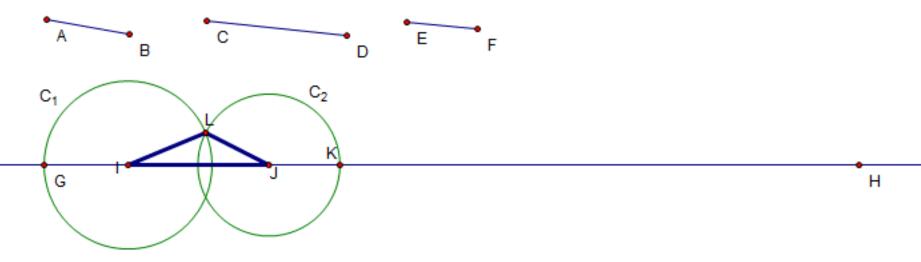
Proof: Let AB, CD, and EF be three line segments with AB+CD >EF, AB+EF >CD, and CD+EF >AB. We need to construct a triangle whose sides are lengths AB,CD, and EF, respectively.

Let \overrightarrow{GH} be any line, and on \overrightarrow{GH} pick points I,J,K with $GI=AB,\ IJ=CD$, and JK=EF. We can do this by Proposition 3. Using Postulate 2, draw the circle C₁ with center I and radius IG, and the circle C₂ with center J and radius JK. Let L be a point on the intersection of C_1 and C_2 . Draw IL and JL, by Postulate 1. Then, $\triangle IJL$ has IL=IG=AB, IJ=CD, and JL=JK=EF (all by CN1). Thus, we have constructed $\triangle IJL$ whose sides have the three given lengths. QEF



NOTE: Euclid proves more than he claims in the statement. In fact the statement of the proposition should be: Given 3 line segments with the sum of any two greater than the third, we can construct a triangle whose sides are equal in length to the three given sides, with any two of the three sides having endpoints at a given point on a given line.

In fact this is how Euclid applies the result, as we'll see.