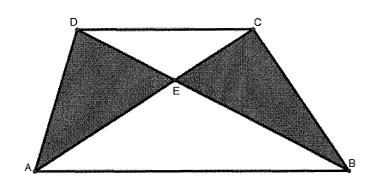
We are given CD || AB.

We want to show that $Area(\triangle AED) = Area(\triangle BEC)$.

By Theorem 22, Area(
$$\triangle$$
AED) = $\frac{1}{2}$ AE DE $\sin(\angle$ AED)
By Theorem 22, Area(\triangle BEC) = $\frac{1}{2}$ BE CE $\sin(\angle$ BEC)



As **AC** crosses **BD** at **E**, by theorem 1 b), \angle **AED** = \angle **BEC**. Now we want to show **AE ED** = **BE BC**.

As $DC \parallel AB$, with AC and BD intersecting transversals, by Theorem C, $\triangle AEB \sim \triangle CED$.

Then by Basic Fact 4,
$$\frac{BE}{DE}=\frac{AE}{CE}$$
 .

By algebra, AE DE = BE CE.

Then by transitivity,

Area(
$$\triangle$$
AED) = $\frac{1}{2}$ AE DE $\sin(\angle$ AED) = $\frac{1}{2}$ BE CE $\sin(\angle$ BEC) = Area(\triangle BEC)
Area(\triangle AED) = Area(\triangle BEC).

