Math 453
Fall 2010

Answers to Selected Problems on Burnside's Theorem

1. Determine the number of ways in which the four corners of a square can be colored with two colors.

Solution: Number the corners of the square 1, 2, 3, 4 in the counterclockwise direction, as in the picture.

There are $2^{4}=16$ ways to arrange the colors of the corners. In order to determine the number of non-equivalent, we use Burnside's Theorem. The symmetries of the square are given by D_{4}. Notice that R_{0} fixes all 16 arrangements. R_{90} and R_{270} only fix arrangements with all four colors the same color. Since the orbits under R_{180} are $\{1,3\}$ and $\{2,4\}$, the colorings fixed by R_{180} are the ones with vertices 1 and 3 are the same color, and vertices 2 and 4 are the same color. Thus, R_{180} fixes 4 colorings. The orbits under H are $\{1,2\}$ and $\{3,4\}$, so H (and similarly V) fixes 4 arrangements. Note the diagonal reflection D has orbits $\{1\},\{3\}$ and $\{2,4\}$, so fixes $2^{3}=8$ arrangements. Similarly D^{\prime} fixes 8 arrangements. Thus, by Burnside's Theorem there are

$$
\frac{1}{\left|D_{4}\right|} \sum_{\phi \in D_{4}}|\operatorname{fix}(\phi)|=\frac{1}{8}(16+2 \cdot 2+4+2 \cdot 4+2 \cdot 8)=\frac{1}{8}(48)=6
$$

non-equivalent colorings.
8. Determine the number of ways in which the four edges of a square can be colored with six colors, with no restrictions.
Proof: Let the edges be numbered $1,2,3$, and 4 as in the picture.

As in problem 1 , the symmetry group is D_{4}. There are 6^{4} arrangements of colorings of the edge of the square. We make the following table of orders of fixed points of elements in D_{4}.

Type of element	Number of elements	Number of fixed colorings
Identity	1	6^{4}
Rotation of order 4	2	6
Rotation of order 2	1	6^{2}
Edge reflection	2	6^{3}
Diagonal reflection	2	6^{2}

Thus, by Burnside's Theorem there are

$$
\frac{1}{\left|D_{4}\right|} \sum_{\phi \in D_{4}}|\operatorname{fix}(\phi)|=\frac{1}{8}\left(6^{4}+2 \cdot 6+6^{2}+2 \cdot 6^{3}+2 \cdot 6^{2}\right)=2310
$$

ways to color the edges of the square.
11. Suppose we cut a cake into 6 identical pieces. How many ways can we color the cake with n colors if each piece gets one color.
Proof: Number the slices of the cake 1 through 6 as in the picture.

There are n^{6} arrangements of the colors of slices on the cake. The symmetry group of our cake is $G=\left\{R_{0}, R_{60}, R_{120}, R_{180}, R_{240}, R_{300}\right\}$, the subgroup of rotations in D_{6}. (We do not allow reflections, since we wouldn't want to turn the cake upside down.) Look at the orbits of each type of element. element. R_{0} fixes every element, and hence fixes all n^{6} colorings. For a rotation of order 6 there is one orbit $\{1,2,3,4,5,6\}$. So these two elements fix n colorings. The two rotations of order 3 have two orbits $\{1,3,5\}$ and $\{2,4,6\}$. Thus, these elements fix n^{2} elements. Finally, the element R_{180} has three orbits: $\{1,4\},\{2,5\},\{3,6\}$. Thus this element fixes n^{3} elements. Applying Burnside's Theorem we a have the number of colorings of the cake is

$$
\frac{1}{|G|} \sum_{\phi \in G}|\operatorname{fix}(\phi)|=\frac{1}{6}\left(n^{6}+2 n+2 n^{2}+n^{3}\right)
$$

