
Math 453
Fall 2011

Exam II Solution

Instructions: Give a complete solution to each problem. Be sure you make clear
reference to each fact that you are citing. Write complete sentences and be sure to work
the problems in an order that will maximize your score.

1. (3 points each) For each of the following terms, give a precise definition;

(a) Even Permutation.

(b) Cyclic group

(c) Right Coset of a subgroup H is a group G.

(d) Isomorphism.

Solution:

(a) A permutation is even if it can be expressed as a product of an even number
of 2–cycles.

(b) A group, G, is cyclic if G = {an|n ∈ Z}, for some a ∈ G.
(c) A right coset of a subgroup H of G is a set of the form Ha = {ha|h ∈ H},

for some a ∈ G.
(d) An isomorphism between groups is a function ϕ : G→ Ḡ which is one-to-one,

onto, and satisfies ϕ(ab) = ϕ(a)ϕ(b), for all a, binG.

2. (8 points each)

(a) Draw the subgroup lattice for Z28.

(b) Find all elements of order 14 in Z84. (Hint: Start with an “obvious” element
of order 14, and then determine the relation of all other such elements to this
one.)

Solution:

(a) Since the divisors of 28 are 1, 2, 4, 7, 14, and 28 the Fundamental Theorem of
cyclic Groups says there is a unique subgroup of each of these orders, that these
are the only subgroups. Moreover, if d|28, then the unique subgroup of order
d is given by 〈n/d〉,and if 〈d1〉 ⊂ 〈d2〉 if and only if d2|d1. Thus, the lattice of
subgroups is



<0>

<14>
<4>

<7>
<2>

<1>

(b) Since 14|84, we know Z84 has a subgroup of order 14, generated by 84/14 = 6.
Thus, |6| = 14. Moreover, the elements of order 14 in Z84 are of the form 6k,
with k]inU(14). Since U(14) = {1, 3, 5, 9, 11, 13}, and thus 6, 18, 30, 54, 66, and
78 are the elements of Z84 of order 14.�

3. (16 points) Let ϕ : G → Ḡ be an isomorphism. Show, using some form of
mathematical induction, ϕ(an) = (ϕ(a))n, for all a ∈ G and all n ≥ 1.

Proof: For n = 1, we have ϕ(a1) = ϕ(a) = (ϕ(a))1, so the claim holds for n = 1.
Now suppose, for some n ≥ 1, we have ϕ(an) = (ϕ(a))n. Now, note ϕ(an+1) =
ϕ(ana) = ϕ(an)ϕ(a), since ϕ is an isomorphism. Now, by our inductive hypothesis,
we have

ϕ(an+1) = ϕ(an)ϕ(a) = (ϕ(a))nϕ(a) = (ϕ(a))n+1.

Therefore, by the first principle of mathematical induction, we have ϕ(an) =
(ϕ(a))n, for all a ∈ G and all n ≥ 1.�

4. Let α ∈ S8 be given by α = (1287)(2375)(1634)(253).

(a) (6 points) Write α as a product of disjoint cycles.

(b) (4 points) Is α ∈ A8?? Why or why not?

Solution:

(a) We compute directly, α = (16)(28754).

(b) We note α is the product of an odd permutation, (16), and an even permutation
(28754), and thus is an odd permutation. Hence α 6∈ A8.�

5. (8 points) Compute 3123 mod 11



Solution: By Fermat’s Little Theorem, we have ap ≡ amod p, for any prime p and
every a ∈ Z. Thus, 311 ≡ 3 mod 11. Thus,

3123 = 3121+2 = (311)1132 ≡ 31132 ≡ 33 ≡ 5 mod 11.�

6. (18 points) Consider an equilateral triangle subdivided into six right triangles by
the lines of reflection for its symmetry group, D3. (See the figure below.) Recall
two colorings are equivalent if there is a ϕ in D3 which takes one to the other.
Determine an equation for the number of non-equivalent colorings of this figure
using four colors.

Solution: We number the triangular cells as in the picture,

6

5
4

3

2
1

D

Now, G = D3 acts on the figure by rotations and reflections. There are 46 possible
arrangements of the colorings (four choices for each of the 6 cells). Now the identity
R0 fixes all 46 arrangements. There are two rotations of order 3, namely R120 and
R240. We see if an arrangement is fixed under R120, then cells 1, 3, and 5 must be
the same color and cells 2, 4, and 6 must be the same color. Therefore, there are
42 such colorings. There are 3 elements of order 2, namely the reflections. For the
reflection F through the vertex shared by cells 1 and 2, we see a coloring is fixed
by F if cells 1 and 2 are the same color, cells 3, and 6 are the same color, and cells



4 and 5 are the same color. Thus, there are 43 such colorings. Now, by Burnside’s
Lemma, there are

1

|G|
∑
ϕ∈G

| fix(ϕ)| = 1

6
(46 + 2 · 42 + 3 · 43).�

Note, this is, in fact, 720 different colorings.

7. TRUE/FALSE (5 points each) For each of the statements below, decide whether
the statement is true or false. If it is true then justify it by proving it or citing a
theorem. If it is false then give a specific counterexample.

(a) Any function ϕ : G→ G which is one-to-one and onto is an isomorphism.

(b) If p and q are unequal primes and G is a group of order pq, then any proper
subgroup of G is cyclic.

(c) For any group G, any subgroup H of G and any a ∈ G, Ha = aH.

(d) If Aut(G) ∼= Aut(H) then G ∼= H.

Solution:

(a) False: Consider ϕ : Z2 → Z2 given by ϕ(0) = 1, ϕ(1) = 0. This function
is one-to-one and onto, but is not an isomorphism, because ϕ(0) is not the
identity of the group Z2.

(b) True: Any proper subgroup has order 1, p, or q, by Lagrange’s Theorem. Since
any group of prime order is cyclic, and the trivial group is cyclic, any proper
subgroup of a group of order pq is cyclic.

(c) False: Consider G = S3, H = {ε, (12)}, and a = (123). Then

Ha = {(123), (12)(123)} = {(123), (23)},

while
aH = {(123), (123)(12)} = {(123), (13)} 6= Ha.

(d) False: We have Aut(Z10) ∼= U(10) ∼= Z4
∼= U(5) ∼= Aut(Z5). But Z10 6∼= Z5.�

Extra Credit: (10 points) Suppose G is a group of odd order. Prove the
equation x2 = a has a unique solution for each a ∈ G.
Solution: Let |G| = 2n+ 1, for some n ≥ 0. By a corollary to Lagrange’s Theorem
a|G| = e for any a ∈ G. So a2n+2 = a. Suppose x2 = y2 for some x, y ∈ G. Then
x = x2n+2 = (x2)n+1 = (y2)n+1 = y2n+2 = y. Thus, the map ϕ : G → G given by
ϕ(x) = x2 is one-to-one. Thus, since G is finite ϕ is also onto. Therefore, for each
a ∈ G, there is a unique x ∈ G with x2 = a.�.


