
Math 453—Fall 2011
Exam I
Solution

Show all work. Justify all your answers. Do the problems in an order which will
maximize your score.
1. (8 points) Use the Euclidean algorithm to find gcd(3648, 1752).

Solution.
We use the division algorithm, repeatedly:

3648 = 1752 · 2 + 144;
1752 = 144 · 12 + 24;

144 = 24 · 6 + 0.

Since 24 is th last non-zero remainder in the process, the Euclidean algorithm says
gcd(3648, 1752) = 24. �

2. (12 points) Let G be a group. Prove,using some form of induction, that
if a and b are elements of a group G, then (aba−1)n = abna−1, for all n ∈ Z.

Proof. Note that if n = 1, then we have (a−1ba)1 = a−1b1a, , i.e. the statement
holds trivially for n = 1. Note that for n = 2, (a−1ba)2 = (a−1ba)(a−1ba) =
a−1b(aa−1)ba = a−1b2a. Thus the claim holds for n = 2. Suppose the claim
holds for n. That is, assume that (a−1ba)n = a−1bna. Note that (a−1ba)n+1 =
(a−1ba)n(a−1ba). Now, by assumption, (a−1ba)n = a−1bna. Thus,

(a−1ba)n+1 = (a−1bna)(a−1ba) = a−1bn(aa−1)ba = a−1bneba = a−1bn+1a.

Thus, by induction, the claim holds for n ≥ 1.
For n = 0, we have a−1b0a = a−1ea = e = (a−1ba)0. Suppose n < 0. Then

−n > 0, so, by what we showed above, (a−1ba)−n = a−1b−na. Now,

(a−1ba)n =
((

a−1ba
)−n

)−1

= (a−1b−na)−1.

Now show that (a−1b−na)−1 = a−1bna, and you’re done. �

3. (20 points) Show that there is only one way to complete the following Cayley
table to form a group:

· a b c d

a b d

b

c c a

d c

(Hint: Decide which element must be the identity first.) Is this group
abelian, cyclic, neither, or both??



Solution. Let G = {a, b, c, d}. Let e be the identity of this group. Since cb = b = ce,
we must have b = e. This allows us to fill in the 2nd row and 2nd column:

· a b c d

a b a d

b a b c d

c c a

d c d

Now, recall, each of the symbols a, b, c, and d must appear in each row and
column (this is because, for a fixed x and y in G there must be a z so tht xz = y,
namely z = x−1y, and similarly a w so that wx = y, namely w = yx−1). Thus,
from the first row, we must have ad = c, and in the first column ca = d. So now we
have

· a b c d

a b a d c

b a b c d

c d c a

d c d

Now, this same reasoning tells us dc = b = cd, and finally that a2 = d. Thus, the
only way to fill in the table to get a group is

· a b c d

a b a d c

b a b c d

c d c a b

d c d b a

Now note, from the table d2 = a, and d3 = d2d = ad = c, and d4 = dc = b, so
G = {a, b, c, d} =< d > is cyclic, and hence also abelian. �

4. (7 points each) For each of the following groups G, determine whether the
given subset H is a subgroup.

(a) G = U(24), and H = {1, 5, 7, 11}.
(b) G = GL(2, R) and H = {A ∈ G|det A < 0}.

(c) G = GL(2, R) and H =
{(

a 0
b c

)
|ac 6= 0

}
.

Solution.
(a) We can apply the finite subgroup test. Note 1 ·x = x ·1 = x, for any x. Also,

U(24) is abelian. So 5 · 5 = 1, 5 · 7 = 7 · 5 = 11, 7 · 7 = 1, 7 · 11 = 11 · 7 = 5,
and 11 · 11 = 1. Since xy ∈ H for any x, y ∈ H, we have H is a subgroup of
G.



(b) Note, the identity I of G is not an element of H, (since det I = 1 > 0). So

H is not a subgroup. Alternatively, if g =
(

1 0
0 −1

)
, and h =

(
−2 0
0 1

)
,

then det g = −1 < 0, and det h = −2 < 0, so g, h,∈ H. But gh =(
−2 0
0 −1

)
has determinant 2, so gh 6∈ H. Thus, H is not closed under

matrix multiplication, and hence not a subgroup by the two step subgroup
test.

(c) Note the identity I is in H so H 6= ∅, and thus, the subgroup tests apply.

Note, if g =
(

a 0
b c

)
, and h =

(
x 0
y z

)
, then gh =

(
ax 0

bx + cy cz

)
∈ H,

since (ac)(xz) 6= 0. Thus gh ∈ H. Also, g−1 = 1
ac

(
c 0
−b a

)
∈ H. Thus, by

the two step test, H is a subgroup of G. �

5. (10 points) Let G be a group and H a subgroup of G. Let

C(H) = {x ∈ G|xh = hx, for all h ∈ H}.

Show C(H) is a subgroup of G.

Proof. If e is the identity of th group G, then, for any h ∈ H, we have eh = h = he,
so e ∈ C(H). Thus C(H) 6= ∅. Now, if a, b ∈ C(H), then for any h ∈ H, we have
ah = ha, and bh = hb. Thus, (ab)h = a(bh) = a(hb) = (ah)b = (ha)b = h(ab). Thus
ab ∈ C(H). So, C(H) is closed under the group operation in G. Also note since
ah = ha, we have a−1(ah)a−1 = a−1(ha)a−1, or ha−1 = a−1h, so a−1 ∈ C(H).
Therefore, C(H) is closed under inversion. Thus, by the two step subgroup test,
we have C(H) is a subgroup of G. �

6. (9 points) Let Dn be the dihedral group of order 2n, and suppose F,R ∈ Dn

with F a reflection and R a rotation. Prove RFR = F.

Proof. We know that RF is a reflection, and hence its own inverse, i.e., (RF )−1 =
RF. On the other hand, (RF )−1 = F−1R−1 = FR−1. Thus, RF = FR−1, and so
RFR = F. �

7. True/False (5 points each) Determine wheteher each of the follwoing state-
ments is true or false. If true, give a proof. If false, give a concrete counterexample.

(a) If G is a group and ab = ba for some a, b ∈ G then G is abelian.
(b) If a = b mod n and a = c mod n, then b = c mod n.
(c) If G is a group for which x2 = e for all x ∈ G, then G is abelian.
(d) U(20) is a cyclic group.

Solution.
(a) False. For example, G = D4 is non-abelian. Bust some elements commute,

e.g., R0D = D = DR0.
(b) True. Recall x = y mod n if and only if n|(y−x). So if n|(a−b) and n|(a−c),

we have (a − b) = kn and (a − c) = mn, so (b − c) = (a − c) − (a − b) =
mn− kn = (m− k)n. So n|(b− c), and b = c mod n.



(c) True. We note since x2 = e for all x ∈ G, we have x = x−1, for all x ∈ G.
Now, if x, y ∈ G, we have (xy)−1 = xy,or y−1x−1 = yx = xy, so G is
abelian.

(d) The cyclic subgroups of U(20) are < 1 >= {1}, < 3 >= {1, 3, 9, 7} =< 7 >,
< 9 >= {1, 9}, < 11 >= {1, 11}, < 13 >= {1, 13, 9, 17} =< 17 >, and
< 19 >= {1, 19}, none of which are U(20), so U(20) is not cyclic. �


