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Abstract

Let V ⊂ P9 be the Veronese cubic surface. We classify the projections of V to P8 whose coordinate rings
are Koszul. In particular we obtain a purely theoretical proof of the Koszulness of the pinched Veronese, a
result obtained originally by Caviglia using filtrations, deformations and computer assisted computations.
To this purpose we extend, to certain complete intersections, results of Conca, Herzog, Trung and Valla
concerning homological properties of diagonal algebras.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Koszul algebras were originally introduced by Priddy [18] in his study of homological
properties of graded (non-commutative) algebras arising from various constructions in algebraic
topology. Given a field K , a positively graded K -algebra A = ⊕i∈N Ai with A0 = K is Koszul if
the field K , viewed as a A-module via the identification K = A/A+, has a linear free resolution.
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In the very interesting volume [17] Polishchuk and Positselski discuss various surprising aspects
of Koszulness.

In the commutative setting Koszul algebras can be characterized by means of the relative
Castelnuovo–Mumford regularity. Paraphrasing Hochster [13, p. 887], one can say that life is
worth living in standard graded algebras when all the finitely generated graded modules have
finite (relative) Castelnuovo–Mumford regularity. Such algebras are exactly the commutative
Koszul algebras; see Avramov and Eisenbud [3] and Avramov and Peeva [4].

Let K be a field and R = K [x0, x1, x2]. The pinched Veronese is the K -subalgebra of R
generated by all the monomials of degree 3 with the exception of x0x1x2. It can be seen as the
coordinate ring of a projection from a point of the Veronese cubic surface V2,3 of P9, that is,
the embedding of P2 in P9 with the forms of degree 3. It is a “generic” projection with respect
to the stratification of the ambient space by the secant varieties of V2,3. That is, the center of
the projection is outside the second secant variety sec2(V2,3) of V2,3 and the third secant is the
ambient space P9.

In the nineties Sturmfels asked, in a conversation with Peeva, whether the pinched Veronese
is Koszul and the problem became quickly known as a benchmark example to test new theorems
and techniques. The first author of the present paper proved in [5] that the pinched Veronese
is indeed Koszul by using a combination of arguments based on filtrations, deformations and
computer assisted computations.

More generally, one can ask the same question for any projection of V2,3 to P8. In particular,
one can ask whether the projection of V2,3 to P8 from a point that does not belong to sec2(V2,3)

is Koszul. The goal of the paper is to show that this is indeed the case. As a special case, we
obtain a entirely theoretical proof of the Koszulness of the pinched Veronese.

To achieve this result we develop in Section 2 homological arguments that generalize results
of Conca, Herzog, Trung and Valla [7]. Given a standard Z2-graded K -algebra S and a cyclic
subgroup ∆ of Z2 one considers the “diagonal” subalgebra S∆ of S defined as ⊕v∈∆ Sv .
Similarly, for every Z2-graded S-module M one defines the S∆-module M∆ as ⊕v∈∆ Mv . For
every element w ∈ Z2, the shifted copy S(w) of S is defined as the Z2-graded S module whose
v-th component is Sv+w.

In the transfer of homological information from S to S∆ it is crucial to bound the homological
invariants of the shifted-diagonal modules S(w)∆ as S∆-modules. When S is a bigraded
polynomial ring, it is proved in [7] that the modules S(w)∆ have a linear S∆-free resolution. We
extend this result to the main diagonal ∆ = (1, 1)Z of certain bigraded complete intersections;
see Section 2.

In Section 3 we prove that, given a complete intersection I of 3 quadrics in a polynomial ring
R, the K -subalgebra of R generated by the cubics in I is Koszul. This is done by constructing
a complex whose homology vanishes along the relevant diagonal. Finally in Section 4 we
reinterpret the result of Section 3 to get the classification of the projections to P8 of the cubic
Veronese surface with a Koszul coordinate ring.

2. Generalities and preliminary results

Let K be a field and A be a standard graded K -algebra, that is, a commutative algebra of
the form A = ⊕i∈N Ai such that A0 = K , dimK A1 is finite and A is generated as a K -
algebra by A1. In other words, a standard graded K -algebra can be written as A = S/I where
S = K [x1, . . . , xn] is a polynomial ring over K equipped with the graded structure induced by
the assignment deg(xi ) = 1 for every i and I is a homogeneous ideal. The algebra A is said to



406 G. Caviglia, A. Conca / Advances in Mathematics 234 (2013) 404–413

be quadratic if its defining ideal I is generated by quadrics and G-quadratic if I has a Gröbner
basis of quadrics (with respect to some coordinate system of S and some term order).

Given a non-zero graded A-module M one defines the (relative) Castelnuovo–Mumford
regularity as

regA(M) = sup{ j − i : TorA
i (M, K ) j ≠ 0} ∈ Z ∪ {+∞}.

One says that M has a linear A-resolution if M is generated in a single degree, say d, and
regA(M) = d. Also, A is Koszul if the residue field K has a linear A-resolution, i.e. regA K = 0.
It turns out that a standard graded K -algebra A is Koszul if and only if regA(M) is finite for
every finitely generated graded A-module M ; see [3, Theorem 1] and [4, Theorem 2].

It is known that Koszul algebras are quadratic and that G-quadratic algebras are Koszul. Both
implications are, in general, strict; see Eisenbud, Reeves and Totaro [11].

One defines the graded Poincaré series of M as

P A
M (t, s) =


i, j

dim
K

TorA
i (M, K ) j s

j t i
∈ Z[s][|t |].

Lemma 2.1. Let A be a standard graded K -algebra and let B be a graded quotient of A. Let M
be a finitely generated graded B-module. Assume regA(B) ≤ 1. Then we have the following.

(1) regB(M) ≤ regA(M).
(2) If M has a A-linear resolution then M has a B-linear resolution.
(3) If A is Koszul then B is Koszul as well.

Proof. Notice that (3) is a special case of (2) and (2) is a special case of (1). To prove (1) we
may assume regA(M) is finite (otherwise there is nothing to prove), say a = regA(M). The
Cartan–Eilenberg spectral sequence, in the graded setting, induces a coefficientwise inequality

P B
M (t, s) ≤

P A
M (t, s)

1 + t − t P A
B (t, s)

;

see Avramov [2, Proposition 3.3.2]. Set G(t, s) = t P A
B (t, s) − t so that, by assumption, we may

write G(t, s) =


i≥2 gi (s)t i with gi (s) polynomials of degree ≤ i . It follows that the terms
s j t i that appear with a non-zero coefficient in 1/(1 − G) =


k≥0 Gk satisfy j ≤ i . But then the

terms s j t i that appear with a non-zero coefficient in P A
M (t, s)/(1 − G) satisfy j ≤ i + a and the

desired inequality follows. �

Let R = ⊕(i, j)∈Z2 R(i, j) be a bigraded standard K -algebra. Here standard means that
R(0,0) = K and that R is generated as a K -algebra by the K -vector spaces R(1,0) and R(0,1)

of finite dimension. Let ∆ be the diagonal (1, 1)Z ⊂ Z2. We set R∆ = ⊕i∈Z R(i,i) and observe
that R∆ is the K -subalgebra of R generated by R(1,1) and hence it is a standard graded K -
algebra. For every bigraded R-module M = ⊕(i, j)∈Z2 M(i, j) we set M∆ = ⊕i∈Z M(i,i). Notice
that M∆ is a module over R∆. We may think of −∆ as a functor from the category of bigraded
R-modules and maps of degree 0 to that of graded R∆-modules with maps of degree 0. Clearly
−∆, being a selection of homogeneous components, is an exact functor.

For (a, b) ∈ Z2 let R(−a, −b) be the shifted copy of R. The diagonal module R(−a, −b)∆
is a R∆-submodule of R. The homological properties of R(−a, −b)∆ play an important role in
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the transfer of homological information from R to R∆. Note that R(−a, −b)∆ is generated by
R(0,a−b) if a ≥ b and by R(b−a,0) if b ≥ a. More precisely, one has:

R(−a, −b)∆ =


R(0, a − b)∆(−a) if a ≥ b
R(b − a, 0)∆(−b) if b ≥ a.

We have the following.

Proposition 2.2. Let S = K [x1, . . . , xm, t1, . . . , tn] be the polynomial ring bigraded by deg xi =

(1, 0) for i = 1, . . . , m and deg ti = (0, 1) for i = 1, . . . , n. Let I be an ideal of S generated
by a regular sequence of elements of S all of bidegree (2, 1) and R = S/I . Then we have the
following.

(1) R∆ is Koszul.
(2) For every (a, b) ∈ Z2 the module R(−a, −b)∆ has a linear R∆-resolution, i.e.,

regR∆
R(−a, −b)∆ = max(a, b).

Proof. Let h be the codimension of I . We argue by induction on h. If h = 0 then R∆ is the
Segre product of K [x1, . . . , xm] and K [t1, . . . , tn] that is Koszul, indeed G-quadratic; see for
instance [11]. In this case, statement (2) is proved in [7, proof of Theorem 6.2]. Assume h > 0.
We may write R = T/( f ) where f is a T -regular element of bidegree (2, 1) and where T is
defined by a S-regular sequence of length h − 1 of elements of bidegree (2, 1). We have a short
exact sequence of T -modules:

0 → T (−2, −1) → T → R → 0 (2.1)

and applying ∆ we have an exact sequence of T∆-modules:

0 → T (−2, −1)∆ → T∆ → R∆ → 0.

By induction we know T∆ is Koszul and that regT∆
T (−2, −1)∆ = 2. Hence

regT∆
R∆ ≤ 1.

By Lemma 2.1(3) we may conclude that R∆ is Koszul. In order to prove (2) we divide the
discussion into three cases.

Case 1. a = b. Just observe that R(−a, −a)∆ = R∆(−a).

Case 2. b > a. We first shift (2.1) by (−a, −b) and then apply ∆. We get a short exact sequence
of T∆-modules:

0 → T (−a − 2, −b − 1)∆ → T (−a, −b)∆ → R(−a, −b)∆ → 0.

So we have:

regT∆
R(−a, −b)∆ ≤ max{regT∆

T (−a, −b)∆, regT∆
T (−a − 2, −b − 1)∆ − 1}.

By induction and since we are assuming b > a we deduce that

regT∆
R(−a, −b)∆ = b.

Since we have shown already that regT∆
R∆ ≤ 1, by Lemma 2.1(1) we can deduce that

regR∆
R(−a, −b)∆ = b.

Case 3. a > b. Set P = (t1, . . . , tn) ⊂ S. As already observed we have R(−a, −b)∆ =

R(0, a − b)∆(−a). So we have to prove that regR∆
R(0, u)∆ = 0 for every u > 0. We consider
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the minimal free (bigraded) resolution of S/Pu as an S-module (that is a Eagon–Northcott
complex)

F : 0 → Fn → Fn−1 → · · · → F1 → F0 → 0

with F0 = S and Fi = S#(0, −u − i + 1) for i > 0 where # denotes some integer depending
on n, u and i that is irrelevant in our discussion. The homology of F ⊗ R is TorS(S/Pu, R). We
may as well compute TorS(S/Pu, R) as the homology of S/Pu

⊗ G where G is a free resolution
of R as an S-module. By assumption, we may take G to be the Koszul complex on a sequence of
elements of bidegree (2, 1). It follows that:

Hi (F ⊗ R) =


a subquotient of (S/Pu)#(−2i, −i) if 0 ≤ i ≤ h
0 if i > h.

Shifting with (0, u) and applying ∆ we have a complex (F ⊗ R(0, u))∆ that, we claim, has
no homology at all. Shifting and applying ∆ are compatible operations with taking homology.
Therefore to prove that (F ⊗ R(0, u))∆ has no homology we have only to check that

[(S/Pu)(−2i, −i + u)]∆ = 0

for all i and that is obvious by degree reasons. So we have an exact complex of R∆-modules:

0 → R#(0, −n)∆ → · · · → R#(0, −1)∆ → R#
∆ → R(0, u)∆ → 0.

Since we know (by Case 2) that regR∆
R(0, −i)∆ = i we may conclude (see [7, Lemma 6.3])

that regR∆
R(0, u)∆ = 0 as desired. �

3. Diagonal algebras of cubic forms

Let I be a homogeneous complete intersection ideal of codimension r generated by elements
of degree d in a polynomial ring R over a field K . Let c, e ∈ N and consider the K -subalgebra
Ac,e of R generated by the forms of degree c + ed in I e, i.e. Ac,e = K [(I e)ed+c]. If one gives
the standard Z2-graded structure to the Rees algebra Rees(I ) of I , then the ring Ac,e can be seen
as the (c, e)-diagonal subalgebra of Rees(I ), that is, Ac,e = ⊕i∈N Rees(I )(ic,ie).

Corollary 6.10 in [7] asserts that Ac,e is quadratic if c ≥ d/2 and Koszul if c ≥ d(r − 1)/r .
The authors of [7] ask (at p. 900) whether Ac,e is Koszul also for d/2 ≤ c < d(r − 1)/r . The
first instance of this problem occurs for d = 2 and r = 3, i.e. 3 quadrics, where the only possible
value for c is 1. The goal of this section is to treat this case that, as we will see in the following
section, is also the crucial case for the classification problem discussed in the introduction.

Let I = (g1, g2, g3) be a complete intersection of quadrics in R = K [x1, . . . , xn]. Consider
the Rees algebra

Rees(I ) = R[g1t, g2t, g3t] ⊂ R[t]

of I with its standard bigraded structure induced by deg xi = (1, 0) and deg gi t = (0, 1). It can
be realized as a quotient of the polynomial ring

S = K [x1, . . . , xn, t1, t2, t3]

bigraded with deg xi = (1, 0) and deg ti = (0, 1), by the ideal J generated by the 2-minors of

X =


g1 g2 g3
t1 t2 t3


.
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Let f1, f2, f3 be the 2-minors of X with the appropriate sign, say fi equals to (−1)i+1 times the
minor of X obtained by deleting the i-th column. Hence

J = I2(X) = ( f1, f2, f3).

The sign convention is chosen so that the rows of the matrix X are syzygies of f1, f2, f3. By
construction we have

Rees(I )∆ = K [I3] = K [xi g j : i = 1, . . . , n, j = 1, 2, 3]

where ∆ = (1, 1)Z ⊂ Z2. Our goal is to prove that K [I3] is Koszul.
For later use we record the following.

Lemma 3.1. (1) f1, f2 form a regular S-sequence.
(2) ( f1, f2) : f3 = (g3, t3).
(3) ( f1, f2) : t3 = J .
(4) (t3, f1, f2) : g3 = (t1, t2, t3).

Proof. (1) The ideal J is prime and hence f1, f2 have no common factors.
(2) The inclusion ⊇ follows because the rows of X are syzygies of f1, f2, f3. Clearly (g3, t3) ⊇

( f1, f2). Hence the equality follows if one shows that g3, t3, f3 is a regular sequence. But
that is obvious because the variable t3 does not appear in the polynomials g3 and f3, and f3
is irreducible being a minimal generator of a prime ideal.

(3) The inclusion ⊇ follows because the second row of X is a syzygy of f1, f2, f3. The equality
follows because J is prime and contains ( f1, f2).

(4) For the inclusion ⊇ simply note that f1 = −g3t2 mod (t3) and f2 = g3t1 mod (t3). The
other inclusion follows because (t1, t2, t3) is a prime ideal containing (t3, f1, f2). �

Set B = S/( f1, f2). Since f1, f2 is a regular S-sequence of elements of bidegree (2, 1) we
may apply to B the results of Proposition 2.2. One has also B/ f3 B = Rees(I ). We will prove
the following.

Theorem 3.2. We have:
(1) regB∆

(Rees(I )∆) = 1;
(2) Rees(I )∆ is Koszul.

Since, by construction, K [I3] = Rees(I )∆, as a corollary of Theorem 3.2 we have the
following.

Corollary 3.3. Let I be a complete intersection of 3 quadrics in K [x1, . . . , xn]. Then K [I3] is
Koszul.

Proof of Theorem 3.2. First of all we note that (2) follows from (1) and Lemma 2.1 since, by
Proposition 2.2, we know that B∆ is Koszul.

It remains to prove (1). Since f3t3 = 0 in B we have a complex

F : · · · → B(−4, −4)
t3

−→ B(−4, −3)
f3

−→ B(−2, −2)
t3

−→ B(−2, −1)
f3

−→ B → 0,

i.e. Fi = B(−i, −i) if i is even, Fi = B(−i − 1, −i) if i is odd. The homology of F can be
described by using Lemma 3.1:

Hi (F) =

Rees(I ) if i = 0
0 if i is even and positive
S/(t1, t2, t3)(−i − 3, −i) if i is odd and positive.
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The assertion for i = 0 holds by construction, and for i even and positive it holds because of
Lemma 3.1(3). Finally for i odd and positive by Lemma 3.1(2) we have

Hi (F) = (t3, g3)/(t3, f1, f2)(−i − 1, −i).

Hence Hi (F) is cyclic generated by the residue class of g3 mod (t3, f1, f2) that has degree
(−i − 3, −i). Using Lemma 3.1(4) and keeping track of the degrees we get the desired result.
Note that we have Hi (F∆) = Hi (F)∆ = 0 for every i > 0 and H0(F∆) = Rees(I )∆. We may
deduce from [7, Lemma 6.3] that

regB∆
Rees(I )∆ ≤ sup{regB∆

(Fi )∆ − i}.

Since B is defined by a regular sequence of elements of bidegree (2, 1) we may apply
Proposition 2.2 and get

regB∆
(Fi )∆ =


i if i is even
i + 1 if i is odd.

Summing up, we obtain regB∆
(Rees(I )∆) = 1. �

Remark 3.4. (1) In 3.2(2) one cannot replace Rees(I ) with a ring of the form S/I2(Y ) where
Y = (yi j ) is a 2×3 matrix with deg y1 j = (2, 0) and deg y2 j = (0, 1) and I2(Y ) has codimension
2. For instance for

H = I2


x2

1 x2
2 0

0 t2 t3


and S = K [x1, x2, x3, t1, t2, t3] one has that (S/H)∆ is not Koszul as can be checked by using
Macaulay 2 [12]. In other words, in the proof of 3.2 the fact that J is a prime ideal plays a crucial
role.

(2) The coordinate ring of the pinched Veronese can be realized as S∆/J∆, where

J = I2


x2

1 x2
2 x2

3
t1 t2 t3


.

Within the Segre product S∆ = K [xi t j : 1 ≤ i, j ≤ 3] the ideal J∆ has a Gröbner deformation
to H∆ = (x2

1 t2ti , x2
1 t3ti , x2

2 t3ti : i = 1, 2, 3). In particular, this shows that the pinched Veronese
has a nice quadratic Gröbner deformation within the Segre ring S∆. But this is, unfortunately,
not enough to prove that it is Koszul.

Remark 3.5. With the notation introduced at the beginning of the section, we have shown above
that A1,1 is Koszul for r = 3 and d = 2. The statements and the proofs of Proposition 2.2 and
Theorem 3.2 generalize immediately to the case of diagonal (1, e)Z and one obtains that A1,e is
Koszul as well. Moreover the case c = 0 is obvious because A0,e is the e-th Veronese ring of a
polynomial ring in 3 variables. So we may conclude that, for r = 3 and d = 2, Ac,e is Koszul
for all c and e.

4. Projections to P8 of the Veronese cubic embedding of P2

Let c, n be positive integers and V be a vector space of dimension n + 1 over a field K of
characteristic 0 or >c. The Veronese embedding of P(V ) with the forms of degree c can be
identified with the map

vn,c : P(V ) → P(Sc(V ))
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sending [x] to [xc
]. Here Sc(V ) denotes the degree c component of the symmetric algebra

S(V ). The coordinate ring of P(V ) is S(V ∗). Denote by Vn,c the image of vn,c. Denote by
(g, f ) → g ◦ f the natural bilinear form

Sc(V ∗) × Sc(V ) → K

that is GL(V )-equivariant. By taking a non-zero F ∈ Sc(V ) we may consider the projection φF
from P(Sc(V )) to P(W ) where W = Sc(V )/⟨F⟩. The coordinate ring (of the closure of) the
image of the composition φF ◦ vn,d gets identified with the K -subalgebra of S(V ∗) generated
by UF = {g ∈ Sc(V ∗) : g ◦ F = 0}, a space of forms of degree c of codimension 1. After
fixing a basis y0, . . . , yn for V and the dual basis x0, . . . , xn for V ∗, then S(V ) = K [y0, . . . , yn]

and S(V ∗) = K [x0, . . . , xn]. Furthermore g(x0, . . . , xn) ◦ f (y0, . . . , yn) gets identified with the
action of the differential operator g(∂/∂y0, . . . , ∂/∂yn) on f (y0, . . . , yn).

Returning now to the Veronese cubic embedding V2,3 of P2 in P9, we may summarize the
discussion above as follows. The projection of V2,3 to P8 from a point [F] ∈ P9

= P(S3(V )),
where S3(V ) = K [y0, y1, y2]3, has coordinate ring K [UF ] where UF = {g ∈ K [x0, x1, x2]3 :

g ◦ F = 0}. The construction is compatible with the PGL3(K ) action; hence forms F and F1 that
are in the same PGL3(K )-orbit will give projections with isomorphic coordinate rings.

Denote by seci (V2,3) the i-th secant variety of V2,3. One knows that sec1(V2,3) is a 5-
dimensional variety defined by the 3-minors of a 3 × 6 matrix of linear forms, a catalecticant
matrix; see Kanev [15] and Raicu [19]. It is also known that sec2(V2,3) is a quartic hypersurface,
defined by the Aronhold invariant, that coincides with the Zariski closure of the PGL3(K )-
orbit of the Fermat cubic; see Dolgachev and Kanev [10] or Ottaviani [16]. Furthermore
sec1(V2,3) \ V2,3 consists of two PGL3(K )-orbits, the orbit of the following polynomials:

F1 = y1 y2
2 , F2 = y3

1 + y3
2

while sec2(V2,3) \ sec1(V2,3) consists of three orbits, the orbits of:

F3 = y1 y2
0 + y2 y2

1 , F4 = y2
2 y1 + y3

0 , F5 = y3
0 + y3

1 + y3
2 ;

see [10, 5.13.2]. We have the following.

Theorem 4.1. Let F ∈ K [y0, y1, y2]3 and let AF be the coordinate ring of the projection of
V2,3 to P8 from the point [F]. We have the following.

(1) If [F] ∈ V2,3 then AF is Koszul. More precisely, it is G-quadratic.
(2) If [F] ∈ sec2(V2,3) \ V2,3 then AF is not quadratic (and hence not Koszul).
(3) If [F] ∉ sec2(V2,3) then AF is Koszul.

Proof. For (1) we may assume that F = y3
2 and then AF is the toric ring generated by all

the monomials of degree 3 in K [x0, x1, x2] different from x3
2 . That such a ring is defined by

a Gröbner basis of quadrics can be proved by direct computations but follows also from the
result [9, 2.13] of De Negri because the vectors space UF is a lexicographic segment.

For (2) we have to check that for each Fi (with i = 1, . . . , 5) described above the
corresponding ring AFi is not quadratic. One can compute explicitly a presentation of AFi

by elimination using, for instance, CoCoA [6] or Macaulay 2 [12]. And then one checks that
there is a cubic form the among generators of the defining ideal. Indeed there is exactly one
cubic generator in each case, while the number of quadrics is either 17 (for i = 3, 5) or 18
(for i = 1, 2, 4). That there is a cubic generator in the case of the Fermat cubic F5 has been
verified also by Alzati and Russo in [1, Example 4.5] by a theoretical argument. Also the case
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F1 and F2 can be treated easily because they are “cones”. For them it is enough to prove that
projections of the rational normal curve V1,3 ∈ P3 from the corresponding points are cubic
hypersurfaces in P2, and this is well-known. One obtains the cuspidal cubic with F1 and the
nodal cubic with F2. Finally for (3) one notes that if [F] ∉ sec2(V2,3) then the ideal I of all the
forms g ∈ K [x0, x1, x2] such that g ◦ f = 0 is a complete intersection of three quadrics; see
Conca, Rossi and Valla [8, Corollary 6.12]. Since AF = K [I3], we may apply Corollary 3.3 and
conclude that AF is Koszul. �

Remark 4.2. In view of Theorem 4.1(3) one can ask whether for F ∉ sec2(V2,3) the ring AF is
G-quadratic. It is known that the pinched Veronese does not have a Gröbner basis of quadrics in
the toric presentation but we do not know how to exclude a Gröbner basis of quadrics in every
other possible coordinate system. Some of the well-known necessary conditions that a monomial
ideal U ⊂ K [z] = K [z1, . . . , z9] must satisfy to be the initial ideal of the defining ideal of AF
include:

(1) K [z]/U must have the same Hilbert series as AF and the graded Betti numbers at least as
big as those of AF ,

(2) the radical of U must be pure and connected in codimension 1;

see Kalkbrener and Sturmfels [14] or Varbaro [20]. But there are plenty of quadratic monomial
ideals satisfying those conditions and we do not know how to exclude that they are the initial
ideal of the defining ideal of the pinched Veronese, not to mention other AF .

Remark 4.3. For F ∉ sec2(V2,3) another quite natural question is whether the ring AF can be
deformed, via a Sagbi deformation, to the pinched Veronese. As it follows from [8, Corollary
6.12], the answer is positive if and only if F is singular. So the “general” AF does not have a
Sagbi deformation to the pinched Veronese.

Remark 4.4. An interesting question suggested by the proof of Theorem 4.1 is the following.
Suppose F is a form of degree d in K [y0, . . . , yn] that does not involve the variable yn . We may
consider the coordinate ring A of the projection of Vn,d from F and also the coordinate ring B
of the projection of Vn−1,d from F . Is it true that A is Koszul or quadratic if B is so? That the
opposite implication holds true follow easily from the fact that B is an algebra retract of A.
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