

1. Draw the height of $\triangle D C X, X M$, on base $D C$; height of $\triangle A D Y, Y N$, on base $A D$.
2. Draw the height of $\triangle A D C, A P$, on base $D C$; height of $\triangle A D C, C Q$, on base $A D$.
3. By definition of parallelogram, $A B / / D C, A D / / B C$.
4. By Theorem 15, as $X M \perp D C, A P \perp D C, X M=A P$. Similarly, $Y N=C Q$.
5. By Theorem 7 , Area $=1 / 2$ base \times height.
6. From 4 and 5 , Area of $\triangle D C X=$ Area of $\triangle A D C$; Area of $\triangle A D Y=$ Area of $\triangle A D C$.
7. By algebra, Area of $\triangle D C X=$ Area of $\triangle A D Y$. QED.

Note (DG): As part of this proof you can conclude that the area of each of these two triangles is half the area of the parallelogram. Can you think about a way to say this precisely (without naming points)?

