Proposition 23: Given an angle and a point on a given line, we can create an angle, equal to the given angle, with vertex at the given point, and one side along the given line.

Proof: Let \angle A be given, $\mathcal U$ the given line and B the given point. Let C be the vertex of \angle A, and pick points D,E on the two rays which are trhe sides of \angle A. Draw DE, by Postulate 1. By Proposition 22, construct a triangle BFG, with B as one vertex, with BF=CD, BG=CE, and FG=DE, and one side on $\mathcal U$, say BF. Then, by Proposition 8, \triangle BGF \cong \triangle CED, so \angle A= \angle DCE= \angle FBG. Thus, we have constructed an angle with vertex B, along line $\mathcal U$, which is equal to \angle A. **QEF**

