

- 1. Draw the height of Δ DCX, XM, on base DC; height of Δ ADY, YN, on base AD.
- 2. Draw the height of Δ ADC, AP, on base DC; height of Δ ADC, CQ, on base AD.
- 3. By definition of parallelogram, AB//DC, AD//BC.
- 4. By Theorem 15, as XM \perp DC, AP \perp DC, XM=AP. Similarly, YN=CQ.
- 5. By Theorem 7, Area = $\frac{1}{2}$ base × height.
- 6. From 4 and 5, Area of Δ DCX = Area of Δ ADC; Area of Δ ADY = Area of Δ ADC.
- 7. By algebra, Area of Δ DCX = Area of Δ ADY. QED.

Note (DG): As part of this proof you can conclude that the area of each of these two triangles is half the area of the parallelogram. Can you think about a way to say this precisely (without naming points)?