

Draw AX.
To prove: $\angle C X A=\angle B X A=90^{\circ}$ (i.e, $A X \perp B C$) and $C X=B X$.
Proof:

In $\triangle A M X$ and $\triangle B M X$,
$A M=B M$ (as M is midpoint of AB$)$
$M X=M X$ (common)
$\angle A M X=\angle B M X=90^{\circ}($ as $X M \perp A B)$
Hence, by BF1, $\triangle A M X \cong \triangle B M X$, and $A X=B X$ by definition of congruent triangles.
Similarly, taking $\triangle C N X$ and $\triangle A N X$, we get $\triangle C N X \cong \triangle A N X$ and $C X=A X$.
But as $A X=B X$ and $A X=C X$, by algebra, $A X=B X=C X$.
But as $C X=B X$, by definition of midpoint, X is the midpoint of $C B$.

Note (DG): The proof is
essentially done here!! (WHY)

Now, in $\triangle C A B, \mathrm{~N}$ is the midpoint of CA and X is the midpoint of BC . Hence, by Theorem $18, N X \| A B$ and $N X=\frac{1}{2} A B$.

But as M is the midpoint of $A B$, by Theorem $16, A B=2 A M$. But as $N X=1 / 2 A B$, by algebra, $A B=2 N X$ and hence $A M=N X$.

By a similar argument on $\triangle B A C$, we get $X M=\frac{1}{2} A C$ and hence $X M=A N$.
Now, taking $\triangle X N C$ and $\triangle B M X$,
$N C=M X($ as $X M=A N$ and $C N=A N$ and hence by algebra)
$X N=B M$ (as $N X=A M$ and $A M=M B$ and hence by algebra)
$C X=X B$ (as proved earlier)
Hence, by BF1, $\triangle C N X \cong \triangle B M X$, and $\angle C X N=\angle M X B$ by definition of congruent triangles.
And taking $\triangle A N X$ and $\triangle X M A$, as $A N=X M, N X=M A$ and $X A=A X$, by BF1, $\triangle A N X \cong \triangle X M A$. By definition of congruent triangles, $\angle N X A=\angle A X M$.

But as $\angle C X A=\angle C X N+\angle N X A$ and $\angle A X B=\angle B X M+\angle A X M$, as $\angle C X N=\angle M X B$ and $\angle N X A=\angle A X M$, by algebra, it follows that $\angle C X A=\angle B X A$.

But by BF6, $\angle C X A+\angle B X A=180^{\circ}$, and hence by algebra, it follows that $\angle C X A=\angle B X A=90^{\circ}$, as required.

