS05]. They prove

that reg(I) 6 (2D)2
n−2

.
Similar type of results for finitely generated graded modules, or for certain classes of modules

or ideals, have been obtained by several authors (for instance, see [CFN08, BG09, HH06]).
A key result of this article is a new type of upper bound for modules of dimension one.

This result is inspired by an analogous one obtained by Bruns, Conca and Römer in the zero-
dimensional case [BCR11, Remark 3.10 (b)].

For higher dimension, there is a well-known argument that allows to reduce to a lower-
dimensional case by expressing the regularity of an ideal in terms of that of its hyperplane
sections (see [CS05], and Section 2). We optimize this reduction step by introducing correction
factors, therefore improving known upper bounds for the regularity of ideals in any dimension.
The following is the main result of this article.

Theorem A. (Theorems 2.1 and 2.10) Let k be an infinite field, S = k[x1, . . . , xn] with
the standard grading, and I be a homogeneous ideal generated in degree at most D. Let
d = dim(S/I), h = ht(I), and y1, . . . , yd be a linear system of parameters in S/I. Let e(S/I)
be the multiplicity of S/I, and c be the value of Hilbert function of S/(I + (y1, . . . , yd−1)) in
degree D (if d 6 1, by this we simply mean the value of the Hilbert function of S/I in degree
D). Then

reg(S/I) 6

{
D + c− 1 if d 6 1[
(D + c− 1)

(
Dh − e(S/I) + 1

)]2d−2

if d > 2.
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For zero-dimensional ideals, a sharp upper bound is predicted by the Eisenbud-Green-Harris
conjecture [EGH93, EGH96]. In Corollary 2.4 we compute this upper bound explicitly, and
thanks to Theorem A we show show that it holds in some cases (see Remarks 2.6 and 2.7).

We would like to point out that, for general upper bounds on reg(S/I) such as the ones
of Theorem A, a double exponential behavior in n with base depending on D, is inevitable.
This is because of a series of well-known examples due to Mayr and Meyer [MM82] (see also
[BS88, Koh98]). However, thanks to Theorem A, we are able to drastically improve the upper

bound reg(I) 6 (2D)2
n−2

by dropping a factor of 22n−2
. In fact, we prove that, if n > 3 and I is

a homogeneous ideal generated in degree at most D, then reg(I) 6 D2n−2
(see Corollary 2.13).

2. New upper bounds on the regularity of ideals

Throughout this article, S denotes a standard graded polynomial ring k[x1, . . . , xn] over a
field k, and m = (x1, . . . , xn) its graded maximal ideal. Replacing k with a field extension will
not affect our considerations, therefore we will harmlessly assume throughout that k is infinite.
Given a finitely generated graded S-module M =

⊕
j∈Z Mj, we let HF(M ; j) = dimk(Mj)

denote its Hilbert function in degree j ∈ Z. We let reg(M) = sup{i + j | H i
m(M)j 6= 0} be

its Castelnuovo-Mumford regularity, where H i
m(−) denotes the i-th graded local cohomology

module with support in m = (x1, . . . , xn). Equivalently, reg(M) = sup{j− i | TorSi (k,M)j 6= 0}
(see [EG84]).

The next result, even if it involves rather basic techniques, is the crucial point of this article.
We estimate the regularity of an ideal by means of the regularity of a related module, which
turns out to be linearly presented. This fact, combined with a result of Chardin, Fall and Nagel
[CFN08], leads to surprising linear upper bounds for the regularity of ideals of dimension at
most one.

Theorem 2.1. Let I be a homogeneous ideal such that dim(S/I) 6 1. Assume that I is
generated in degree at most D, and let c = HF(S/I;D). Then reg(S/I) 6 D + c− 1.

Proof. If c = 0, then there is nothing to prove. Moreover, when n < 2 the claim is straight-
forward to check, so we will assume that n > 2. Let s1, . . . , sc be elements of S whose images
modulo I form a k-basis of (S/I)D. Since I + (s1, . . . , sc) ⊆ mD, we have an exact sequence

0 // U(−D) // S⊕c(−D)
[s1,...,sc] // S/I // S/mD // 0

for some graded submodule U of F = S⊕c. Thus, we obtain that reg(S/I) 6 max{D +
reg(F/U), reg(S/mD)} = D + reg(F/U).

From the exact sequences TorS2 (k, S/mD)j → TorS1 (k, F/U(−D))j → TorS1 (k, S/I)j of vector
spaces, we deduce that U is generated in degree at most one, since both modules on the sides are
zero for j > D+ 1. As a consequence, F/U is a module of dimension at most one, generated by
c elements of degree zero and related in degrees at most one. If follows from [CFN08, Theorem
2.1 (ii)] applied to the case l = 1 that reg(F/U) 6 c− 1, and the proof is complete. �

For zero-dimensional ideals, the upper bound of Theorem 2.1 had already been proved by
Bruns, Conca and Römer [BCR11, Remark 3.10 (b)]. However, we point out that in the zero-
dimensional case the best possible upper bound in terms of D and c is given by the Eisenbud-
Green-Harris Conjecture (for instance, see [EGH93, CM08]). In order to be more specific, we
first recall some definitions and notation. Let d1 6 . . . 6 dh be non negative integers. An ideal
L is called a (d1, . . . , dh)-LPP ideal if L = (xd1

1 , . . . , xdh
h ) + L, where L is a lex-segment ideal.
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We will make L unique by always choosing the largest possible lex-segment ideal for which the
equality holds. The Eisenbud-Green-Harris Conjecture (henceforth, EGH) states that, given
any homogeneous ideal I containing a regular sequence of degrees d1, . . . , dh, there exists a
(d1, . . . , dh)-LPP ideal with the same Hilbert function as I.

Given a homogeneous ideal I that contains a regular sequence of degrees d1, . . . , dh, for D > 0
we let LPP(I; d1, . . . , dh;D) be the (d1, . . . , dh)-LPP ideal L = (xd1

1 , . . . , xdh
h ) +L such that L is

either zero or is generated in degree D, and HF(S/I;D) = HF(S/L;D). An equivalent way of
stating the EGH Conjecture is to assert that, for any homogeneous ideal I containing a regular
sequence of degrees d1, . . . , dh, and for any integer D > 0, one has that HF(S/I;D + 1) 6
HF(S/LPP(I; d1, . . . , dh;D);D + 1).

In what follows, whenever h = n and d1 = . . . = dn = D, we denote LPP(I; d1, . . . , dn;D)
simply by LPP(I;D). We ask the following question.

Question 2.2. Let S = k[x1, . . . , xn], and I be a zero-dimensional homogeneous ideal generated
in degree at most D. Is reg(S/I) 6 reg(S/LPP(I;D))?

If the EGH Conjecture were to be true, then the Hilbert function of S/I would be point-wise
bounded above by the Hilbert function of S/LPP(I;D), and this would clearly give a positive
answer to Question 2.2. In this sense, Question 2.2 can be seen as a weaker version of the EGH
Conjecture for zero-dimensional ideals.

In order to be more specific about the upper bound predicted by Question 2.2, we explicitly
compute the regularity of a zero-dimensional LPP ideal.

Lemma 2.3. Let d1 6 . . . 6 dn and D > 2 be integers, with D 6
∑n

i=1(di − 1). Let

L = (xd1
1 , . . . , xdn

n ) + L be a (d1, . . . , dn;D)-LPP ideal, and assume that L 6= (xd1
1 , . . . , xdn

n ). Set
u = xta

a ·x
ta+1

a+1 · · ·x
tb
b , with ta 6= 0, be the smallest monomial with respect to the lex order which

has degree D, and belongs to L. Then reg(S/L) = ta − 1 +
∑n

i=a+1(di − 1).

Proof. Let s =
∑n

i=1(di − 1) and J = (xd1
1 , . . . , xdn

n ). Let j 6 s, and let vj be the smallest
monomial with respect to the lex order which has degree j, and does not belong to J . Then
vj ∈ L if and only if Sj ⊆ Lj. Thus, the regularity of S/L is achieved in the highest degree

j for which vj does not belong to L. It is easy to see that, if vj = xj1
1 · · ·xjn

n , and i is the

smallest index for which ji 6= 0, then jr = dr − 1 for all r > i, and vj−1 = xji−1
i x

di+1−1
i+1 · · ·xdn−1

n .
Therefore, vj /∈ L if and only if jr = 0 for all r ∈ {1, . . . , a− 1}, and ja < ta. The largest j for
which vj satisfies this condition is j = ta − 1 +

∑n
i=a+1(di − 1). �

The previous considerations, together with Lemma 2.3, lead to the following result.

Corollary 2.4. Let I be a zero-dimensional ideal generated in degree at most D. If the EGH
Conjecture holds true, then in the same notation as in Lemma 2.3 we have that

reg(S/I) 6 (n− a)(D − 1) + ta − 1.

Remark 2.5. Assuming the validity of the EGH Conjecture, the upper bound of Corollary 2.4
is clearly sharp, as it is achieved by S/LPP(I;D).

Remark 2.6. In the setup of Corollary 2.4, if we write LPP(I;D) = (xD
1 , . . . , x

D
n ) + L and

we assume that c = HF(S/I;D) < D, then the smallest monomial of degree D inside L is

xc+1
n−1x

D−(c+1)
n . It then follows from Lemma 2.3 that reg(S/LPP(I;D)) = c+D−1, which is the

upper bound obtained in Theorem 2.1. It follows that Question 2.2 has positive answer when
c < D.
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If more information about the ideal I is available, then one can aim at sharper upper bounds.
For instance, if I contains a regular sequence of degrees d1 6 . . . 6 dn, and the EGH Conjecture
with respect to this sequence of degrees holds true, then reg(S/I) 6 reg(S/LPP(I; d1, . . . , dn;D))
for all D > 0. Note that an explicit formula for the right-hand side can be obtained by means
of Lemma 2.3. One concrete example in which this remark applies is when di+1 >

∑i
j=1(di−1)

for all i = 1, . . . , n− 1, as proved in [CDS20, Theorem A].

Remark 2.7. In the setup of Corollary 2.4, if d1 6 . . . 6 dn 6 D, then one can show that
HF(LPP(I;D); j) 6 HF(LPP(I; d1, . . . , dn;D); j) for all j ∈ Z. Therefore, if the EGH is known
to hold for a sequence of degrees d1 6 . . . 6 dn 6 D, then Question 2.2 has a positive answer
for ideals that contain a regular sequence of degrees d1, . . . , dn.

We now return to our original goal of producing improved upper bounds for the Castelnuovo-
Mumford regularity of ideals in any dimension. More specifically, we aim at improving a
standard recursive argument used in [CS05], which allows to drop the dimension by one at a
time, by including several correction terms. Once we reach dimension one, we will finally use
the new bounds obtained in Theorem 2.1. Let us introduce some notation first.

Let I be a homogeneous ideal, and set R = S/I. Let y1, . . . , yt be a sequence of linear forms in
R, and for i = 1, . . . , t let R(i) denote the ring R/(y1, . . . , yi). For convenience, we let R(0) = R.
We recall that a homogeneous non-zero element y is called filter regular for R if 0 :R y has
finite length. The sequence y1, . . . , yt is called filter regular for R if yi+1 is filter regular over
R(i) for all i ∈ {0, . . . , t− 1}. If k is infinite, a sufficiently general linear form ` ∈ R(i) is a filter
regular element for R(i). In particular, a sufficiently general choice of minimal generators of m
forms a filter regular sequence for R. Let y1, . . . , yt be a filter regular sequence for R. Observe
that, in this case, (I + (y1, . . . , yi))

sat = (I + (y1, . . . , yi)) : m∞ = (I + (y1, . . . , yi)) : y∞i+1 for all
0 6 i 6 t− 1, where for i = 0 we simply mean that Isat = I : y∞1 .

Now assume that R = S/I has Krull dimension d > 1, and I is generated in degree at most
D. Let y1, . . . , yd be a filter regular sequence for R consisting of linear forms. If `(−) denotes
the length of a module, it is shown in the proof of [CS05, Theorem 2.4] that

(2.1) reg(R) 6 max{D, reg(R(1))}+

(
d−1∏
i=1

reg(R(i))

)
· `
(

(I + (y1, . . . , yd−1))
sat + (yd)

I + (y1, . . . , yd)

)
.

Observe that

`

(
(I + (y1, . . . , yd−1))

sat + (yd)

I + (y1, . . . , yd)

)
= `(R(d))− `

(
S

(I + (y1, . . . , yd−1))sat + (yd)

)
= `(R(d))− e(R).

A typical estimate for `(R(d)) comes from the fact that we can find forms f1, . . . , fh ∈ I of
degree D such that f1, . . . , fh, y1, . . . , yd forms a regular sequence of maximal length in S. Thus
`(R(d)) 6 `(S/(f1, . . . , fh, y1, . . . , yd)) = Dh. We here provide a slightly more refined estimate
for `(R(d)).

To avoid any confusion, and to be consistent with the notation used in the proof of Theorem
2.10, in the next lemma we consider a polynomial ring in h variables, rather than in n variables.
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Lemma 2.8. Let S = k[x1, . . . , xh], and I ⊆ S be a homogeneous ideal, generated in degree at
most D, and such that R = S/I is Artinian. Let c′ = HF(R;D). Then

`(R) 6 Dh −
(
D + h− 1

h− 1

)
+ c′ + h 6 Dh.

Proof. Since R is Artinian and generated in degree at most D the ideal I contains an ideal J
generated a regular sequence of h forms of degree D. Therefore, we get

`(R) = `(S/J)− `(I/J) 6 Dh − HF(I/J ;D)

= Dh − HF(I;D) + HF(J ;D) 6 Dh −
(
D + h− 1

h− 1

)
+ c′ + h.

Since c′ = HF(S;D)− HF(I;D) 6
(
D+h−1
h−1

)
− h always holds, the proof is complete. �

Notation 2.9. We let Φ(D, c′, h) = Dh −
(
D+h−1
h−1

)
+ c′ + h.

We are finally ready to state and prove the second part of our main result.

Theorem 2.10. Let S = k[x1, . . . , xn], and I ⊆ S be a homogeneous ideal of height h 6 n− 2,
generated in degree at most D, and let d = n− h = dim(S/I) > 2. Let y1, . . . , yd be a system
of parameters for R = S/I consisting of linear forms. Let c = HF(R/(y1, . . . , yd−1);D), and
c′ = HF(R/(y1, . . . , yd);D). Then

reg(R) 6 ((D + c− 1)(Φ(D, c′, h)− e(R) + 1))
2d−2

.

Proof. If z1, . . . , zd is a general choice of a linear system of parameters, then for all t ∈
{1, . . . , d} and all j ∈ Z we have that HF(R/(z1, . . . , zt); j) 6 HF(R/(y1, . . . , yt); j). There-
fore, after possibly replacing y1, . . . , yd with a general choice of a linear system of param-
eters, we may assume y1, . . . , yd is a filter regular sequence for R. For i = 1, . . . , d, let
R(i) = R/(y1, . . . , yi). Applying (2.1) to R(1) yields reg(R(1)) 6 max{D, reg(R(2))}+ A2, where
we set A2 = reg(R(2)) · · · reg(R(d−1)) · (`(R(d)) − e(R)). Applying (2.1) to R, and using the
estimate for reg(R(1)) which we have just obtained, we get that

reg(R) 6 max{D, reg(R(2))}+ A2 +
(
max{D, reg(R(2))}+ A2

)
· A2

= (1 + A2) · (max{D, reg(R(2))}+ A2) 6
(
max{D, reg(R(2))}+ A2

)2
.

Repeating the same argument for R(j), with 2 6 j 6 d− 2, we obtain that

reg(R) 6
(
max{D, reg(R(d−1))}+ Ad−1

)2d−2

6 ((D + c− 1) + Ad−1)
2d−2

,

where Ad−1 = reg(R(d−1)) · (`(R(d)) − e(R)) and the last inequality follows from the fact that
max{D, reg(R(d−1))} 6 D+c−1, by Theorem 2.1. By Lemma 2.8 we have `(R(d)) 6 Φ(D, c′, h),
and thus Ad−1 6 (D + c− 1)(Φ(D, c′, h)− e(R)) follows again from Theorem 2.1. We conclude
that

reg(R) 6 ((D + c− 1)(Φ(D, c′, h)− e(R) + 1))
2d−2

. �

Remark 2.11. By Lemma 2.8 we have that Φ(D, c′, h) 6 Dh, and therefore the bound

reg(R) 6
(
(D + c− 1)(Dh − e(R) + 1)

)2d−2

claimed in Theorem A now follows from Theorem 2.10.
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Remark 2.12. Let R = S/I be a d-dimensional ring and a = HF(R;D). Let y1, . . . , yd be a lin-
ear system of parameters for S/I, let c = HF(R/(y1, . . . , yd−1);D) and c′ = HF(R/(y1, . . . , yd);D),
as in Theorem 2.10. Consider the D-th Macaulay expansion of a (for instance, see [BH93]):

a =

(
a1
D

)
+

(
a2

D − 1

)
+ · · ·+

(
aD
1

)
.

A repeated application of Green’s hyperplane restriction Theorem [Gre89] yields

c 6

(
a1 − (d− 1)

D

)
+

(
a2 − (d− 1)

D − 1

)
+ · · ·+

(
aD − (d− 1)

1

)
and

c′ 6

(
a1 − d

D

)
+

(
a2 − d

D − 1

)
+ · · ·+

(
aD − d

1

)
.

Since the right-hand side of the inequality in Theorem 2.10 is increasing in c and c′, one can
replace their values with the above estimates, and still obtain an upper bound on reg(R).
Alternatively, one can use the Macaulay expansion of c to determine an upper bound for c′. If

c =

(
c1
D

)
+

(
c2

D − 1

)
+ · · ·+

(
cD
1

)
, then c′ 6

(
c1 − 1

D

)
+

(
c2 − 1

D − 1

)
+ · · ·+

(
cD − 1

1

)
.

Theorem 2.10 allows to drastically improve the upper bound reg(I) 6 (2D)2
n−2

which is

usually found in the literature. In fact, it can be shown that reg(S/I) 6 D2n−2
holds for all

n > 3 as a consequence of Theorem 2.10.

Corollary 2.13. Let S = k[x1, . . . , xn] with the standard grading, and I be a homogeneous

ideal, generated in degree at most D. Assume that n > 3. Then reg(I) 6 D2n−2
.

Proof. Let d = dim(S/I) and h = n − d = ht(I). We may assume that D > 2. If h = 1, then
we can write I = fI ′ for some f ∈ S of degree D′ 6 D and I ′ an ideal of height at least two,
generated in degree at most D − D′. Since reg(I) = D′ + reg(I ′), the claim is clear provided
we can prove the corollary for ideals of height at least two.

After a change of coordinates, we may assume that xn, . . . , xh+1 forms a linear system of
parameters which form a filter regular sequence for R = S/I. Let S = k[x1, . . . , xh+1], so that
R/(xn, . . . , xh+2) can be viewed as a quotient of S by a homogeneous ideal I, still generated in
degree at most D.

If dim(R) 6 1, then reg(R) 6 (D−1)n by [CFN08, Theorem 3.5]. The latter is easily seen to

be bounded above by D2n−2−1 whenever n > 3 and D > 2. Thus, reg(I) = reg(R)+1 6 D2n−2
.

For the rest of the proof, assume dim(R) > 2. Observe that c = HF(S/I;D) 6 HF(S;D)−
ht(I) =

(
D+h
h

)
− h and, if we let S ′ = S/(xh+1) we similarly have that c′ 6 HF(S ′;D) −

ht(IS ′;D) =
(
D+h−1
h−1

)
− h.

Observe that, in the above inequalities, equality holds for c if and only if it holds for c′, and
this happens if and only if I is generated by a regular sequence of forms of degree D. When
this is the case we have reg(R) = (D − 1)h, which can be bounded above by D2h−1 − 1 for all
h > 2, as a straightforward calculations shows. Since h 6 n− 2, the claim follows in this case
as well.
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We may henceforth assume that c 6
(
D+h
h

)
− h − 1 and c′ 6

(
D+h−1
h−1

)
− h − 1. In this case,

we have that Φ(D, c′, h) = Dh −
(
D+h−1
h−1

)
+ c′ + h 6 Dh − 1. By Theorem 2.10 we get that

reg(R) 6 [(D + c− 1)(Φ(D, c′, h)− e(R) + 1)]
2n−h−2

6

[(
D +

(
D + h

h

)
− h− 2

)
(Dh − e(R))

]2n−h−2

.

A straightforward computation shows that for all D > 2 and h > 2 one has D+
(
D+h
h

)
−h−2 6

Dh. Since 2h 6 2h for all h > 2, and because e(R) > 1, we finally get

reg(R) 6
[
Dh(Dh − e(R))

]2n−h−2

< D2h(2n−h−2) 6 D2n−2

,

so that reg(I) = reg(R) + 1 6 D2n−2
in this case as well. �

We point out that the bound of Corollary 2.13 also follows from [CFN08, Example 3.6].
However, increasing either D or the height h of the ideal I, and conducting a careful analysis of
the quantities involved in the right-hand side of the inequality in Theorem 2.10, leads to even
more refined estimates than the one above.
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