Math 453

Fall 2011

Answers to Selected Problems

Page 21

7. Show that if a and b are positive integers then $a b=\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)$.

Proof. We assume that we have proved the fundamental theorem of arithmetic, namely that we can write both a and b as products of primes in a unique way. Let $p_{1}, p_{2}, \ldots, p_{k}$ be all the primes that appear as factors of either a or b. Then, allowing some exponents to be 0 , we can write

$$
a=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}
$$

and

$$
b=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}
$$

for some non-negative integers n_{i} and m_{i}. For each i, let $\ell_{i}=\max \left(n_{i}, m_{i}\right)$ and $r_{i}=$ $\min \left(n_{i}, m_{i}\right)$. Note then, that for each i, we have $p_{i}^{r_{i}} \mid a$ and $p_{i}^{r_{i}} \mid b$. Moreover, by our choice of r_{i}, we see that either $p_{i}^{r_{i}+1} \not \backslash a$ or $p_{i}^{r_{i}+1} \not \backslash b$. Thus $p_{i}^{r_{i}}$ is the highest power of p_{i} dividing both a and b, and therefore is the highest power of p_{i} dividing $\operatorname{gdc}(a, b)$ (see problem 12). Thus, by the fundamental theorem of arithmetic,

$$
\operatorname{gcd}(a, b)=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}
$$

On the other hand, note that if

$$
c=p_{1}^{\ell_{1}} p_{2}^{\ell_{2}} \ldots p_{k}^{\ell_{k}}
$$

then, by our choice of ℓ_{i}, we see that $a \mid c$ and $b \mid c$. Moreover, if s is any common multiple of a and b, then for each i we must have $p_{i}^{\ell_{i}} \mid s$, and thus $c \mid s$. Thus (problem
12) $c=\operatorname{lcm}(a, b)$. Now, for each i, we see that $r_{i}+\ell_{i}=n_{i}+m_{i}$, and thus

$$
\begin{gathered}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=p_{1}^{r_{1}+\ell_{1}} p_{2}^{r_{2}+\ell_{2}} \ldots p_{k}^{r_{k}+\ell_{k}}= \\
p_{1}^{n_{1}+m_{1}} p_{2}^{m_{2}+n_{2}} \ldots p_{k}^{n_{k}+m_{k}}=a b .
\end{gathered}
$$

8. Suppose that a and b are integers dividing c. Show that if a and b are relatively prime, then $a b$ divides c. Show, by example, that if a and b are not relatively prime, then $a b$ need not divide c.

Proof. Since $a \mid c$ and $b \mid c$ we can write

$$
c=a k=b n,
$$

for some integers n and k. Since $\operatorname{gcd}(a, b)=1$, we can choose integers s and t with $a s+b t=1$. Now

$$
c=(a s+b t) c=a c s+b c t=a(b n) s+b(a k) t=a b(n s+k t),
$$

which shows that $a b \mid c$.
To see that the statement need not be true if a and b are both relatively prime, we take $a=6, b=4$ and $c=12$. Then $\operatorname{gcd}(a, b)=2, a \mid c$ and $b \mid c$, but $a b \not \subset c$.
14. Show $5 n+3$ and $7 n+4$ are relatively prime, for all n.

Solution: Recall, $\operatorname{gcd}(a, b)$ is the smallest positive integer linear combination of a and b. That is, the smallest positive integer d so that $d=a s+b t$, for some $s, t \in \mathbb{Z}$. So, $\operatorname{gcd}(a, b)=1$ if and only if we can find $s, t \in \mathbb{Z}$ for which $a s+b t=1$. Now, in our case, we see $a=5 n+3$ and $b=7 n+4$, we can take $s=7$ and $t=-5$, i.e., $7(5 n+3)+(-5)(7 n+4)=35 n+20-35 n-20=1$. So, we conclude $\operatorname{gcd}(5 n+3,7 n+4)=$ 1.
20. Let $p_{1}, p_{2}, \ldots, p_{n}$ be distinct primes. Show that $p_{1} p_{2} \ldots p_{n}+1$ is divisible by none of these primes.

Proof. Recall that $n \mid a$ if and only if $a=0 \bmod n$. Since each p_{i} is prime, $p_{i}>1$. Let $a=p_{1} \ldots p_{n}+1$. Then each $p_{i} \mid(a-1)$, so $a=1 \bmod p_{i}$, and since $p_{i}>1$, we see that $a \neq 0 \bmod p_{i}$, and this shows that $p_{i} X a$.
21. Show that there are infinitely many primes.

Proof. We argue by contradiction. Suppose to the contrary that there are only finitely many primes. In particular, suppose that p_{1}, \ldots, p_{n} constitute all the primes. Let $a=p_{1} p_{2} \ldots p_{n}+1$. By problem $20 p_{i}$ Xa for each $1 \leq i \leq n$. Thus, a must be a prime different from p_{1}, \ldots, p_{n}. This contradicts our assumption that p_{1}, \ldots, p_{n} were all the primes. Consequently, there are infinitely many primes.
30. Prove the Fibonacci numbers, f_{n} satisfy $f_{n}<2^{n}$.

Proof. We prove this by the second principle of mathematical induction. Since $f_{1}=1$, we have $f_{1}=1<2^{1}$, so the claim holds for $n=1$. Also, the claim holds for $n=2$, since $f_{2}=1<2^{2}=4$. Now, suppose $n \geq 2$ and the claim holds for $1 \leq k \leq n$, i.e., suppose $f_{k}<2^{k}$, for $k=1,2, \ldots, n$. Then $f_{n+1}=f_{n-1}+f_{n}<2^{n-1}+2^{n}<2^{n}+2^{n}=2^{n+1}$. Therefore, if the claim holds for $1,2, \ldots, n$, then the claim holds for $n+1$. So, by the second principle of mathematical induction, $f_{n}<2^{n}$, for all $n>1$.

Page 35

9. Associate the number +1 with a rotation and the number -1 with a reflection. Describe an analogy between multiplying these two numbers and multiplying elements of D_{n}.

Solution: Note that a rotation composed with a rotation is a reflection, a reflection composed with a reflection is a rotation, and composing a reflection and rotation in any order is a reflection. On the other hand multiplying +1 and +1 yields +1 , as does multiplying -1 and -1 , while multiplying -1 and +1 is -1 . So, multiplying rotations and reflections can be associated with multiplying ± 1 in this way.
21. What group theoretic property do the upper case letters $F, G, J, K,, P, Q$ and R have that is not shared by the other 20 upper case letters?

Solution: You might note, these six letters have no symmetries (either rotational or reflectional), while all others have at least one non-trivial symmetry.

Page 52

14. Suppose that G is a group with the property that whenever $a b=c a$ we have $b=c$. Show that G is abelian.

Proof. Let a and b be elements of G. Take $c=a b a^{-1}$. Then $c a=a b a^{-1} a=a b$. Since $c a=a b$, the hypothesis implies $c=b$, that is $a b a^{-1}=b$. Now multiplying on the right by a, we get $a b=b a$
19. Let a and b be elements of a group, and let $n \in \mathbb{Z}$. Show that $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$.

Proof. Note that if $n=1$, then we have $\left(a^{-1} b a\right)^{1}=a^{-1} b^{1} a$, i.e. the statement holds trivially for $n=1$. Note that for $n=2,\left(a^{-1} b a\right)^{2}=\left(a^{-1} b a\right)\left(a^{-1} b a\right)=a^{-1} b\left(a a^{-1}\right) b a=$ $a^{-1} b^{2} a$. Thus the claim holds for $n=2$. Suppose the claim holds for n. That is, assume that $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$. Note that $\left(a^{-1} b a\right)^{n+1}=\left(a^{-1} b a\right)^{n}\left(a^{-1} b a\right)$. Now, by assumption, $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$. Thus,

$$
\left(a^{-1} b a\right)^{n+1}=\left(a^{-1} b^{n} a\right)\left(a^{-1} b a\right)=a^{-1} b^{n}\left(a a^{-1}\right) b a=a^{-1} b^{n} e b a=a^{-1} b^{n+1} a
$$

Thus, by induction, the claim holds for $n \geq 1$.
For $n=0$, we have $a^{-1} b^{0} a=a^{-1} e a=e=\left(a^{-1} b a\right)^{0}$. Suppose $n<0$. Then $-n>0$, so $\left(a^{-1} b a\right)^{-n}=a^{-1} b^{-n} a$. Now,

$$
\left(a^{-1} b a\right)^{n}=\left(\left(a^{-1} b a\right)^{-n}\right)^{-1}=\left(a^{-1} b^{-n} a\right)^{-1}
$$

Now show that $\left(a^{-1} b^{-n} a\right)^{-1}=a^{-1} b^{n} a$, and you're done.
26. Show that if $(a b)^{2}=a^{2} b^{2}$, in a group G, then $a b=b a$.

Proof. Since $(a b)^{2}=a^{2} b^{2}$, we have $a b a b=a a b b$. Then using the right and left cancellation laws, we have $b a=a b$, which is the claim.

Page 64

4. Prove that in any group, an element and its inverse have the same order.

Proof. Suppose a is of infinite order. If, for some $n>0,\left(a^{-1}\right)^{n}=e$, then $a^{n}=a^{n} e=$ $a^{n}\left(a^{-1}\right)^{n}=\left(a a^{-1}\right)^{n}=e$, which contradicts our assumption on the order of a. Thus, a^{-1} is also of infinite order.

Now suppose $|a|=m$, and $\left|a^{-1}\right|=n$. If $m>n$, then we have $a^{m-n}=e$, with $m>m-n>0$, which contradicts our assumption that $|a|=m$. Thus, $m \leq n$. Similarly, if $n>m$, then $\left(a^{-1}\right)^{n-m}=e$, with $n>n-m>0$, which contradicts our assumption that $\left|a^{-1}\right|=n$. Thus, $n \leq m$, so $n=m$.
22. Complete the partial Cayley table given below:

\cdot	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	7	8	6	5
4	4	3	1	2	8	7	5	6
5	5	6	8	7	1			
6	6	5	7	8		1		
7	7	8	5	6			1	
8	8	7	6	5				1

Solution: In order that the table be a group, the group laws must be satisfied. Thus, we can use associativity of the group multiplication to help us complete the table. Also, each element among $\{1,2, \ldots, 8\}$ must appear exactly once in each row and column. Note, since $5=2 \cdot 6$, we have $5 \cdot 6=(2 \cdot 6) \cdot 6=2 \cdot 6^{2}=2 \cdot 1=2$. Similarly, $6 \cdot 5=(2 \cdot 5) \cdot 5=2 \cdot 5^{2}=2 \cdot 1=2$. Note, $5 \cdot 8=5 \cdot(5 \cdot 3)=5^{2} \cdot 3=1 \cdot 3=3$.

Now, 4 is the only element which hasn't appeared n the " 5 " row, so we must have $5 \cdot 7=4$. (Or we could note $5 \cdot 7=5 \cdot(5 \cdot 4)=5^{2} \cdot 4=1 \cdot 4=4$.) Thus, the table, so far looks as follows:

\cdot	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	7	8	6	5
4	4	3	1	2	8	7	5	6
5	5	6	8	7	1	2	4	3
6	6	5	7	8	5	1		
7	7	8	5	6			1	
8	8	7	6	5				1

Now, note, since $5 \cdot 7=4$, we cannot have $6 \cdot 7=4$ (again each element appears once in each row and column - or we could note if $5 \cot 7=6 \cdot 7$, then, since $7^{2}=1$, we have $5 \cdot 7^{2}=6 \cdot 7^{2}$, or $5=6$, which is a contradiciton.) Thus, $6 \cdot 7=3$ and $6 \cdot 8=4$. Now looking at the last two columns, we see the only choices are $7 \cdot 8=2$, and $8 \cdot 7=2$. Thus, the table now looks like,

\cdot	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	7	8	6	5
4	4	3	1	2	8	7	5	6
5	5	6	8	7	1	2	4	3
6	6	5	7	8	5	1	3	4
7	7	8	5	6			1	2
8	8	7	6	5			2	1

$=$ Now, to fill in the last four squares, we note $7 \cdot 5=7 \cdot(7 \cdot 3)=7^{2} \cdot 3=1 \cdot 3=3$. Now, we see $7 \cdot 6=4$. So, finally, we must have $8 \cdot 5=4$, and $8 \cdot 6=3$. So, the table must be:

\cdot	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	7	8	6	5
4	4	3	1	2	8	7	5	6
5	5	6	8	7	1	2	4	3
6	6	5	7	8	5	1	3	4
7	7	8	5	6	3	4	1	2
8	8	7	6	5	4	3	2	1

Page 81

7. Find an example of a noncyclic group, all of whose proper subgroups are cyclic.

Solution: Let G be an abelian group of order 4, with elements $\{e, a, b, a b| | a|=|b|=$ $2\}$. Then the proper subgroups of G are: $H_{1}=\{e, a\}=<a>, H_{2}=\{e, b\}=$, and $H_{3}=\{e, a b\}=<a b>$. Note that, since the product of any two of a, b or $a b$ is the third, that a subgroup with any two of a, b, and $a b$ is equal to G. Thus, all the proper subgroups of G are cyclic. On the other hand, G is not cyclic, since we see that $\langle a\rangle,\langle b\rangle$, and $\langle a b\rangle$ are all proper subgroups of G. \square
11. Let G be a group and $a \in G$. Prove $\langle a\rangle=\left\langle a^{-1}\right\rangle$.

Solution: Recall $\langle a\rangle=\left\{a^{n} \mid a \in \mathbb{Z}\right\}$. Since $a^{-1}=a^{n}$, for $n=-1$, we see $a^{-1} \in\langle a\rangle$, and thus, $\left\langle a^{-1}\right\rangle \subseteq\langle a\rangle$. But on the other hand $a=\left(a^{-1}\right)^{-1} \in\left\langle a^{-1}\right\rangle$, so $\langle a\rangle \subseteq\left\langle a^{-1}\right\rangle$. Thus, $\left\langle a^{-1}\right\rangle=\langle a\rangle$.
18. If a cyclic group has an element of infinite order, how many elements of finite order does it have?

Solution Since $|e|=1$, there is at least one element of G of finite order. Let $G=<a>$. Since G has an element of infinite order, a is of infinite order. Suppose a^{j} is an element of finite order, for some $j \neq 0$. Then $\left(a^{j}\right)^{n}=e$, and therefore, $a^{j n}=e$. By the Corollary to Theorem 4.1, the order of a divides $j n$. Thus $|a|=\ell$ for some $\ell<\infty$. But, if $|a|=\ell$, then $G=\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{\ell-1}\right\}$ is a finite group. This contradicts our assumption that G has an element of infinite order. Therefore, a^{j} is of infinite order for every $j \neq 0$, and therefore e is the only element of G of finite order. \square
31. Let G be a finite group. Show there is a fixed positive integer n so that $a^{n}=e$ for all $a \in G$.
Proof: Let $G=\left\{e, a_{1}, \ldots, a_{k}\right\}$. For each $1 \leq i \leq k$, let $m_{i}=\left|a_{i}\right|$. Then $a_{i}^{m_{i}}=e$. Now let $n=\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. Then $m_{i} \mid n$ for each i and hence $a_{i}^{n}=e$. Since $e^{n}=e$, we see $a^{n}=e$ for all $n \in G$. \square

Page 113

6. Show that A_{8} contains an element of order 15.

Proof: Recall that a 3-cycle $(a b c)=(a b)(a c)$ is even, and a 5 -cycle $(a b c x y)=$ $(a b)(a c)(a x)(a y)$ is even. So $(123) \in A_{8}$ and $(45678) \in A_{8}$. Therefore, $\alpha=(123)(45678) \in$ A_{8}. Since (123) and (45678) are disjoint, Ruffini's theorem says that $|\alpha|=15 . \square$
30. What cycle is $\left(a_{1} a_{2} \ldots a_{n}\right)^{-1}$?

Solution: Recall that $\alpha=\left(a_{1} a_{2} \ldots a_{n}\right)$ is a one to one and onto function, from a a set A to itself. If $\alpha(a)=b$, then $\alpha^{-1}(b)=a$. Since $\alpha\left(a_{1}\right)=a_{2}$, we have $\alpha^{-1}\left(a_{2}\right)=a_{1}$. For $2 \leq j \leq n-1$, we have $\alpha\left(a_{j}\right)=a_{j+1}$, so $\alpha^{-1}\left(a_{j+1}\right)=a_{j}$. Note that $\alpha\left(a_{n}\right)=a_{1}$, so $\alpha^{-1}\left(a_{1}\right)=a_{n}$. Finally, α fixes all indices except for a_{1}, \ldots, a_{n}. Thus

$$
\left(a_{1} a_{2} \ldots a_{n}\right)^{-1}=\left(a_{n} a_{n-1} \ldots a_{2} a_{1}\right)=\left(a_{1} a_{n} a_{n-1} \ldots a_{2}\right) . \square
$$

31. Let G be a group of permutations on a set X. Let $a \in X$, and define $\operatorname{stab}(a)=$ $\{\alpha \in G \mid \alpha(a)=a\}$. We call $\operatorname{stab}(a)$ the stabilizer of a in G. Prove that $\operatorname{stab}(a)$ is a subgroup of G.

Proof: We will use the two step subgroup test. First note that $\operatorname{stab}(a)$ is non-empty. If ε is the identity permutation on X, then, by definition, $\varepsilon(x)=x$ for all $x \in X$. In particular, $\varepsilon(a)=a$, and hence, $\varepsilon \in \operatorname{stab}(a)$. Therefore, $\operatorname{stab}(a)$ is non-empty. Now we need to show that if $\alpha, \beta \in \operatorname{stab}(a)$, then $\alpha \beta$ and $\alpha^{-1} \in \operatorname{stab}(a)$. First note that $\alpha \beta(a)=\alpha(\beta(a))$. Since $\beta \in \operatorname{stab}(a)$, we know that $\beta(a)=a$. Therefore, $\alpha \beta(a)=\alpha(a)=a$, since $\alpha \in \operatorname{stab}(a)$. Consequently, $\operatorname{stab}(a)$ is closed under the group operation in G. Next suppose $\alpha(a)=a$. Then, by multiplying by α^{-1} on each side, i.e., applying the function α^{-1} to each side, we see that $\alpha^{-1}(\alpha(a))=\alpha^{-1}(a)$, and thus, $\alpha^{-1} \alpha(a)=\varepsilon(a)=a=\alpha^{-1}(a)$. We conclude that if $\alpha \in \operatorname{stab}(a)$, then $\alpha^{-1} \in \operatorname{stab}(a)$. This completes the proof.

Page 133

6. Prove that the relation isomorphism is transitive.

Proof: We need to show that if $G \cong H$ and $H \cong K$, then $G \cong K$. Let $\varphi: G \longrightarrow H$ and $\psi: H \longrightarrow K$ be isomorphisms. By Theorem 0.3, $\psi \varphi: G \longrightarrow K$ is both one-to-one and onto. Suppose $x, y \in G$. Then $\psi \varphi(x y)=\psi(\varphi(x y))$, and since φ is an isomorphism we have $\psi \varphi(x y)=\psi(\varphi(x) \varphi(y))$. Note that $\varphi(x)$ and $\varphi(y)$ are elements of H, and ψ is an isomorphism. Thus, $\psi(\varphi(x) \varphi(y))=\psi(\varphi(x)) \psi(\varphi(y))=\psi \varphi(x) \psi \varphi(y)$. Therefore, $\psi \varphi$ is an isomorphism, and $G \cong K$. This establishes the claim. \square
7. Prove that S_{4} is not isomorphic to D_{12}.

Proof Note that both groups are of order 24. In S_{4}, the values for the order of an element are 1, 2, 3 , or 4 . However, the element R_{30} of D_{12} has order 12. Thus, by property 5 of Theorem 6.1, D_{12} cannot be isomorphic to $S_{4} . \square$
17. Let $r \in U(n)$. Prove that the mapping $\alpha: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}$ defined by $\alpha(s)=s r$ for all $s \in \mathbb{Z}_{n}$ is an automorphism of \mathbb{Z}_{n}.

Proof: We need to to show that α is one-to-one, onto, and preserves the group operation in \mathbb{Z}_{n}. We begin by showing that α is onto. That is, we intend to show that, for each $y \in \mathbb{Z}_{n}$, there is an $s \in \mathbb{Z}_{n}$ with $\alpha(s)=y$. Since $r \in U(n)$, we know
that $\operatorname{gcd}(n, r)=1$, and therefore the equation $x r=1(\bmod n)$ is solvable. So, for some $x \in \mathbb{Z}_{n}, \alpha(x)=1$. Let $s=y x$. Then $\alpha(s)=s r=(y x) r=y(x r)=y(\bmod n)$. Thus, we know that α is onto. Since α is an onto function from \mathbb{Z}_{n} to itself, α is one-to-one. (A direct proof that α is one-to-one is as follows: If $\alpha(s)=\alpha(t)$, then $s r=t r(\bmod n)$. Thus, $n \mid r(s-t)$, and, since $g c d(n, r)=1, n \mid(s-t)$. Thus, $s=t$. $)$

We finally need to show that α preserves the group operation. Let $s, t \in \mathbb{Z}_{n}$. Then $\alpha(s+t)=(s+t) r=s r+t r=s \alpha+t \alpha(\bmod n)$. Thus, α is an isomorphism.
35. Suppose g and h induce the same inner automorphism of a group G. Prove $h^{-1} g \in Z(G)$.

Proof: Let φ_{g} and φ_{h} be the inner automorphisms induced by g and h, respectively. Then, for any $x \in G$, we have $\varphi_{g}(x)=\varphi_{h}(x)$, which says $g x g^{-1}=h x h^{-1}$, for every $x \in G$. Multiplying on the left by h^{-1} and the right by g we have $h^{-1} g x=x h^{-1} g$. Thus, $h^{-1} g$ commutes with every $x \in G$. Therefore, by definition, $h^{-1} g \in Z(G) . \square$.

Page 149

6. Let n be an integer greater than 1 . Let $H=\{0, \pm n, \pm 2 n, \pm 3 n, \ldots\}$. Find all the left cosets of H in \mathbb{Z}. How many of them are there?
Solution: Suppose $a+H=b+H$. Then $b-a \in H$, which is equivalent to $n \mid(b-a)$. Thus $a+H=b+H$ if and only if $a=b \bmod n$. Thus the left cosets of H in \mathbb{Z} are $0+H, 1+H, \ldots,(n-1)+H$, and hence there are n of them.
7. Compute $5^{15} \bmod 7$ and $7^{13} \bmod 11$.

Solution: Since 7 is prime, $U(7)$ is cyclic, of order 6 , and this $5^{6}=1 \bmod 7$. Thus $5^{12}=1 \bmod 7$, and therefore $5^{15} \equiv 5^{3} \equiv 5^{2} \cdot 5 \equiv 4 \cdot 5 \equiv 6 \bmod 7$. Similarly, $U(11)$ is cyclic of order 10 , so $7^{10} \equiv 1 \bmod 11$. Thus, $7^{13} \equiv 7^{3} \equiv 7^{2} \cdot 7 \equiv 5 \cdot 7 \equiv 2 \bmod 11 . \square$

Note: An alternative proof is to use Fermat's Little Theorem, which says $x^{p} \equiv$ $x \bmod p$.
26. Suppose that G is a group with more than one element, and G has no proper, nontrivial subgroup. Prove that $|G|$ is prime.

Proof: Let $a \in G$, with $a \neq e$. Then $<a>$ is a nontrivial subgroup of G. Thus, by our hypothesis, $G=<a>$. If $|a|$ is infinite, then $G \simeq \mathbb{Z}$ (see Example 2 of Chapter 6). Then $\left\langle a^{2}\right\rangle$ is a proper, nontrivial subgroup of G, which contradicts our assumption. Thus, $|a|$ must be finite. Now, G is a finite cyclic group. If d divides $|G|$, then, by the Fundamental Theorem of Cyclic Groups, there is a cyclic subgroup of G of order d. Since G and $\{e\}$ are the only subgroups of G, we see that $|G|$ can have no proper divisors, i.e., $|G|$ must be prime. \square
36. Let G be a group of order p^{n}, where p is prime. Prove the center of G cannot have order p^{n-1}.
Proof: Let $Z=Z(G)$ be the center of G, and suppose $|Z|=p^{n-1}$. Then $Z \neq G$, so G is nonabelian. Suppose $x \notin Z$. We claim none of $x, x^{2}, \ldots, x^{p-1}$ are elements of Z. Suppose not. Then $x^{k} \in Z$, for some $2 \leq k \leq p-1$. Now, $|Z|=p^{n-1}$, so $\left(x^{k}\right)^{p^{n-1}}=e$. But then $x^{p^{n-1} k}=e$, so $|x|$ divides $p^{n-1} k$. Since $|x|$ divides $|G|=p^{n}$, we see k must be a power of p, which contradicts our assumption. Thus, $x^{k} \notin Z$ for $k=1,2, \ldots, p-1$. Now, I claim $x^{k} Z \neq x^{j} Z$, for $1 \leq k<j \leq p-1$. For if not, $x^{j-k} \in Z$, which contradicts what we just showed. Since $|G: Z|=|G| /|Z|=p$, there are p distinct cosets of Z in G. Thus $Z, x Z, \ldots, x^{p-1} Z$ are the distinct cosets of Z in G. Therefore, every $y \in G$ can be written in the form $x^{j} z$ for some $0 \leq j \leq p-1$, and some $z \in Z$. Now if $y_{1}, y_{2} \in G$, then $y_{1}=x_{j} z_{1}$, and $y_{2}=x^{k} z_{2}$, we have $y_{1} y_{2}=y_{2} y_{2}$, (since $z_{i} \in Z$ and powers of x commute with each other). Then G is abelian, contradicting our assumption. Thus, $|Z| \neq p^{n-1}$.

Note: There is a much easier proof using the G / Z theorem in Chapter 9.

Page 494

1. Determine the number of ways in which the four corners of a square can be colored with two colors.

Solution: Number the corners of the square 1, 2, 3, 4 in the counterclockwise direction, as in the picture.

There are $2^{4}=16$ ways to arrange the colors of the corners. In order to determine the number of non-equivalent, we use Burnside's Lemma. The symmetries of the square are given by D_{4}. Notice that R_{0} fixes all 16 arrangements. R_{90} and R_{270} only fix arrangements with all four colors the same color. Since the orbits under R_{180} are $\{1,3\}$ and $\{2,4\}$, the colorings fixed by R_{180} are the ones with vertices 1 and 3 are the same color, and vertices 2 and 4 are the same color. Thus, R_{180} fixes 4 colorings. The orbits under H are $\{1,2\}$ and $\{3,4\}$, so H (and similarly V) fixes 4 arrangements. Note the diagonal reflection D has orbits $\{1\},\{3\}$ and $\{2,4\}$, so fixes $2^{3}=8$ arrangements. Similarly D^{\prime} fixes 8 arrangements. Thus, by Burnside's Lemma there are

$$
\frac{1}{\left|D_{4}\right|} \sum_{\phi \in D_{4}}|\operatorname{fix}(\phi)|=\frac{1}{8}(16+2 \cdot 2+4+2 \cdot 4+2 \cdot 8)=\frac{1}{8}(48)=6
$$

non-equivalent colorings.
11. Suppose we cut a cake into 6 identical pieces. How many ways can we color the cake with n colors if each piece gets one color.

Proof: Number the slices of the cake 1 through 6 as in the picture.

There are n^{6} arrangements of the colors of slices on the cake. The symmetry group of our cake is $G=\left\{R_{0}, R_{60}, R_{120}, R_{180}, R_{240}, R_{300}\right\}$, the subgroup of rotations in D_{6}. (We do not allow reflections, since we wouldn't want to turn the cake upside down.) Look at the orbits of each type of element. element. R_{0} fixes every element, and hence fixes all n^{6} colorings. For a rotation of order 6 there is one orbit $\{1,2,3,4,5,6\}$. So these two elements fix n colorings. The two rotations of order 3 have two orbits $\{1,3,5\}$ and $\{2,4,6\}$. Thus, these elements fix n^{2} elements. Finally, the element R_{180} has three orbits: $\{1,4\},\{2,5\},\{3,6\}$. Thus this element fixes n^{3} elements. Applying Burnside's Lemma we a have the number of colorings of the cake is

$$
\frac{1}{|G|} \sum_{\phi \in G}|\operatorname{fix}(\phi)|=\frac{1}{6}\left(n^{6}+2 n+2 n^{2}+n^{3}\right) .
$$

Page 167
7. Prove that $G_{1} \oplus G_{2}$ is isomorphic to $G_{2} \oplus G_{1}$.

Proof. Let $\psi: G_{1} \oplus G_{2} \longrightarrow G_{2} \oplus G_{1}$ be given by $\psi\left(g_{1}, g_{2}\right)=\left(g_{2}, g_{1}\right)$, for each $\left(g_{1}, g_{2}\right) \in$ $G_{1} \oplus G_{2}$. Note that if $\psi\left(g_{1}, g_{2}\right)=\psi\left(h_{1}, h_{2}\right)$, then $\left(g_{2}, g_{1}\right)=\left(h_{2}, h_{1}\right)$, so $g_{1}=h_{1}$, and $g_{2}=h_{2}$. In other words, if $\psi\left(g_{1}, g_{2}\right)=\psi\left(h_{1}, h_{2}\right)$, then $\left(g_{1}, g_{2}\right)=\left(h_{1}, h_{2}\right)$, and thus ψ is one-to-one. Now suppose that $\left(g_{2}, g_{1}\right) \in G_{2} \oplus G_{1}$. Then $\left(g_{2}, g_{1}\right)=\psi\left(g_{1}, g_{2}\right)$, i.e., ψ
is onto. If $\left(g_{1}, g_{2}\right)$, and $\left(h_{1}, h_{2}\right)$ are in $G_{1} \oplus G_{2}$, then

$$
\begin{gathered}
\psi\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right)=\psi\left(g_{1} h_{1}, g_{2} h_{2}\right)=\left(g_{2} h_{2}, g_{1} h_{1}\right) \\
=\left(g_{2}, g_{1}\right)\left(h_{2}, h_{1}\right)=\psi\left(g_{1}, g_{2}\right) \psi\left(h_{1}, h_{2}\right) .
\end{gathered}
$$

Thus, ψ is an isomorphism, so $G_{1} \oplus G_{2} \cong G_{2} \oplus G_{1}$.
26. Find a subgroup of $\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$ which is not of the form $H \oplus K$, with H a subgroup of \mathbb{Z}_{4} and K a subgroup of \mathbb{Z}_{2}.

Solution: Let $a=(1,1)$. Then $|a|=4$, and $<a>=\{(0,0),(1,1),(2,0),(3,1)\}$ is not of the form $H \oplus K$. For $\langle a\rangle$ has an element of order 4, which means H would have to be all of \mathbb{Z}_{4}, but then, as the second coordinates are not all 0 , we would also have to have $K=\mathbb{Z}_{2}$, which would imply $<a>=\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$, but this isn't the case.

39 If a finite abelian group has exactly 24 elements of order 6 , how many cyclic subgroups of order 6 does it have?

Solution: Suppose G is our finite abelian group, with 24 elements of order 6 . Suppose $H \leq G$ is a cyclic subgroup of order 6 . Then $H=<a>$, and $|a|=6$. Furthermore, H contains exactly $\varphi(6)=2$ elements of order 6 , namely a and a^{5}. Since every element of order 6 generates a cyclic subgroup of order 6 , we see that there are $24 / 2=12$ cyclic subgroups of order 6 in G.

Page 193

4. Let $H=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, a, d \neq 0, b \in \mathbb{R}\right\}$. Is H a normal subgroup of $G L(2, \mathbb{R})$?

Solution: No. Recall that H is normal in G if $a H a^{-1}=H$, for all $a \in G$. Let $h=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) \in H$. Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Then $A^{-1}=A$, and

$$
A h A^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) \notin H .
$$

Thus, H is not normal in $G L(2, \mathbb{R})$.
38. Suppose that H is a normal subgroup of G and let $a \in G$. If $a H$ is of order 3 in G / H, and $|H|=10$, what are the possibilities for $|a|$.

Solution: Since $a H$ is of order 3, we see that $a^{3} H=H$, which is equivalent to $a^{3} \in H$. By Corollary 1 to Lagrange's Theorem, we see that $\left|a^{3}\right|=1,2,5$, or 10. Thus, $|a|=3,6,15$, or 30 .
46. If G is a group and $[G: Z(G)]=4$, prove $G / Z(G) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

Proof. Since $[G: Z(G)]=4$, we know $|G / Z(G)|=4$, so either $G / Z(G) \cong \mathbb{Z}_{4}$, or $G / Z(G) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. But if $G / Z(G) \cong \mathbb{Z}_{4}$, then, by the G / Z-Theorem, G is abelian, so $|G / Z(G)|=1$, which is not true. Thus, we must have $G / Z(G) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
62. Suppose G has a subgroup of order n. Show the intersection of all subgroups of order n is a normal subgroup of G.

Proof. Let $|H|=n$. Note that if $a \in H$, then $a H a^{-1} \mathrm{~s}$ a subgroup of order n. (To see this note that if $h_{1}, h_{2} \in H$, then $\left(a h_{1} a^{-1}\right)\left(a h_{2} a^{-1}\right)^{-1}=a h_{1} h_{2}^{-1} a^{-1} \in a H a^{-1}$, so the claim holds by the one step subgroup test.) Now, let K be the intersection of all subgroups of order n. By assumption, K is non-empty, since $e \in K$. If $k \in K$, and $a \in G$, then we need to show $a k a^{-1} \in K$. If H is any subgroup of order n, then, by definition, $k \in H$. But above we showed $a^{-1} H a$ is a subgroup of order n (we replace a with a^{-1} here) so, since $k \in K$, we have $k \in a^{-1} K a$.

Page 211

8. Let G be a group of permutations. For each $\sigma \in G$, define

$$
\operatorname{sgn}(\sigma)= \begin{cases}+1 & \text { if } \sigma \text { is an even permutation } \\ -1 & \text { if } \sigma \text { is an odd permutation }\end{cases}
$$

Prove that sgn is a homomorphism from G to $\{ \pm 1\}$. What is the kernel? Why does this allow you to conclude A_{n} is a normal subgroup of of S_{n} of index 2 .

Proof. Suppose $\sigma, \tau \in G$. If $\sigma \tau$ is even, then $\operatorname{sgn}(\sigma)=\operatorname{sgn}(\tau)$, and we see that $1=\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$. If $\sigma \tau$ is odd, then $\operatorname{sgn}(\sigma)=-\operatorname{sgn}(\tau)$, and so $-1=$ $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$. Thus, for all σ, τ we have $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$, so sgn is a homomorphism.

Note that ker sgn $=\{\sigma \in G \mid \operatorname{sgn}(\sigma)=1\}=\{\sigma \in G \mid \sigma$ is even $\}$. Thus, if $G \subset S_{n}$, we have ker sgn $=G \cap A_{n}$. Now suppose $G=S_{n}$. Then ker sgn $=A_{n}$, and $\operatorname{sgn}\left(S_{n}\right)=\{ \pm 1\}$. Since A_{n} is the kernel of a homomorphism, it is a normal subgroup. Moreover, we have $S_{n} / A_{n} \simeq\{ \pm 1\}$ is of order 2 , so $\left|S_{n}: A_{n}\right|=2$.
9. Prove that the mapping from $G \oplus H$ to G given by $(g, h) \mapsto g$ is a homomorphism. What is the kernel?

Proof. We denote the map by p, i.e., $p((g, h))=g$. (For geometric motivation, take $G=H=\mathbb{R}$, so p is the projection of a point (x, y) onto the x-axis.) Let $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \oplus H$. Then

$$
p\left(\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)\right)=p\left(\left(g_{1} g_{2}, h_{1} h_{2}\right)\right)=g_{1} g_{2}=p\left(\left(g_{1}, h_{1}\right)\right) p\left(\left(g_{2}, h_{2}\right)\right)
$$

so p is a homomorphism. Let e_{G} be the identity of G. Note that ker $p=\{(g, h) \mid p((g, h))=$ $\left.e_{G}\right\}=\left\{\left(e_{G}, h\right) \mid h \in H\right\}$.
21. Suppose that φ is a homomorphism from \mathbb{Z}_{30} onto a group of order 5 . Determine the kernel of φ.

Solution: Since φ is onto, we have $\left|\varphi\left(\mathbb{Z}_{30}\right)\right|=5$. We also know that $\left|\mathbb{Z}_{30}\right|=30$. By the First Isomorphism Theorem, we know that $\mathbb{Z}_{30} / \operatorname{ker} \varphi \simeq \varphi\left(\mathbb{Z}_{30}\right)$, and thus $\left|\mathbb{Z}_{30} / \operatorname{ker} \varphi\right|=5$. By Lagrange's Theorem, $|\operatorname{ker} \varphi|=6$, and by the Fundamental Theorem of Cyclic Groups, \mathbb{Z}_{30} has a unique subgroup of order 6 . Thus, $\operatorname{ker} \varphi$ must be this subgroup, i.e., $\operatorname{ker} \varphi=<5>=\{0,5,10,15,20,25\}$.
30. Suppose that $\varphi: G \longrightarrow \mathbb{Z}_{6} \oplus \mathbb{Z}_{2}$, is onto and $|\operatorname{ker} \varphi|=5$. Explain why G must have normal subgroups of orders $5,10,15,10,30$, and 60 .

Explanation: Recall that if $K \subset Z_{6} \oplus \mathbb{Z}_{2}$ is a subgroup, then $K \triangleleft \mathbb{Z}_{6} \oplus \mathbb{Z}_{2}$ (since $\mathbb{Z}_{6} \oplus \mathbb{Z}_{2}$ is abelian). Since φ is onto, $\varphi^{-1}(K)=\{g \in G \mid \varphi(g) \in K\}$ is normal in G (Theorem 10.2) Since $\operatorname{ker} \varphi$ is of order 5, part 6 of Theorem 10.1 implies that $\left|\varphi^{-1}(K)\right|=5|K|$. Since the possible orders for K are $1,2,3,4,6$, and 12, we see that G has normal subgroups of order $5,10,15,20,30$, and 60 .

Page 226

9. Suppose G is an abelian group of order 120 , and G has exactly three elements of order 2. Determine the isomorphism class of G.

Solution: The prime factorization of 120 is $2^{3} \cdot 3 \cdot 5$. By the Fundamental Theorem of Finite Abelian Groups, G is isomorphic to one of the following three groups:

$$
\begin{gathered}
G_{1}=\mathbb{Z}_{8} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \\
G_{2}=\mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \\
G_{3}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} .
\end{gathered}
$$

Note that since $\operatorname{gcd}(8,3,5)=1$, we have $G_{1} \simeq \mathbb{Z}_{120}$. By Theorem 4.4, \mathbb{Z}_{120} has $\varphi(2)=1$ element of order 2 . Therefore, $G \not 千 G_{1}$. Suppose that $x=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ is an element of order 2 in G_{3}. Then $2=|x|$ implies $a_{4}=0(\bmod 3)$ and $a_{5}=0(\bmod 5)$. Therefore, $x=\left(a_{1}, a_{2}, a_{3}, 0,0\right)$. Now we have 8 choices for $x=\left(a_{1}, a_{2}, a_{3}, 0,0\right)$, and only one of them, $(0,0,0,0,0)$, is not of order 2 . Therefore, G_{3} has 7 elements of order 2 , so $G \nsucceq G_{3}$. Thus, we must have $G \simeq G_{2}$. (Check though!)
10. Find all abelian groups (up to isomorphism) of order 360 .

Solution: Since $360=2^{3} 3^{2} 5$, we see, from the Fundamental Theorem of finite abelian groups, that the list of isomorphism classes is as follows:

$$
\begin{gathered}
\mathbb{Z}_{360} \simeq \mathbb{Z}_{8} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{5} \\
\mathbb{Z}_{8} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{5} \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{5} \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5}
\end{gathered}
$$

12. Suppose the order of some finite abelian group is divisible by 10 . Show that G has a cyclic subgroup of order 10 .

Proof. Since 10 divides the order of G, and G is abelian, we know that G contains a subgroup of order 10. (See the Corollary to the Fundamental Theorem of Finite Abelian Groups.) Let H be such a subgroup. Since G is abelian, H is abelian. Since H has order $10=2 \cdot 5$, we see that $H \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \simeq \mathbb{Z}_{10}$.
29. Let G be an abelian group of order 16. Suppose that there are elements a and b in G such that $|a|=|b|=4$, but $a^{2} \neq b^{2}$. Determine the isomorphism class of G.

Solution: We know that there are five non-isomorphic abelian groups of order 16 :

$$
\begin{gathered}
\mathbb{Z}_{16} \\
G_{1}=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \\
G_{2}=\mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \\
G_{3}=\mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
G_{4}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} .
\end{gathered}
$$

Since G has elements of order 4 , we see that $G \not \approx G_{4}$. Since $\left|a^{2}\right|=\left|b^{2}\right|=2$, we see that G has at least two elements of order 2 , so $G \not \not \mathbb{Z}_{16}$. Note that, if $(x, y, z) \in G_{3}$, and $|(x, y, z)|=4$, then $x=0$ or $3 \bmod 4$, and since $y, z \in \mathbb{Z}_{2}$, we see that $2 y=$ $2 z=0 \bmod 2$. Now, $(x, y, z)^{2}=(2,0,0)$, so the squares of all elements of order 4 in G_{3} are equal. Thus, $G \nsucceq G_{3}$. Similarly, if (x, y) is of order 4 in G_{1}, then $x=2$ or 6 , and $(x, y)^{2}=(2 x \bmod 8,2 y \bmod 2)=(4,0)$, and thus all the squares of the elements of order 4 in G_{1} are equal. So, by the process of elimination, $G \simeq G_{2}$. Note that $a=(0,1)$ and $b=(1,0)$ are elements of G_{2} with the desired property.
pg. 242
8. Show that a ring is commutative if it has the property that $a b=c a$ implies $b=c$.

Proof. We need to show that if $x, y \in R$ then $x y=y x$. Let $a=x b=y x$ and $c=x y$. Then $a b=x(y x)=(x y) x=c a$. Thus, by the hypothesis, $b=c$, or $x y=y x$. Thus, for $x, y \in R$ we have $x y=y x$.
22. Let R be a commutative ring with unity, and let $U(R)$ denote the set of units in R. Prove that $U(R)$ is a subgroup under the ring multiplication in R.

Proof. Let 1 be the unity, i.e., the multiplicative identity of R. If $a, b, c \in U(R)$, then $(a b) c=a(b c)$, since this is a defining property of the ring R. We have to show $U(R)$ is closed. Suppose $a, b \in R$ and a^{-1}, b^{-1} are their inverses (see Theorem 12.2 - exercise 5). Now $(a b)\left(b^{-1} a^{-1}=a\left(b b^{-1}\right) a^{-1}=a 1 a^{-1}=1\right.$, so $a b$ is a unit. Thus, $U(R)$ is closed under multiplication. Also, 1 is an identity for this operation on $U(R)$. Finally, if $a \in U(R)$, then $a a^{-1}=1$, so a^{-1} is also a unit, and thus, every element of $U(R)$ has an inverse in $U(R)$. Therefore, $U(R) \mathrm{s}$ a group with the ring multiplication of R as its group operation.

pg. 255

8. Describe all zero divisors and units of $\mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{Z}$.

Solution: The zero element of $R=\mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{Z}$ is $(0,0,0)$. Note, each of \mathbb{Z} and \mathbb{Q} individually is an integral domain, so has no zero divisors. The multiplication in R is component-wise. So suppose $(a, b, c)(x, y, z)=(0,0,0)$, with

$$
\begin{equation*}
(a, b, c) \neq(0,0,0) \text { and }(x, y, z) \neq(0,0,0) \tag{1}
\end{equation*}
$$

Then $(a x, b y, c z)=(0,0,0)$, so one of a or x is zero, as is one of b or y, and one of c or z. By (1) we see at least one of a, b, c and one of x, y, z must be zero. Conversely, suppose One component of $s=(a, b, c)$ is zero. Let r be the element of R with one non-zero component, namely the one corresponding to a zero component for (a, b, c), and take that component to be 1 . Then $r s=(0,0,0$, with $r \neq 0$ and $s \neq 0$, so r is a zero divisor. Thus the zero divisors are the elements $(0, a, b),(a, 0, b)$, and $(a, b, 0)$, with $(a, b) \neq(0,0)$.

Now, note the unity of R is $(1,1,1)$. Then (a, b, c) is a unit, if and only if each of $a, b, c \neq 0$. Since the units of \mathbb{Z} are ± 1, andthe units of \mathbb{Q} are all non-zero elements, then we see $U(R)=\{(\pm 1, x, \pm 1) \mid x \neq 0\}$.
38. Construct a multiplication table for $\mathbb{Z}_{2}[i]$, the ring of Gaussian integers modulo 2. Is this ring a field? Is it an integral domain?

Solution:

\cdot	0	1	i	$1+i$
0	0	0	0	0
1	0	1	i	$1+i$
i	0	i	1	$1+i$
$1+i$	0	$1+i$	$1+i$	0

Note that $1+i$ has no multiplicative inverse, and thus $\mathbb{Z}_{2}[i]$ is not a field. Also, $(1+i)(1+i)=0$, so, $\mathbb{Z}_{2}[i]$ is not an integral domain.

Page 269

4. Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ which is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.

Solution: Let $S=\{(n, n) \mid n \in \mathbb{Z}\}$. Then S is a subring of $\mathbb{Z} \oplus \mathbb{Z}$. However, note that $(1,1) \in S$, and $(2,7) \cdot(1,1)=(2,7) \notin S$. Therefore, S is not an ideal.
7. Let a belong to a commutative ring. Show that $a R=\{a r \mid r \in R\}$ is an ideal of R. If R is the ring of even integers, list the elements of $4 R$.

Proof. Let $x, y \in a R$. Then we can choose $r, s \in R$, with $x=a r$ and $y=a s$. Now, $x-y=a r-a s=a(r-s) \in a R$, and $x y=(a r)(a s)=a(r a s) \in a R$. Thus, by the subring test, $a R$ is a subring of R. Let $z \in R$, and $a r \in a R$. Then $(a r) z=a(r z) \in a R$. Moreover, since R is commutative, $z(a r)=a(r z) \in a R$, and thus $a R$ is an ideal of R. If $R=\{0, \pm 2, \pm 4, \pm 6, \ldots\}$, then

$$
R=\{4 \cdot 0, \pm 4 \cdot 2, \ldots\}=\{0, \pm 8, \pm 16, \pm 24, \ldots\}=8 \mathbb{Z}
$$

14. Let A and B be ideals of a ring R. Prove that $A B \subseteq A \cap B$.

Proof. Recall that

$$
A B=\left\{a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \mid a_{i} \in A, b_{i} \in b, n>0\right\}
$$

(see problem 10).
Suppose that $x=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \in A B$. Since each $a_{1} \in A$, and A is an ideal, we see that $a_{i} b_{i} \in A$ for each i. Since A is an ideal, it is closed under the ring addition, so $x=a_{1} b_{1}+\cdots+a_{n} b_{n} \in A$. Similarly, since each $b_{i} \in B$, we have $a_{i} b_{i} \in B$ for each i. Therefore, $x \in B$. Since each $x \in A B$ is an element of both A and B, we see that $A B \subset A \cap B$.
33. How many elements are in $\mathbb{Z}_{3}[i] /<3+i>$? Give reasons for your answer.

Solution: Note that $(3+i)(3-i)=10 \in<3+i>$. Therefore, for any $a, b, k \in \mathbb{Z}$, we have $a+b i+\langle 3+i\rangle=a-10 k+b i+\langle 3+i\rangle$. Thus, we can always
choose a coset representative $a_{0}+b_{0} i$ for $a+b i+<3+i>$ with $0 \leq a_{0} \leq 9$. Further note that $i+\langle 3+i\rangle=i-(3+i)+\langle 3+i\rangle=-3+\langle 3+i\rangle$. Thus, $a+b i+\langle 3+i\rangle=a+b(-3)+\langle 3+i\rangle=a-3 b+\langle 3+i\rangle$. Thus, every coset has a representative in \mathbb{Z}, i.e. $a+b i+\langle 3+i\rangle=k+\langle 3+i\rangle$, for some $k \in \mathbb{Z}$. Moreover by the above discussion, we can choose $0 \leq k \leq 9$. Now, suppose that $0 \leq a, b \leq 9$, and $a+<3+i>=b+<3+i>$. Then $a-b \in<3+i>$, so $k=a-b=(3+i)(c+d i)$. Notice that $k(3-i)=10(c+d i)=10 c+10 d i$. Since $-k i=10 d i$, we have $10 \mid k$, so $10 \mid a-b$, and therefore, $a=b$. Thus, all the cosets $k+\langle 3+i\rangle$, with $0 \leq k \leq 9$ are distinct. $\mathbb{Z}_{3}[i] /<3+i>$ has ten elements.

56 Show that $\mathbb{Z}[i] /<1-i>$ is a field. How many elements does this field have?
We give two proofs.

Proof. 1. We know that it is enough to prove that $\langle 1-i\rangle$ is a maximal ideal. Note that $(1-i)^{2}=-2 i \in<1-i>$, and therefore, $2=i(-2 i) \in<1-i>$. Now, suppose that B is an ideal of $\mathbb{Z}[i]$ with $B \supsetneq<1-i>$. We need to show that $B=\mathbb{Z}[i]$. Let $a+b i \in B$ with $a+b i \notin<1-i>$. Note that we can write $a+b i=a(1-i)+(a+b) i$. Since $a(1-i) \in<1-i>\subset B$ and $a+b i \in B$, we have $(a+b) i=a+b i-a(1-i) \in B$. We claim that $a+b$ is odd. Suppose to the contrary that $a+b$ is even. Then $(a+b) i=2(k i)$ for some $k \in \mathbb{Z}$, and since $2 \in<1-i>(a+b) i \in<1+i>$ and then $a+b i=a(1-i)+(a+b) i \in<1-i>$, which contradicts our choice of $a+b i$. Thus, we have substantiated our claim that $a+b$ is odd. Write $a+b=2 k+1$ for some integer k. Note that we know that $2 k i \in<1-i>$ and $(a+b) i=(2 k+1) i \in B$. Thus, since B is an ideal

$$
1=-i((2 k+1) i-2 k i) \in B .
$$

Thus, $B \supset<1>=Z[i]$, which implies $B=\mathbb{Z}[i]$, and thus $<1-i>$ is maximal. Consequently, $\mathbb{Z}[i] /<1-i>$ is a field.

Note that if $a+b i \in \mathbb{Z}[i]$, then $a=2 k+\varepsilon$ and $b=2 j+\delta$, with $\varepsilon, \delta \in\{0,1\}$. Thus,

$$
a+b i+<1-i>=(\varepsilon+\delta i)+(2 k+2 j i)+<1-i>=\varepsilon+\delta i+<1-i>,
$$

since 2 and $2 i$ are elements of $\langle 1-i\rangle$. Thus, every element of $\mathbb{Z}[i] /<1-i\rangle$ is of the form $\varepsilon+\delta i+\langle 1-i\rangle$. However, these are not distinct.Note that $1+\langle 1-i\rangle=$ $i+<1-i>$ and, since $1+i=i(1-i)$ we have $1+i+<1-i>=<1-i>$. Thus, there are two elements of $\mathbb{Z}[i] /\langle 1-i\rangle$, namely, $\langle 1-i\rangle$ and $1+\langle 1-i\rangle$.
2. We start again by noting that $2,2 i \in<1-i>$. and thus if $a+b i \notin<1-i>$ then $a+b$ is odd. Now suppose that $a+b i+<1-i>\neq<1-i>$. Then, in the factor ring

$$
(a+b i+<1-i>)^{2}=a^{2}-b^{2}+2 a b i+<1-i>=a^{2}-b^{2}+<1-i>,
$$

since $2 a b i \in<1-i>$. But now, $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$ is odd, so

$$
\left(a^{2}-b^{2}\right)+<1-i>=1+<1-i>,
$$

which is the identity of $\mathbb{Z}[i] /<1-i>$. Thus, for every non-zero element $x \in \mathbb{Z}[i] /<$ $1-i>$, we see $x^{2}=1+\langle 1-i\rangle$, and thus x is invertible. Therefore, $\mathbb{Z}[i] /<1-i>$ is a field. The counting argument is then as in Proof 1.

Page 287

5. Show the correspondence $x \mapsto 5 x$ from $\mathbb{Z}_{5} \rightarrow \mathbb{Z}_{10}$ does not preserve addition.

Solution: Note we have $0 \mapsto 0,1 \mapsto 5,2 \mapsto 0,3 \mapsto 5,4 \mapsto 0$. Note $3+3=1 \bmod 5$, and if the map preserved addition, then we would have $5+5=5 \bmod 10$, which does not hold.

