## Math 453-Fall 2011 <br> Exam I <br> Solution

Show all work. Justify all your answers. Do the problems in an order which will maximize your score.

1. (8 points) Use the Euclidean algorithm to find $\operatorname{gcd}(3648,1752)$.

## Solution.

We use the division algorithm, repeatedly:

$$
\begin{gathered}
3648=1752 \cdot 2+144 \\
1752=144 \cdot 12+24 \\
144=24 \cdot 6+0
\end{gathered}
$$

Since 24 is th last non-zero remainder in the process, the Euclidean algorithm says $\operatorname{gcd}(3648,1752)=24$.
2. (12 points) Let $G$ be a group. Prove, using some form of induction, that if $a$ and $b$ are elements of a group $G$, then $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$, for all $n \in \mathbb{Z}$.
Proof. Note that if $n=1$, then we have $\left(a^{-1} b a\right)^{1}=a^{-1} b^{1} a$, , i.e. the statement holds trivially for $n=1$. Note that for $n=2,\left(a^{-1} b a\right)^{2}=\left(a^{-1} b a\right)\left(a^{-1} b a\right)=$ $a^{-1} b\left(a a^{-1}\right) b a=a^{-1} b^{2} a$. Thus the claim holds for $n=2$. Suppose the claim holds for $n$. That is, assume that $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$. Note that $\left(a^{-1} b a\right)^{n+1}=$ $\left(a^{-1} b a\right)^{n}\left(a^{-1} b a\right)$. Now, by assumption, $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$. Thus,

$$
\left(a^{-1} b a\right)^{n+1}=\left(a^{-1} b^{n} a\right)\left(a^{-1} b a\right)=a^{-1} b^{n}\left(a a^{-1}\right) b a=a^{-1} b^{n} e b a=a^{-1} b^{n+1} a
$$

Thus, by induction, the claim holds for $n \geq 1$.
For $n=0$, we have $a^{-1} b^{0} a=a^{-1} e a=e=\left(a^{-1} b a\right)^{0}$. Suppose $n<0$. Then $-n>0$, so, by what we showed above, $\left(a^{-1} b a\right)^{-n}=a^{-1} b^{-n} a$. Now,

$$
\left(a^{-1} b a\right)^{n}=\left(\left(a^{-1} b a\right)^{-n}\right)^{-1}=\left(a^{-1} b^{-n} a\right)^{-1}
$$

Now show that $\left(a^{-1} b^{-n} a\right)^{-1}=a^{-1} b^{n} a$, and you're done.
3. ( 20 points) Show that there is only one way to complete the following Cayley table to form a group:

(Hint: Decide which element must be the identity first.) Is this group abelian, cyclic, neither, or both??

Solution. Let $G=\{a, b, c, d\}$. Let $e$ be the identity of this group. Since $c b=b=c e$, we must have $b=e$. This allows us to fill in the 2nd row and 2nd column:


Now, recall, each of the symbols $a, b, c$, and $d$ must appear in each row and column (this is because, for a fixed $x$ and $y$ in $G$ there must be a $z$ so tht $x z=y$, namely $z=x^{-1} y$, and similarly a $w$ so that $w x=y$, namely $w=y x^{-1}$ ). Thus, from the first row, we must have $a d=c$, and in the first column $c a=d$. So now we have

| . | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $b$ | $a$ | $d$ | $c$ |
| $b$ | $a$ | $b$ | $c$ | $d$ |
| $c$ | $d$ | $c$ | $a$ |  |
| $d$ | $c$ | $d$ |  |  |

Now, this same reasoning tells us $d c=b=c d$, and finally that $a^{2}=d$. Thus, the only way to fill in the table to get a group is

| . | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $b$ | $a$ | $d$ | $c$ |
| $b$ | $a$ | $b$ | $c$ | $d$ |
| $c$ | $d$ | $c$ | $a$ | $b$ |
| $d$ | $c$ | $d$ | $b$ | $a$ |

Now note, from the table $d^{2}=a$, and $d^{3}=d^{2} d=a d=c$, and $d^{4}=d c=b$, so $G=\{a, b, c, d\}=<d>$ is cyclic, and hence also abelian.
4. (7 points each) For each of the following groups $G$, determine whether the given subset $H$ is a subgroup.
(a) $G=U(24)$, and $H=\{1,5,7,11\}$.
(b) $G=G L(2, \mathbb{R})$ and $H=\{A \in G \mid \operatorname{det} A<0\}$.
(c) $G=G L(2, \mathbb{R})$ and $H=\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \right\rvert\, a c \neq 0\right\}$.

## Solution.

(a) We can apply the finite subgroup test. Note $1 \cdot x=x \cdot 1=x$, for any $x$. Also, $U(24)$ is abelian. So $5 \cdot 5=1,5 \cdot 7=7 \cdot 5=11,7 \cdot 7=1,7 \cdot 11=11 \cdot 7=5$, and $11 \cdot 11=1$. Since $x y \in H$ for any $x, y \in H$, we have $H$ is a subgroup of $G$.
(b) Note, the identity $I$ of $G$ is not an element of $H$, (since $\operatorname{det} I=1>0$ ). So $H$ is not a subgroup. Alternatively, if $g=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and $h=\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right)$, then $\operatorname{det} g=-1<0$, and $\operatorname{det} h=-2<0$, so $g, h, \in H$. But $g h=$ $\left(\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right)$ has determinant 2 , so $g h \notin H$. Thus, $H$ is not closed under matrix multiplication, and hence not a subgroup by the two step subgroup test.
(c) Note the identity $I$ is in $H$ so $H \neq \emptyset$, and thus, the subgroup tests apply. Note, if $g=\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)$, and $h=\left(\begin{array}{ll}x & 0 \\ y & z\end{array}\right)$, then $g h=\left(\begin{array}{cc}a x & 0 \\ b x+c y & c z\end{array}\right) \in H$, since $(a c)(x z) \neq 0$. Thus $g h \in H$. Also, $g^{-1}=\frac{1}{a c}\left(\begin{array}{cc}c & 0 \\ -b & a\end{array}\right) \in H$. Thus, by the two step test, $H$ is a subgroup of $G$.
5. (10 points) Let $G$ be a group and $H$ a subgroup of $G$. Let

$$
C(H)=\{x \in G \mid x h=h x, \text { for all } h \in H\} .
$$

Show $C(H)$ is a subgroup of $G$.
Proof. If $e$ is the identity of th group $G$, then, for any $h \in H$, we have $e h=h=h e$, so $e \in C(H)$. Thus $C(H) \neq \emptyset$. Now, if $a, b \in C(H)$, then for any $h \in H$, we have $a h=h a$, and $b h=h b$. Thus, $(a b) h=a(b h)=a(h b)=(a h) b=(h a) b=h(a b)$. Thus $a b \in C(H)$. So, $C(H)$ is closed under the group operation in $G$. Also note since $a h=h a$, we have $a^{-1}(a h) a^{-1}=a^{-1}(h a) a^{-1}$, or $h a^{-1}=a^{-1} h$, so $a^{-1} \in C(H)$. Therefore, $C(H)$ is closed under inversion. Thus, by the two step subgroup test, we have $C(H)$ is a subgroup of $G$.
6. (9 points) Let $D_{n}$ be the dihedral group of order $2 n$, and suppose $F, R \in D_{n}$ with $F$ a reflection and $R$ a rotation. Prove $R F R=F$.

Proof. We know that $R F$ is a reflection, and hence its own inverse, i.e., $(R F)^{-1}=$ $R F$. On the other hand, $(R F)^{-1}=F^{-1} R^{-1}=F R^{-1}$. Thus, $R F=F R^{-1}$, and so $R F R=F$.
7. True/False (5 points each) Determine wheteher each of the follwoing statements is true or false. If true, give a proof. If false, give a concrete counterexample.
(a) If $G$ is a group and $a b=b a$ for some $a, b \in G$ then $G$ is abelian.
(b) If $a=b \bmod n$ and $a=c \bmod n$, then $b=c \bmod n$.
(c) If $G$ is a group for which $x^{2}=e$ for all $x \in G$, then $G$ is abelian.
(d) $U(20)$ is a cyclic group.

## Solution.

(a) False. For example, $G=D_{4}$ is non-abelian. Bust some elements commute, e.g., $R_{0} D=D=D R_{0}$.
(b) True. Recall $x=y \bmod n$ if and only if $n \mid(y-x)$. So if $n \mid(a-b)$ and $n \mid(a-c)$, we have $(a-b)=k n$ and $(a-c)=m n$, so $(b-c)=(a-c)-(a-b)=$ $m n-k n=(m-k) n$. So $n \mid(b-c)$, and $b=c \bmod n$.
(c) True. We note since $x^{2}=e$ for all $x \in G$, we have $x=x^{-1}$, for all $x \in G$. Now, if $x, y \in G$, we have $(x y)^{-1}=x y$,or $y^{-1} x^{-1}=y x=x y$, so $G$ is abelian.
(d) The cyclic subgroups of $U(20)$ are $<1>=\{1\},<3>=\{1,3,9,7\}=<7>$, $<9>=\{1,9\},<11>=\{1,11\},<13>=\{1,13,9,17\}=<17>$, and $<19>=\{1,19\}$, none of which are $U(20)$, so $U(20)$ is not cyclic.

