# Math 453 Fall 2011 Answers to Selected Problems

# Page 21

7. Show that if a and b are positive integers then  $ab = \operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)$ .

*Proof.* We assume that we have proved the fundamental theorem of arithmetic, namely that we can write both a and b as products of primes in a unique way. Let  $p_1, p_2, \ldots, p_k$  be all the primes that appear as factors of **either** a **or** b. Then, allowing some exponents to be 0, we can write

$$a = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$

and

$$b = p_1^{m_1} p_2^{m_2} \dots p_k^{m_k},$$

for some non-negative integers  $n_i$  and  $m_i$ . For each i, let  $\ell_i = \max(n_i, m_i)$  and  $r_i = \min(n_i, m_i)$ . Note then, that for each i, we have  $p_i^{r_i}|a$  and  $p_i^{r_i}|b$ . Moreover, by our choice of  $r_i$ , we see that either  $p_i^{r_i+1} \not|a$  or  $p_i^{r_i+1} \not|b$ . Thus  $p_i^{r_i}$  is the highest power of  $p_i$  dividing both a and b, and therefore is the highest power of  $p_i$  dividing gdc(a, b) (see problem 12). Thus, by the fundamental theorem of arithmetic,

$$gcd(a,b) = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}.$$

On the other hand, note that if

$$c = p_1^{\ell_1} p_2^{\ell_2} \dots p_k^{\ell_k},$$

then, by our choice of  $\ell_i$ , we see that a|c and b|c. Moreover, if s is any common multiple of a and b, then for each i we must have  $p_i^{\ell_i}|s$ , and thus c|s. Thus (problem

12)  $c = \operatorname{lcm}(a, b)$ . Now, for each *i*, we see that  $r_i + \ell_i = n_i + m_i$ , and thus

$$gcd(a,b) \cdot lcm(a,b) = p_1^{r_1+\ell_1} p_2^{r_2+\ell_2} \dots p_k^{r_k+\ell_k} = p_1^{n_1+m_1} p_2^{m_2+n_2} \dots p_k^{n_k+m_k} = ab.$$

8. Suppose that a and b are integers dividing c. Show that if a and b are relatively prime, then ab divides c. Show, by example, that if a and b are not relatively prime, then ab need not divide c.

*Proof.* Since a|c and b|c we can write

$$c = ak = bn,$$

for some integers n and k. Since gcd(a, b) = 1, we can choose integers s and t with as + bt = 1. Now

$$c = (as + bt)c = acs + bct = a(bn)s + b(ak)t = ab(ns + kt),$$

which shows that ab|c.

To see that the statement need not be true if a and b are both relatively prime, we take a = 6, b = 4 and c = 12. Then gcd(a, b) = 2, a|c and b|c, but  $ab \not|c$ .

14. Show 5n + 3 and 7n + 4 are relatively prime, for all n.

Solution: Recall, gcd(a, b) is the smallest positive integer linear combination of a and b. That is, the smallest positive integer d so that d = as + bt, for some  $s, t \in \mathbb{Z}$ . So, gcd(a, b) = 1 if and only if we can find  $s, t \in \mathbb{Z}$  for which as + bt = 1. Now, in our case, we see a = 5n + 3 and b = 7n + 4, we can take s = 7 and t = -5, i.e., 7(5n+3)+(-5)(7n+4) = 35n+20-35n-20 = 1. So, we conclude  $gcd(5n+3,7n+4) = 1.\Box$ 

**20.** Let  $p_1, p_2, \ldots, p_n$  be distinct primes. Show that  $p_1p_2 \ldots p_n + 1$  is divisible by none of these primes.

*Proof.* Recall that n|a if and only if  $a = 0 \mod n$ . Since each  $p_i$  is prime,  $p_i > 1$ . Let  $a = p_1 \dots p_n + 1$ . Then each  $p_i|(a-1)$ , so  $a = 1 \mod p_i$ , and since  $p_i > 1$ , we see that  $a \neq 0 \mod p_i$ , and this shows that  $p_i \not|a$ .

**21.** Show that there are infinitely many primes.

*Proof.* We argue by contradiction. Suppose to the contrary that there are only finitely many primes. In particular, suppose that  $p_1, \ldots, p_n$  constitute all the primes. Let  $a = p_1 p_2 \ldots p_n + 1$ . By problem 20  $p_i \not| a$  for each  $1 \le i \le n$ . Thus, a must be a prime different from  $p_1, \ldots, p_n$ . This contradicts our assumption that  $p_1, \ldots, p_n$  were all the primes. Consequently, there are infinitely many primes.

**30.** Prove the Fibonacci numbers,  $f_n$  satisfy  $f_n < 2^n$ .

Proof. We prove this by the second principle of mathematical induction. Since  $f_1 = 1$ , we have  $f_1 = 1 < 2^1$ , so the claim holds for n = 1. Also, the claim holds for n = 2, since  $f_2 = 1 < 2^2 = 4$ . Now, suppose  $n \ge 2$  and the claim holds for  $1 \le k \le n$ , i.e., suppose  $f_k < 2^k$ , for k = 1, 2, ..., n. Then  $f_{n+1} = f_{n-1} + f_n < 2^{n-1} + 2^n < 2^n + 2^n = 2^{n+1}$ . Therefore, if the claim holds for 1, 2, ..., n, then the claim holds for n + 1. So, by the second principle of mathematical induction,  $f_n < 2^n$ , for all n > 1.

## Page 35

9. Associate the number +1 with a rotation and the number -1 with a reflection. Describe an analogy between multiplying these two numbers and multiplying elements of  $D_n$ .

Solution: Note that a rotation composed with a rotation is a reflection, a reflection composed with a reflection is a rotation, and composing a reflection and rotation in any order is a reflection. On the other hand multiplying +1 and +1 yields +1, as does multiplying -1 and -1, while multiplying -1 and +1 is -1. So, multiplying rotations and reflections can be associated with multiplying  $\pm 1$  in this way.  $\Box$ 

**21.** What group theoretic property do the upper case letters F, G, J, K, P, Q and R have that is not shared by the other 20 upper case letters?

Solution: You might note, these six letters have no symmetries (either rotational or reflectional), while all others have at least one non-trivial symmetry.  $\Box$ 

### Page 52

14. Suppose that G is a group with the property that whenever ab = ca we have b = c. Show that G is abelian.

*Proof.* Let a and b be elements of G. Take  $c = aba^{-1}$ . Then  $ca = aba^{-1}a = ab$ . Since ca = ab, the hypothesis implies c = b, that is  $aba^{-1} = b$ . Now multiplying on the right by a, we get ab = ba

**19.** Let a and b be elements of a group, and let  $n \in \mathbb{Z}$ . Show that  $(a^{-1}ba)^n = a^{-1}b^n a$ .

*Proof.* Note that if n = 1, then we have  $(a^{-1}ba)^1 = a^{-1}b^1a$ , i.e. the statement holds trivially for n = 1. Note that for n = 2,  $(a^{-1}ba)^2 = (a^{-1}ba)(a^{-1}ba) = a^{-1}b(aa^{-1})ba = a^{-1}b^2a$ . Thus the claim holds for n = 2. Suppose the claim holds for n. That is, assume that  $(a^{-1}ba)^n = a^{-1}b^na$ . Note that  $(a^{-1}ba)^{n+1} = (a^{-1}ba)^n(a^{-1}ba)$ . Now, by assumption,  $(a^{-1}ba)^n = a^{-1}b^na$ . Thus,

$$(a^{-1}ba)^{n+1} = (a^{-1}b^n a)(a^{-1}ba) = a^{-1}b^n(aa^{-1})ba = a^{-1}b^neba = a^{-1}b^{n+1}a.$$

Thus, by induction, the claim holds for  $n \ge 1$ .

For n = 0, we have  $a^{-1}b^0a = a^{-1}ea = e = (a^{-1}ba)^0$ . Suppose n < 0. Then -n > 0, so  $(a^{-1}ba)^{-n} = a^{-1}b^{-n}a$ . Now,

$$(a^{-1}ba)^n = \left(\left(a^{-1}ba\right)^{-n}\right)^{-1} = (a^{-1}b^{-n}a)^{-1}.$$

Now show that  $(a^{-1}b^{-n}a)^{-1} = a^{-1}b^n a$ , and you're done.

**26.** Show that if  $(ab)^2 = a^2b^2$ , in a group G, then ab = ba.

*Proof.* Since  $(ab)^2 = a^2b^2$ , we have abab = aabb. Then using the right and left cancellation laws, we have ba = ab, which is the claim.

## Page 64

4. Prove that in any group, an element and its inverse have the same order.

*Proof.* Suppose a is of infinite order. If, for some n > 0,  $(a^{-1})^n = e$ , then  $a^n = a^n e = a^n (a^{-1})^n = (aa^{-1})^n = e$ , which contradicts our assumption on the order of a. Thus,  $a^{-1}$  is also of infinite order.

Now suppose |a| = m, and  $|a^{-1}| = n$ . If m > n, then we have  $a^{m-n} = e$ , with m > m - n > 0, which contradicts our assumption that |a| = m. Thus,  $m \le n$ . Similarly, if n > m, then  $(a^{-1})^{n-m} = e$ , with n > n - m > 0, which contradicts our assumption that  $|a^{-1}| = n$ . Thus,  $n \le m$ , so n = m.

**22.** Complete the partial Cayley table given below:

| • | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 2 | 2 | 1 | 4 | 3 | 6 | 5 | 8 | 7 |
| 3 | 3 | 4 | 2 | 1 | 7 | 8 | 6 | 5 |
| 4 | 4 | 3 | 1 | 2 | 8 | 7 | 5 | 6 |
| 5 | 5 | 6 | 8 | 7 | 1 |   |   |   |
| 6 | 6 | 5 | 7 | 8 |   | 1 |   |   |
| 7 | 7 | 8 | 5 | 6 |   |   | 1 |   |
| 8 | 8 | 7 | 6 | 5 |   |   |   | 1 |

Solution: In order that the table be a group, the group laws must be satisfied. Thus, we can use associativity of the group multiplication to help us complete the table. Also, each element among  $\{1, 2, ..., 8\}$  must appear exactly once in each row and column. Note, since  $5 = 2 \cdot 6$ , we have  $5 \cdot 6 = (2 \cdot 6) \cdot 6 = 2 \cdot 6^2 = 2 \cdot 1 = 2$ . Similarly,  $6 \cdot 5 = (2 \cdot 5) \cdot 5 = 2 \cdot 5^2 = 2 \cdot 1 = 2$ . Note,  $5 \cdot 8 = 5 \cdot (5 \cdot 3) = 5^2 \cdot 3 = 1 \cdot 3 = 3$ .

Now, 4 is the only element which hasn't appeared n the "5" row, so we must have  $5 \cdot 7 = 4$ . (Or we could note  $5 \cdot 7 = 5 \cdot (5 \cdot 4) = 5^2 \cdot 4 = 1 \cdot 4 = 4$ .) Thus, the table, so far looks as follows:

| • | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 2 | 2 | 1 | 4 | 3 | 6 | 5 | 8 | 7 |
| 3 | 3 | 4 | 2 | 1 | 7 | 8 | 6 | 5 |
| 4 | 4 | 3 | 1 | 2 | 8 | 7 | 5 | 6 |
| 5 | 5 | 6 | 8 | 7 | 1 | 2 | 4 | 3 |
| 6 | 6 | 5 | 7 | 8 | 5 | 1 |   |   |
| 7 | 7 | 8 | 5 | 6 |   |   | 1 |   |
| 8 | 8 | 7 | 6 | 5 |   |   |   | 1 |

Now, note, since  $5 \cdot 7 = 4$ , we cannot have  $6 \cdot 7 = 4$  (again each element appears once in each row and column – or we could note if  $5 \cot 7 = 6 \cdot 7$ , then, since  $7^2 = 1$ , we have  $5 \cdot 7^2 = 6 \cdot 7^2$ , or 5 = 6, which is a contradiciton.) Thus,  $6 \cdot 7 = 3$  and  $6 \cdot 8 = 4$ . Now looking at the last two columns, we see the only choices are  $7 \cdot 8 = 2$ , and  $8 \cdot 7 = 2$ . Thus, the table now looks like,

| • | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 2 | 2 | 1 | 4 | 3 | 6 | 5 | 8 | 7 |
| 3 | 3 | 4 | 2 | 1 | 7 | 8 | 6 | 5 |
| 4 | 4 | 3 | 1 | 2 | 8 | 7 | 5 | 6 |
| 5 | 5 | 6 | 8 | 7 | 1 | 2 | 4 | 3 |
| 6 | 6 | 5 | 7 | 8 | 5 | 1 | 3 | 4 |
| 7 | 7 | 8 | 5 | 6 |   |   | 1 | 2 |
| 8 | 8 | 7 | 6 | 5 |   |   | 2 | 1 |

= Now, to fill in the last four squares, we note  $7 \cdot 5 = 7 \cdot (7 \cdot 3) = 7^2 \cdot 3 = 1 \cdot 3 = 3$ . Now, we see  $7 \cdot 6 = 4$ . So, finally, we must have  $8 \cdot 5 = 4$ , and  $8 \cdot 6 = 3$ . So, the table must be:

| • | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 2 | 2 | 1 | 4 | 3 | 6 | 5 | 8 | 7 |
| 3 | 3 | 4 | 2 | 1 | 7 | 8 | 6 | 5 |
| 4 | 4 | 3 | 1 | 2 | 8 | 7 | 5 | 6 |
| 5 | 5 | 6 | 8 | 7 | 1 | 2 | 4 | 3 |
| 6 | 6 | 5 | 7 | 8 | 5 | 1 | 3 | 4 |
| 7 | 7 | 8 | 5 | 6 | 3 | 4 | 1 | 2 |
| 8 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

#### Page 81

7. Find an example of a noncyclic group, all of whose proper subgroups are cyclic. Solution: Let G be an abelian group of order 4, with elements  $\{e, a, b, ab| |a| = |b| = 2\}$ . Then the proper subgroups of G are:  $H_1 = \{e, a\} = \langle a \rangle, H_2 = \{e, b\} = \langle b \rangle$ , and  $H_3 = \{e, ab\} = \langle ab \rangle$ . Note that, since the product of any two of a, b or ab is the third, that a subgroup with any two of a, b, and ab is equal to G. Thus, all the proper subgroups of G are cyclic. On the other hand, G is not cyclic, since we see that  $\langle a \rangle, \langle b \rangle$ , and  $\langle ab \rangle$  are all proper subgroups of G.  $\Box$ 

**11.** Let G be a group and  $a \in G$ . Prove  $\langle a \rangle = \langle a^{-1} \rangle$ .

Solution: Recall  $\langle a \rangle = \{a^n \mid a \in \mathbb{Z}\}$ . Since  $a^{-1} = a^n$ , for n = -1, we see  $a^{-1} \in \langle a \rangle$ , and thus,  $\langle a^{-1} \rangle \subseteq \langle a \rangle$ . But on the other hand  $a = (a^{-1})^{-1} \in \langle a^{-1} \rangle$ , so  $\langle a \rangle \subseteq \langle a^{-1} \rangle$ . Thus,  $\langle a^{-1} \rangle = \langle a \rangle$ .

**18.** If a cyclic group has an element of infinite order, how many elements of finite order does it have?

Solution Since |e| = 1, there is at least one element of G of finite order. Let  $G = \langle a \rangle$ . Since G has an element of infinite order, a is of infinite order. Suppose  $a^j$  is an element of finite order, for some  $j \neq 0$ . Then  $(a^j)^n = e$ , and therefore,  $a^{jn} = e$ . By the Corollary to Theorem 4.1, the order of a divides jn. Thus  $|a| = \ell$  for some  $\ell < \infty$ . But, if  $|a| = \ell$ , then  $G = \langle a \rangle = \{e, a, a^2, \ldots, a^{\ell-1}\}$  is a finite group. This contradicts our assumption that G has an element of infinite order. Therefore,  $a^j$  is of infinite order for every  $j \neq 0$ , and therefore e is the only element of G of finite order.  $\Box$ **31.** Let G be a finite group. Show there is a fixed positive integer n so that  $a^n = e$  for all  $a \in G$ .

Proof: Let  $G = \{e, a_1, \ldots, a_k\}$ . For each  $1 \le i \le k$ , let  $m_i = |a_i|$ . Then  $a_i^{m_i} = e$ . Now let  $n = \operatorname{lcm}(m_1, m_2, \ldots, m_k)$ . Then  $m_i | n$  for each i and hence  $a_i^n = e$ . Since  $e^n = e$ , we see  $a^n = e$  for all  $n \in G.\square$ 

#### Page 113

**6.** Show that  $A_8$  contains an element of order 15.

Proof: Recall that a 3-cycle (abc) = (ab)(ac) is even, and a 5-cycle (abcxy) = (ab)(ac)(ax)(ay) is even. So  $(123) \in A_8$  and  $(45678) \in A_8$ . Therefore,  $\alpha = (123)(45678) \in A_8$ . Since (123) and (45678) are disjoint, Ruffini's theorem says that  $|\alpha| = 15.\square$ **30.** What cycle is  $(a_1 \ a_2 \dots a_n)^{-1}$ ?

Solution: Recall that  $\alpha = (a_1 \ a_2 \dots a_n)$  is a one to one and onto function, from a a set A to itself. If  $\alpha(a) = b$ , then  $\alpha^{-1}(b) = a$ . Since  $\alpha(a_1) = a_2$ , we have  $\alpha^{-1}(a_2) = a_1$ . For  $2 \leq j \leq n-1$ , we have  $\alpha(a_j) = a_{j+1}$ , so  $\alpha^{-1}(a_{j+1}) = a_j$ . Note that  $\alpha(a_n) = a_1$ , so  $\alpha^{-1}(a_1) = a_n$ . Finally,  $\alpha$  fixes all indices except for  $a_1, \dots, a_n$ . Thus

$$(a_1 \ a_2 \dots a_n)^{-1} = (a_n \ a_{n-1} \dots a_2 \ a_1) = (a_1 \ a_n \ a_{n-1} \dots a_2).\square$$

**31.** Let G be a group of permutations on a set X. Let  $a \in X$ , and define stab $(a) = \{\alpha \in G | \alpha(a) = a\}$ . We call stab(a) the stabilizer of a in G. Prove that stab(a) is a subgroup of G.

Proof: We will use the two step subgroup test. First note that  $\operatorname{stab}(a)$  is non-empty. If  $\varepsilon$  is the identity permutation on X, then, by definition,  $\varepsilon(x) = x$  for all  $x \in X$ . In particular,  $\varepsilon(a) = a$ , and hence,  $\varepsilon \in \operatorname{stab}(a)$ . Therefore,  $\operatorname{stab}(a)$  is non-empty. Now we need to show that if  $\alpha, \beta \in \operatorname{stab}(a)$ , then  $\alpha\beta$  and  $\alpha^{-1} \in \operatorname{stab}(a)$ . First note that  $\alpha\beta(a) = \alpha(\beta(a))$ . Since  $\beta \in \operatorname{stab}(a)$ , we know that  $\beta(a) = a$ . Therefore,  $\alpha\beta(a) = \alpha(a) = a$ , since  $\alpha \in \operatorname{stab}(a)$ . Consequently,  $\operatorname{stab}(a)$  is closed under the group operation in G. Next suppose  $\alpha(a) = a$ . Then, by multiplying by  $\alpha^{-1}$  on each side, i.e., applying the function  $\alpha^{-1}$  to each side, we see that  $\alpha^{-1}(\alpha(a)) = \alpha^{-1}(a)$ , and thus,  $\alpha^{-1}\alpha(a) = \varepsilon(a) = a = \alpha^{-1}(a)$ . We conclude that if  $\alpha \in \operatorname{stab}(a)$ , then  $\alpha^{-1} \in \operatorname{stab}(a)$ . This completes the proof. $\Box$ 

#### Page 133

6. Prove that the relation isomorphism is transitive.

Proof: We need to show that if  $G \cong H$  and  $H \cong K$ , then  $G \cong K$ . Let  $\varphi : G \longrightarrow H$  and  $\psi : H \longrightarrow K$  be isomorphisms. By Theorem 0.3,  $\psi \varphi : G \longrightarrow K$  is both one-to-one and onto. Suppose  $x, y \in G$ . Then  $\psi \varphi(xy) = \psi(\varphi(xy))$ , and since  $\varphi$  is an isomorphism we have  $\psi \varphi(xy) = \psi(\varphi(x)\varphi(y))$ . Note that  $\varphi(x)$  and  $\varphi(y)$  are elements of H, and  $\psi$  is an isomorphism. Thus,  $\psi(\varphi(x)\varphi(y)) = \psi(\varphi(x))\psi(\varphi(y)) = \psi\varphi(x)\psi\varphi(y)$ . Therefore,  $\psi \varphi$  is an isomorphism, and  $G \cong K$ . This establishes the claim.  $\Box$ 

7. Prove that  $S_4$  is not isomorphic to  $D_{12}$ .

*Proof* Note that both groups are of order 24. In  $S_4$ , the values for the order of an element are 1, 2, 3, or 4. However, the element  $R_{30}$  of  $D_{12}$  has order 12. Thus, by property 5 of Theorem 6.1,  $D_{12}$  cannot be isomorphic to  $S_4$ .

**17.** Let  $r \in U(n)$ . Prove that the mapping  $\alpha : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$  defined by  $\alpha(s) = sr$  for all  $s \in \mathbb{Z}_n$  is an automorphism of  $\mathbb{Z}_n$ .

*Proof:* We need to to show that  $\alpha$  is one-to-one, onto, and preserves the group operation in  $\mathbb{Z}_n$ . We begin by showing that  $\alpha$  is onto. That is, we intend to show that, for each  $y \in \mathbb{Z}_n$ , there is an  $s \in \mathbb{Z}_n$  with  $\alpha(s) = y$ . Since  $r \in U(n)$ , we know that gcd(n,r) = 1, and therefore the equation  $xr = 1 \pmod{n}$  is solvable. So, for some  $x \in \mathbb{Z}_n$ ,  $\alpha(x) = 1$ . Let s = yx. Then  $\alpha(s) = sr = (yx)r = y(xr) = y \pmod{n}$ . Thus, we know that  $\alpha$  is onto. Since  $\alpha$  is an onto function from  $\mathbb{Z}_n$  to itself,  $\alpha$  is one-to-one. (A direct proof that  $\alpha$  is one-to-one is as follows: If  $\alpha(s) = \alpha(t)$ , then  $sr = tr \pmod{n}$ . Thus, n|r(s-t), and, since gcd(n,r) = 1, n|(s-t). Thus, s = t.)

We finally need to show that  $\alpha$  preserves the group operation. Let  $s, t \in \mathbb{Z}_n$ . Then  $\alpha(s+t) = (s+t)r = sr + tr = s\alpha + t\alpha \pmod{n}$ . Thus,  $\alpha$  is an isomorphism.  $\square$ **35.** Suppose g and h induce the same inner automorphism of a group G. Prove  $h^{-1}g \in Z(G)$ .

*Proof:* Let  $\varphi_g$  and  $\varphi_h$  be the inner automorphisms induced by g and h, respectively. Then, for any  $x \in G$ , we have  $\varphi_g(x) = \varphi_h(x)$ , which says  $gxg^{-1} = hxh^{-1}$ , for every  $x \in G$ . Multiplying on the left by  $h^{-1}$  and the right by g we have  $h^{-1}gx = xh^{-1}g$ . Thus,  $h^{-1}g$  commutes with every  $x \in G$ . Therefore, by definition,  $h^{-1}g \in Z(G).\square$ .

#### Page 149

**6.** Let *n* be an integer greater than 1. Let  $H = \{0, \pm n, \pm 2n, \pm 3n, \dots\}$ . Find all the left cosets of *H* in  $\mathbb{Z}$ . How many of them are there?

Solution: Suppose a + H = b + H. Then  $b - a \in H$ , which is equivalent to n|(b - a). Thus a + H = b + H if and only if  $a = b \mod n$ . Thus the left cosets of H in  $\mathbb{Z}$  are  $0 + H, 1 + H, \ldots, (n - 1) + H$ , and hence there are n of them.

17. Compute  $5^{15} \mod 7$  and  $7^{13} \mod 11$ .

Solution: Since 7 is prime, U(7) is cyclic, of order 6, and this  $5^6 = 1 \mod 7$ . Thus  $5^{12} = 1 \mod 7$ , and therefore  $5^{15} \equiv 5^3 \equiv 5^2 \cdot 5 \equiv 4 \cdot 5 \equiv 6 \mod 7$ . Similarly, U(11) is cyclic of order 10, so  $7^{10} \equiv 1 \mod 11$ . Thus,  $7^{13} \equiv 7^3 \equiv 7^2 \cdot 7 \equiv 5 \cdot 7 \equiv 2 \mod 11$ .

Note: An alternative proof is to use Fermat's Little Theorem, which says  $x^p \equiv x \mod p$ .

**26.** Suppose that G is a group with more than one element, and G has no proper, nontrivial subgroup. Prove that |G| is prime.

*Proof:* Let  $a \in G$ , with  $a \neq e$ . Then  $\langle a \rangle$  is a nontrivial subgroup of G. Thus, by our hypothesis,  $G = \langle a \rangle$ . If |a| is infinite, then  $G \simeq \mathbb{Z}$  (see Example 2 of Chapter 6). Then  $\langle a^2 \rangle$  is a proper, nontrivial subgroup of G, which contradicts our assumption. Thus, |a| must be finite. Now, G is a finite cyclic group. If d divides |G|, then, by the Fundamental Theorem of Cyclic Groups, there is a cyclic subgroup of G of order d. Since G and  $\{e\}$  are the only subgroups of G, we see that |G| can have no proper divisors, i.e., |G| must be prime.□

**36.** Let G be a group of order  $p^n$ , where p is prime. Prove the center of G cannot have order  $p^{n-1}$ .

Proof: Let Z = Z(G) be the center of G, and suppose  $|Z| = p^{n-1}$ . Then  $Z \neq G$ , so G is nonabelian. Suppose  $x \notin Z$ . We claim none of  $x, x^2, \ldots, x^{p-1}$  are elements of Z. Suppose not. Then  $x^k \in Z$ , for some  $2 \leq k \leq p-1$ . Now,  $|Z| = p^{n-1}$ , so  $(x^k)^{p^{n-1}} = e$ . But then  $x^{p^{n-1}k} = e$ , so |x| divides  $p^{n-1}k$ . Since |x| divides  $|G| = p^n$ , we see k must be a power of p, which contradicts our assumption. Thus,  $x^k \notin Z$  for  $k = 1, 2, \ldots, p-1$ . Now, I claim  $x^k Z \neq x^j Z$ , for  $1 \leq k < j \leq p-1$ . For if not,  $x^{j-k} \in Z$ , which contradicts what we just showed. Since |G : Z| = |G|/|Z| = p, there are p distinct cosets of Z in G. Thus  $Z, xZ, \ldots, x^{p-1}Z$  are the distinct cosets of Z in G. Therefore, every  $y \in G$  can be written in the form  $x^j z$  for some  $0 \leq j \leq p-1$ , and some  $z \in Z$ . Now if  $y_1, y_2 \in G$ , then  $y_1 = x_j z_1$ , and  $y_2 = x^k z_2$ , we have  $y_1 y_2 = y_2 y_2$ , (since  $z_i \in Z$  and powers of x commute with each other). Then G is abelian, contradicting our assumption. Thus,  $|Z| \neq p^{n-1}$ .□

Note: There is a much easier proof using the G/Z theorem in Chapter 9.

#### Page 494

1. Determine the number of ways in which the four corners of a square can be colored with two colors.

**Solution:** Number the corners of the square 1, 2, 3, 4 in the counterclockwise direction, as in the picture.



There are  $2^4 = 16$  ways to arrange the colors of the corners. In order to determine the number of non-equivalent, we use Burnside's Lemma. The symmetries of the square are given by  $D_4$ . Notice that  $R_0$  fixes all 16 arrangements.  $R_{90}$  and  $R_{270}$  only fix arrangements with all four colors the same color. Since the orbits under  $R_{180}$ are  $\{1,3\}$  and  $\{2,4\}$ , the colorings fixed by  $R_{180}$  are the ones with vertices 1 and 3 are the same color, and vertices 2 and 4 are the same color. Thus,  $R_{180}$  fixes 4 colorings. The orbits under H are  $\{1,2\}$  and  $\{3,4\}$ , so H (and similarly V) fixes 4 arrangements. Note the diagonal reflection D has orbits  $\{1\}, \{3\}$  and  $\{2,4\}$ , so fixes  $2^3 = 8$  arrangements. Similarly D' fixes 8 arrangements. Thus, by Burnside's Lemma there are

$$\frac{1}{|D_4|} \sum_{\phi \in D_4} |\operatorname{fix}(\phi)| = \frac{1}{8} \left( 16 + 2 \cdot 2 + 4 + 2 \cdot 4 + 2 \cdot 8 \right) = \frac{1}{8} (48) = 6$$

non-equivalent colorings.

11. Suppose we cut a cake into 6 identical pieces. How many ways can we color the cake with n colors if each piece gets one color.

**Proof:** Number the slices of the cake 1 through 6 as in the picture.



There are  $n^6$  arrangements of the colors of slices on the cake. The symmetry group of our cake is  $G = \{R_0, R_{60}, R_{120}, R_{180}, R_{240}, R_{300}\}$ , the subgroup of rotations in  $D_6$ . (We do not allow reflections, since we wouldn't want to turn the cake upside down.) Look at the orbits of each type of element. element.  $R_0$  fixes every element, and hence fixes all  $n^6$  colorings. For a rotation of order 6 there is one orbit  $\{1, 2, 3, 4, 5, 6\}$ . So these two elements fix n colorings. The two rotations of order 3 have two orbits  $\{1, 3, 5\}$  and  $\{2, 4, 6\}$ . Thus, these elements fix  $n^2$  elements. Finally, the element  $R_{180}$ has three orbits:  $\{1, 4\}, \{2, 5\}, \{3, 6\}$ . Thus this element fixes  $n^3$  elements. Applying Burnside's Lemma we a have the number of colorings of the cake is

$$\frac{1}{|G|} \sum_{\phi \in G} |\operatorname{fix}(\phi)| = \frac{1}{6} \left( n^6 + 2n + 2n^2 + n^3 \right).$$

#### Page 167

**7.** Prove that  $G_1 \oplus G_2$  is isomorphic to  $G_2 \oplus G_1$ .

Proof. Let  $\psi: G_1 \oplus G_2 \longrightarrow G_2 \oplus G_1$  be given by  $\psi(g_1, g_2) = (g_2, g_1)$ , for each  $(g_1, g_2) \in G_1 \oplus G_2$ . Note that if  $\psi(g_1, g_2) = \psi(h_1, h_2)$ , then  $(g_2, g_1) = (h_2, h_1)$ , so  $g_1 = h_1$ , and  $g_2 = h_2$ . In other words, if  $\psi(g_1, g_2) = \psi(h_1, h_2)$ , then  $(g_1, g_2) = (h_1, h_2)$ , and thus  $\psi$  is one-to-one. Now suppose that  $(g_2, g_1) \in G_2 \oplus G_1$ . Then  $(g_2, g_1) = \psi(g_1, g_2)$ , i.e.,  $\psi(g_1, g_2) = \psi(g_1, g_2)$ , i.e.,  $\psi(g_1, g_2) = \psi(g_1, g_2)$ , i.e.,  $\psi(g_1, g_2) = \psi(g_1, g_2)$ .

is onto. If  $(g_1, g_2)$ , and  $(h_1, h_2)$  are in  $G_1 \oplus G_2$ , then

$$\psi((g_1, g_2)(h_1, h_2)) = \psi(g_1h_1, g_2h_2) = (g_2h_2, g_1h_1)$$
$$= (g_2, g_1)(h_2, h_1) = \psi(g_1, g_2)\psi(h_1, h_2).$$

Thus,  $\psi$  is an isomorphism, so  $G_1 \oplus G_2 \cong G_2 \oplus G_1$ .

**26**. Find a subgroup of  $\mathbb{Z}_4 \oplus \mathbb{Z}_2$  which is not of the form  $H \oplus K$ , with H a subgroup of  $\mathbb{Z}_4$  and K a subgroup of  $\mathbb{Z}_2$ .

Solution: Let a = (1, 1). Then |a| = 4, and  $\langle a \rangle = \{(0, 0), (1, 1), (2, 0), (3, 1)\}$  is not of the form  $H \oplus K$ . For  $\langle a \rangle$  has an element of order 4, which means H would have to be all of  $\mathbb{Z}_4$ , but then, as the second coordinates are not all 0, we would also have to have  $K = \mathbb{Z}_2$ , which would imply  $\langle a \rangle = \mathbb{Z}_4 \oplus \mathbb{Z}_2$ , but this isn't the case.  $\Box$ 

**39** If a finite abelian group has exactly 24 elements of order 6, how many cyclic subgroups of order 6 does it have?

Solution: Suppose G is our finite abelian group, with 24 elements of order 6. Suppose  $H \leq G$  is a cyclic subgroup of order 6. Then  $H = \langle a \rangle$ , and |a| = 6. Furthermore, H contains exactly  $\varphi(6) = 2$  elements of order 6, namely a and  $a^5$ . Since every element of order 6 generates a cyclic subgroup of order 6, we see that there are 24/2 = 12 cyclic subgroups of order 6 in  $G.\square$ 

#### Page 193

4. Let  $H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \middle| a, d \neq 0, b \in \mathbb{R} \right\}$ . Is H a normal subgroup of  $GL(2, \mathbb{R})$ ? Solution: No. Recall that H is normal in G if  $aHa^{-1} = H$ , for all  $a \in G$ . Let  $h = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in H$ . Let  $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . Then  $A^{-1} = A$ , and  $AhA^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \notin H$ .

Thus, H is not normal in  $GL(2,\mathbb{R}).\square$ 

**38.** Suppose that *H* is a normal subgroup of *G* and let  $a \in G$ . If aH is of order 3 in G/H, and |H| = 10, what are the possibilities for |a|.

Solution: Since aH is of order 3, we see that  $a^3H = H$ , which is equivalent to  $a^3 \in H$ . By Corollary 1 to Lagrange's Theorem, we see that  $|a^3| = 1, 2, 5$ , or 10. Thus, |a| = 3, 6, 15, or 30.

**46.** If G is a group and [G : Z(G)] = 4, prove  $G/Z(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ .

Proof. Since [G : Z(G)] = 4, we know |G/Z(G)| = 4, so either  $G/Z(G) \cong \mathbb{Z}_4$ , or  $G/Z(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ . But if  $G/Z(G) \cong \mathbb{Z}_4$ , then, by the G/Z-Theorem, G is abelian, so |G/Z(G)| = 1, which is not true. Thus, we must have  $G/Z(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ .  $\Box$ 

**62.** Suppose G has a subgroup of order n. Show the intersection of all subgroups of order n is a normal subgroup of G.

Proof. Let |H| = n. Note that if  $a \in H$ , then  $aHa^{-1}$  s a subgroup of order n. (To see this note that if  $h_1, h_2 \in H$ , then  $(ah_1a^{-1})(ah_2a^{-1})^{-1} = ah_1h_2^{-1}a^{-1} \in aHa^{-1}$ , so the claim holds by the one step subgroup test.) Now, let K be the intersection of all subgroups of order n. By assumption, K is non-empty, since  $e \in K$ . If  $k \in K$ , and  $a \in G$ , then we need to show  $aka^{-1} \in K$ . If H is any subgroup of order n, then, by definition,  $k \in H$ . But above we showed  $a^{-1}Ha$  is a subgroup of order n (we replace a with  $a^{-1}$  here) so, since  $k \in K$ , we have  $k \in a^{-1}Ka$ .

## Page 211

8. Let G be a group of permutations. For each  $\sigma \in G$ , define

$$\operatorname{sgn}(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{ is an even permutation} \\ -1 & \text{if } \sigma \text{ is an odd permutation.} \end{cases}$$

Prove that sgn is a homomorphism from G to  $\{\pm 1\}$ . What is the kernel? Why does this allow you to conclude  $A_n$  is a normal subgroup of  $S_n$  of index 2. Proof. Suppose  $\sigma, \tau \in G$ . If  $\sigma\tau$  is even, then  $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\tau)$ , and we see that  $1 = \operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$ . If  $\sigma\tau$  is odd, then  $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$ , and so  $-1 = \operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$ . Thus, for all  $\sigma, \tau$  we have  $\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$ , so sgn is a homomorphism.

Note that ker sgn =  $\{\sigma \in G | \operatorname{sgn}(\sigma) = 1\} = \{\sigma \in G | \sigma \text{ is even}\}$ . Thus, if  $G \subset S_n$ , we have ker sgn =  $G \cap A_n$ . Now suppose  $G = S_n$ . Then ker sgn =  $A_n$ , and sgn $(S_n) = \{\pm 1\}$ . Since  $A_n$  is the kernel of a homomorphism, it is a normal subgroup. Moreover, we have  $S_n/A_n \simeq \{\pm 1\}$  is of order 2, so  $|S_n : A_n| = 2$ .

**9.** Prove that the mapping from  $G \oplus H$  to G given by  $(g, h) \mapsto g$  is a homomorphism. What is the kernel?

*Proof.* We denote the map by p, i.e., p((g,h)) = g. (For geometric motivation, take  $G = H = \mathbb{R}$ , so p is the projection of a point (x, y) onto the x-axis.) Let  $(g_1, h_1), (g_2, h_2) \in G \oplus H$ . Then

$$p((g_1, h_1)(g_2, h_2)) = p((g_1g_2, h_1h_2)) = g_1g_2 = p((g_1, h_1))p((g_2, h_2)),$$

so p is a homomorphism. Let  $e_G$  be the identity of G. Note that ker  $p = \{(g, h) | p((g, h)) = e_G\} = \{(e_G, h) | h \in H\}.$ 

**21.** Suppose that  $\varphi$  is a homomorphism from  $\mathbb{Z}_{30}$  onto a group of order 5. Determine the kernel of  $\varphi$ .

Solution: Since  $\varphi$  is onto, we have  $|\varphi(\mathbb{Z}_{30})| = 5$ . We also know that  $|\mathbb{Z}_{30}| = 30$ . By the First Isomorphism Theorem, we know that  $\mathbb{Z}_{30}/\ker \varphi \simeq \varphi(\mathbb{Z}_{30})$ , and thus  $|\mathbb{Z}_{30}/\ker \varphi| = 5$ . By Lagrange's Theorem,  $|\ker \varphi| = 6$ , and by the Fundamental Theorem of Cyclic Groups,  $\mathbb{Z}_{30}$  has a unique subgroup of order 6. Thus,  $\ker \varphi$  must be this subgroup, i.e.,  $\ker \varphi = <5 >= \{0, 5, 10, 15, 20, 25\}$ .

**30.** Suppose that  $\varphi : G \longrightarrow \mathbb{Z}_6 \oplus \mathbb{Z}_2$ , is onto and  $|\ker \varphi| = 5$ . Explain why G must have normal subgroups of orders 5, 10, 15, 10, 30, and 60.

Explanation: Recall that if  $K \subset Z_6 \oplus \mathbb{Z}_2$  is a subgroup, then  $K \triangleleft \mathbb{Z}_6 \oplus \mathbb{Z}_2$  (since  $\mathbb{Z}_6 \oplus \mathbb{Z}_2$  is abelian). Since  $\varphi$  is onto,  $\varphi^{-1}(K) = \{g \in G | \varphi(g) \in K\}$  is normal in G (Theorem 10.2) Since ker  $\varphi$  is of order 5, part 6 of Theorem 10.1 implies that  $|\varphi^{-1}(K)| = 5|K|$ . Since the possible orders for K are 1, 2, 3, 4, 6, and 12, we see that G has normal subgroups of order 5, 10, 15, 20, 30, and 60.

## Page 226

**9.** Suppose G is an abelian group of order 120, and G has exactly three elements of order 2. Determine the isomorphism class of G.

Solution: The prime factorization of 120 is  $2^3 \cdot 3 \cdot 5$ . By the Fundamental Theorem of Finite Abelian Groups, G is isomorphic to one of the following three groups:

$$G_1 = \mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$$
$$G_2 = \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$$
$$G_3 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$$

Note that since gcd(8,3,5) = 1, we have  $G_1 \simeq \mathbb{Z}_{120}$ . By Theorem 4.4,  $\mathbb{Z}_{120}$  has  $\varphi(2) = 1$  element of order 2. Therefore,  $G \not\simeq G_1$ . Suppose that  $x = (a_1, a_2, a_3, a_4, a_5)$  is an element of order 2 in  $G_3$ . Then 2 = |x| implies  $a_4 = 0 \pmod{3}$  and  $a_5 = 0 \pmod{5}$ . Therefore,  $x = (a_1, a_2, a_3, 0, 0)$ . Now we have 8 choices for  $x = (a_1, a_2, a_3, 0, 0)$ , and only one of them, (0, 0, 0, 0, 0), is not of order 2. Therefore,  $G_3$  has 7 elements of order 2, so  $G \not\simeq G_3$ . Thus, we must have  $G \simeq G_2$ . (Check though!)

**10.** Find all abelian groups (up to isomorphism) of order 360.

Solution: Since  $360 = 2^3 3^2 5$ , we see, from the Fundamental Theorem of finite abelian groups, that the list of isomorphism classes is as follows:

$$\mathbb{Z}_{360} \simeq \mathbb{Z}_8 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_5$$
$$\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$$
$$\mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_5$$
$$\mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$$
$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_5$$
$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5. \Box$$

12. Suppose the order of some finite abelian group is divisible by 10. Show that G has a cyclic subgroup of order 10.

*Proof.* Since 10 divides the order of G, and G is abelian, we know that G contains a subgroup of order 10. (See the Corollary to the Fundamental Theorem of Finite Abelian Groups.) Let H be such a subgroup. Since G is abelian, H is abelian. Since H has order  $10 = 2 \cdot 5$ , we see that  $H \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_5 \simeq \mathbb{Z}_{10}$ .

**29.** Let G be an abelian group of order 16. Suppose that there are elements a and b in G such that |a| = |b| = 4, but  $a^2 \neq b^2$ . Determine the isomorphism class of G. Solution: We know that there are five non-isomorphic abelian groups of order 16 :

$$\mathbb{Z}_{16}$$

$$G_1 = \mathbb{Z}_8 \oplus \mathbb{Z}_2$$

$$G_2 = \mathbb{Z}_4 \oplus \mathbb{Z}_4$$

$$G_3 = \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

$$G_4 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

Since G has elements of order 4, we see that  $G \not\simeq G_4$ . Since  $|a^2| = |b^2| = 2$ , we see that G has at least two elements of order 2, so  $G \not\simeq \mathbb{Z}_{16}$ . Note that, if  $(x, y, z) \in G_3$ , and |(x, y, z)| = 4, then x = 0 or  $3 \mod 4$ , and since  $y, z \in \mathbb{Z}_2$ , we see that  $2y = 2z = 0 \mod 2$ . Now,  $(x, y, z)^2 = (2, 0, 0)$ , so the squares of all elements of order 4 in  $G_3$  are equal. Thus,  $G \not\simeq G_3$ . Similarly, if (x, y) is of order 4 in  $G_1$ , then x = 2 or 6, and  $(x, y)^2 = (2x \mod 8, 2y \mod 2) = (4, 0)$ , and thus all the squares of the elements of order 4 in  $G_1$  are equal. So, by the process of elimination,  $G \simeq G_2$ . Note that a = (0, 1) and b = (1, 0) are elements of  $G_2$  with the desired property.

## pg. 242

8. Show that a ring is commutative if it has the property that ab = ca implies b = c.

*Proof.* We need to show that if  $x, y \in R$  then xy = yx. Let a = x b = yx and c = xy. Then ab = x(yx) = (xy)x = ca. Thus, by the hypothesis, b = c, or xy = yx. Thus, for  $x, y \in R$  we have xy = yx.

**22.** Let R be a commutative ring with unity, and let U(R) denote the set of units in R. Prove that U(R) is a subgroup under the ring multiplication in R.

Proof. Let 1 be the unity, i.e., the multiplicative identity of R. If  $a, b, c \in U(R)$ , then (ab)c = a(bc), since this is a defining property of the ring R. We have to show U(R) is closed. Suppose  $a, b \in R$  and  $a^{-1}, b^{-1}$  are their inverses (see Theorem 12.2 – exercise 5). Now  $(ab)(b^{-1}a^{-1} = a(bb^{-1})a^{-1} = a1a^{-1} = 1$ , so ab is a unit. Thus, U(R) is closed under multiplication. Also, 1 is an identity for this operation on U(R). Finally, if  $a \in U(R)$ , then  $aa^{-1} = 1$ , so  $a^{-1}$  is also a unit, and thus, every element of U(R) has an inverse in U(R). Therefore, U(R) s a group with the ring multiplication of R as its group operation.

## pg. 255

**8.** Describe all zero divisors and units of  $\mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{Z}$ .

Solution: The zero element of  $R = \mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{Z}$  is (0,0,0). Note, each of  $\mathbb{Z}$  and  $\mathbb{Q}$  individually is an integral domain, so has no zero divisors. The multiplication in R is component-wise. So suppose (a, b, c)(x, y, z) = (0, 0, 0), with

(1) 
$$(a, b, c) \neq (0, 0, 0) \text{ and } (x, y, z) \neq (0, 0, 0).$$

Then (ax, by, cz) = (0, 0, 0), so one of a or x is zero, as is one of b or y, and one of c or z. By (1) we see at least one of a, b, c and one of x, y, z must be zero. Conversely, suppose One component of s = (a, b, c) is zero. Let r be the element of R with one non-zero component, namely the one corresponding to a zero component for (a, b, c), and take that component to be 1. Then  $rs = (0, 0, 0, \text{ with } r \neq 0 \text{ and } s \neq 0$ , so r is a zero divisor. Thus the zero divisors are the elements (0, a, b), (a, 0, b), and (a, b, 0), with  $(a, b) \neq (0, 0)$ .

Now, note the unity of R is (1, 1, 1). Then (a, b, c) is a unit, if and only if each of  $a, b, c \neq 0$ . Since the units of  $\mathbb{Z}$  are  $\pm 1$ , and the units of  $\mathbb{Q}$  are all non-zero elements, then we see  $U(R) = \{(\pm 1, x, \pm 1) | x \neq 0\}$ .

**38.** Construct a multiplication table for  $\mathbb{Z}_2[i]$ , the ring of Gaussian integers modulo 2. Is this ring a field? Is it an integral domain?

Solution:

| •   | 0 | 1   | i   | 1+i |  |
|-----|---|-----|-----|-----|--|
| 0   | 0 | 0   | 0   | 0   |  |
| 1   | 0 | 1   | i   | 1+i |  |
| i   | 0 | i   | 1   | 1+i |  |
| 1+i | 0 | 1+i | 1+i | 0   |  |

Note that 1 + i has no multiplicative inverse, and thus  $\mathbb{Z}_2[i]$  is not a field. Also, (1+i)(1+i) = 0, so,  $\mathbb{Z}_2[i]$  is not an integral domain.

#### Page 269

**4.** Find a subring of  $\mathbb{Z} \oplus \mathbb{Z}$  which is not an ideal of  $\mathbb{Z} \oplus \mathbb{Z}$ .

Solution: Let  $S = \{(n,n) | n \in \mathbb{Z}\}$ . Then S is a subring of  $\mathbb{Z} \oplus \mathbb{Z}$ . However, note that  $(1,1) \in S$ , and  $(2,7) \cdot (1,1) = (2,7) \notin S$ . Therefore, S is not an ideal.

7. Let a belong to a commutative ring. Show that  $aR = \{ar | r \in R\}$  is an ideal of R. If R is the ring of even integers, list the elements of 4R.

Proof. Let  $x, y \in aR$ . Then we can choose  $r, s \in R$ , with x = ar and y = as. Now,  $x - y = ar - as = a(r - s) \in aR$ , and  $xy = (ar)(as) = a(ras) \in aR$ . Thus, by the subring test, aR is a subring of R. Let  $z \in R$ , and  $ar \in aR$ . Then  $(ar)z = a(rz) \in aR$ . Moreover, since R is commutative,  $z(ar) = a(rz) \in aR$ , and thus aR is an ideal of R.

If  $R = \{0, \pm 2, \pm 4, \pm 6, \dots\}$ , then

$$R = \{4 \cdot 0, \pm 4 \cdot 2, \dots\} = \{0, \pm 8, \pm 16, \pm 24, \dots\} = 8\mathbb{Z}.$$

**14.** Let A and B be ideals of a ring R. Prove that  $AB \subseteq A \cap B$ .

*Proof.* Recall that

$$AB = \{a_1b_1 + a_2b_2 + \dots + a_nb_n | a_i \in A, b_i \in b, n > 0\},\$$

(see problem 10).

Suppose that  $x = a_1b_1 + a_2b_2 + \cdots + a_nb_n \in AB$ . Since each  $a_1 \in A$ , and A is an ideal, we see that  $a_ib_i \in A$  for each i. Since A is an ideal, it is closed under the ring addition, so  $x = a_1b_1 + \cdots + a_nb_n \in A$ . Similarly, since each  $b_i \in B$ , we have  $a_ib_i \in B$  for each i. Therefore,  $x \in B$ . Since each  $x \in AB$  is an element of both A and B, we see that  $AB \subset A \cap B$ .

**33.** How many elements are in  $\mathbb{Z}_3[i]/\langle 3+i\rangle$ ? Give reasons for your answer.

Solution: Note that  $(3+i)(3-i) = 10 \in \langle 3+i \rangle$ . Therefore, for any  $a, b, k \in \mathbb{Z}$ , we have  $a + bi + \langle 3+i \rangle = a - 10k + bi + \langle 3+i \rangle$ . Thus, we can always

choose a coset representative  $a_0 + b_0 i$  for  $a + bi + \langle 3 + i \rangle$  with  $0 \leq a_0 \leq 9$ . Further note that  $i + \langle 3 + i \rangle = i - (3 + i) + \langle 3 + i \rangle = -3 + \langle 3 + i \rangle$ . Thus,  $a + bi + \langle 3 + i \rangle = a + b(-3) + \langle 3 + i \rangle = a - 3b + \langle 3 + i \rangle$ . Thus, every coset has a representative in  $\mathbb{Z}$ , i.e.  $a + bi + \langle 3 + i \rangle = k + \langle 3 + i \rangle$ , for some  $k \in \mathbb{Z}$ . Moreover by the above discussion, we can choose  $0 \leq k \leq 9$ . Now, suppose that  $0 \leq a, b \leq 9$ , and  $a + \langle 3 + i \rangle = b + \langle 3 + i \rangle$ . Then  $a - b \in \langle 3 + i \rangle$ , so k = a - b = (3 + i)(c + di). Notice that k(3 - i) = 10(c + di) = 10c + 10di. Since -ki = 10di, we have 10|k, so 10|a - b, and therefore, a = b. Thus, all the cosets  $k + \langle 3 + i \rangle$ , with  $0 \leq k \leq 9$  are distinct.  $\mathbb{Z}_3[i]/\langle 3 + i \rangle$  has ten elements.

56 Show that  $\mathbb{Z}[i]/\langle 1-i \rangle$  is a field. How many elements does this field have? We give two proofs.

*Proof.* 1. We know that it is enough to prove that < 1-i > is a maximal ideal. Note that  $(1-i)^2 = -2i \in < 1-i >$ , and therefore,  $2 = i(-2i) \in < 1-i >$ . Now, suppose that B is an ideal of  $\mathbb{Z}[i]$  with  $B \supseteq < 1-i >$ . We need to show that  $B = \mathbb{Z}[i]$ . Let  $a+bi \in B$  with  $a+bi \notin < 1-i >$ . Note that we can write a+bi = a(1-i) + (a+b)i. Since  $a(1-i) \in < 1-i > \subset B$  and  $a+bi \in B$ , we have  $(a+b)i = a+bi-a(1-i) \in B$ . We claim that a+b is odd. Suppose to the contrary that a+b is even. Then (a+b)i = 2(ki) for some  $k \in \mathbb{Z}$ , and since  $2 \in < 1-i > (a+b)i \in < 1+i >$  and then  $a+bi = a(1-i) + (a+b)i \in < 1-i >$ , which contradicts our choice of a+bi. Thus, we have substantiated our claim that a+b is odd. Write a+b = 2k+1 for some integer k. Note that we know that  $2ki \in < 1-i >$  and  $(a+b)i = (2k+1)i \in B$ .

$$1 = -i((2k+1)i - 2ki) \in B.$$

Thus,  $B \supset \langle 1 \rangle = Z[i]$ , which implies  $B = \mathbb{Z}[i]$ , and thus  $\langle 1 - i \rangle$  is maximal. Consequently,  $\mathbb{Z}[i]/\langle 1 - i \rangle$  is a field. Note that if  $a + bi \in \mathbb{Z}[i]$ , then  $a = 2k + \varepsilon$  and  $b = 2j + \delta$ , with  $\varepsilon, \delta \in \{0, 1\}$ . Thus,

$$a + bi + <1 - i > = (\varepsilon + \delta i) + (2k + 2ji) + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 - i > = \varepsilon + \delta i + <1 -$$

since 2 and 2*i* are elements of < 1 - i >. Thus, every element of  $\mathbb{Z}[i]/<1-i>$  is of the form  $\varepsilon + \delta i + < 1 - i >$ . However, these are not distinct. Note that 1 + < 1 - i > = i + < 1 - i> and, since 1 + i = i(1 - i) we have 1 + i + < 1 - i> = < 1 - i>. Thus, there are two elements of  $\mathbb{Z}[i]/<1-i>$ , namely, < 1 - i> and 1 + < 1 - i>.

**2.**We start again by noting that  $2, 2i \in <1-i>$ . and thus if  $a + bi \notin <1-i>$  then a + b is odd. Now suppose that  $a + bi + <1-i> \neq <1-i>$ . Then, in the factor ring

$$(a+bi+<1-i>)^{2} = a^{2} - b^{2} + 2abi+<1-i> = a^{2} - b^{2} + <1-i>,$$

since  $2abi \in \langle 1 - i \rangle$ . But now,  $(a^2 - b^2) = (a + b)(a - b)$  is odd, so

$$(a^2 - b^2) + <1 - i >= 1 + <1 - i >,$$

which is the identity of  $\mathbb{Z}[i]/\langle 1-i\rangle$ . Thus, for every non-zero element  $x \in \mathbb{Z}[i]/\langle 1-i\rangle$ , we see  $x^2 = 1 + \langle 1-i\rangle$ , and thus x is invertible. Therefore,  $\mathbb{Z}[i]/\langle 1-i\rangle$  is a field. The counting argument is then as in Proof 1.

#### Page 287

**5.** Show the correspondence  $x \mapsto 5x$  from  $\mathbb{Z}_5 \to \mathbb{Z}_{10}$  does not preserve addition.

Solution: Note we have  $0 \mapsto 0, 1 \mapsto 5, 2 \mapsto 0, 3 \mapsto 5, 4 \mapsto 0$ . Note  $3 + 3 = 1 \mod 5$ , and if the map preserved addition, then we would have  $5 + 5 = 5 \mod 10$ , which does not hold.