

Draw AX.

To prove: $\angle CXA = \angle BXA = 90^{\circ}$ (i.e, $AX \perp BC$) and CX = BX.

Proof:

In $\triangle AMX$ and $\triangle BMX$,

AM = BM (as M is midpoint of AB)

MX = MX (common)

 $\angle AMX = \angle BMX = 90^{\circ} (\text{as } XM \perp AB)$

Hence, by BF1, $\Delta AMX \cong \Delta BMX$, and AX = BX by definition of congruent triangles.

Similarly, taking $\triangle CNX$ and $\triangle ANX$, we get $\triangle CNX \cong \triangle ANX$ and CX = AX.

But as AX = BX and AX = CX, by algebra, AX = BX = CX.

But as CX = BX, by definition of midpoint, X is the midpoint of CB. Note (DG): The proof is essentially done here!! (WHY)

Now, in $\triangle CAB$, N is the midpoint of CA and X is the midpoint of BC. Hence, by Theorem 18, $NX \parallel AB$ and $NX = \frac{1}{2}AB$.

But as M is the midpoint of AB, by Theorem 16, AB = 2 AM. But as $NX = \frac{1}{2} AB$, by algebra, AB = 2 NX and hence AM = NX.

By a similar argument on $\triangle BAC$, we get $XM = \frac{1}{2}AC$ and hence XM = AN.

Now, taking ΔXNC and ΔBMX ,

NC = MX (as XM = AN and CN = AN and hence by algebra)

XN = BM (as NX = AM and AM = MB and hence by algebra)

CX = XB (as proved earlier)

Hence, by BF1, $\triangle CNX \cong \triangle BMX$, and $\angle CXN = \angle MXB$ by definition of congruent triangles.

And taking $\triangle ANX$ and $\triangle XMA$, as AN = XM, NX = MA and XA = AX, by BF1, $\triangle ANX \cong \triangle XMA$. By definition of congruent triangles, $\angle NXA = \angle AXM$.

But as $\angle CXA = \angle CXN + \angle NXA$ and $\angle AXB = \angle BXM + \angle AXM$, as $\angle CXN = \angle MXB$ and $\angle NXA = \angle AXM$, by algebra, it follows that $\angle CXA = \angle BXA$.

But by BF6, $\angle CXA + \angle BXA = 180^\circ$, and hence by algebra, it follows that $\angle CXA = \angle BXA = 90^\circ$, as required.