T. Collins

Homework 3: #9

Given: ABCD is a trapezoid in which AB||DC, E is the midpoint of AD and EG||AB.

To prove: G is the midpoint of BC.

Proof:

Case (i):

It is important to note that we know that ABCD is a trapezoid. From lecture 1, day 1 of MA 460, the definition of trapezoid is a quadrilateral with exactly one pair of parallel sides.

Let 'l' be a line through A \(\pm\) EG and let 'p' be a line through B \(\pm\) EG. Likewise, let lines 'm' and 'n' be lines through points E and G that are both perpendicular to line DC (BF 7 allows us to construct lines while BF 12 allows us to specifically construct perpendicular lines). Also let w, x, y, and z be the points of the perpendicular intersections.

Given that AB||DC and AB||EG, then by BF 14, AB||EG||DC.

Given that E is the midpoint of AD, then by definition, EA = DE.

By definition of a perpendicular lines, $\angle AWE = \angle EZD = \angle BXG = \angle GYC = 90$ degrees.

By BF 5, $\angle AEW = \angle EDZ$ and $\angle BGX = \angle GCY$.

By Theorem 3, $\angle AEW + \angle AWE + \angle EAW = 180$ degrees.

Since $\angle AEW = \angle EDZ$ (BF 5) and $\angle AWE = \angle EZD$ (definition of perpendicular lines), then by Theorem 4, $\angle EAW = \angle DEZ$.

Because $\angle EDZ = \angle AEW$ (BF 5), DE = EA (definition of midpoint), and $\angle EAW = \angle DEZ$ (Thm 4), then by BF $3\triangle EDZ \leq \triangle AEW$.

By definition of congruence $\ell = m$.

By Theorem 15, $\ell = p$, and m = n.

By Thm 15, definition of congruence, and by algebra, $\ell = m = p = n$.

Because $\angle BXG = \angle GYC$ (by definition of perpendicular lines) and $\angle BGX = \angle GCY$ (by BF 5), then by Theorem 4, $\angle XBG = \angle YGC$.

Because $\angle BXG = \angle GYC$ (definition of perpendicular lines), p = n (Thm 15), and $\angle XBG = \angle YGC$ (Thm 4), then by BF $3\triangle BGX \cong \triangle GCY$.

By definition of congruence, BG = GC.

By BF 6, BG + GC = BC.

By Theorem 16 (a) and by algebra, BC = 2BG = 2GC, which means G is the midpoint of BC, as claimed. \triangle

Case (ii): The example does not specifically say that there are no perpendicular lines in the trapezoid, so we must assume this possibility.

E G

Proof:

Let ABCD be a trapezoid with BCLDC.

Let 'l' be a line through ALEG and let 'm'

be a line through ELDC. Let x be the point where 'l' and EG intersect and let y be the point where 'm' and DC intersect (BF 7 allows us to construct lines while BF 12 allows us to specifically construct perpendicular lines).

Given that AB||DC and AB||EG, then by BF 14, AB||EG||DC.

Given that E is the midpoint of AD, then by definition, EA = DE.

By definition of perpendicular lines $\angle AXE = \angle EYD = 90$ degrees.

By BF5, $\angle AEX = \angle EDY$.

By Theorem 3, $\angle AXE + \angle AEX + \angle EAX = 180$.

Since $\angle AEX = \angle EDY$ (BF 5) and $\angle AXE = \angle EYD$ (by definition of perpendicular lines), then by Theorem 4, $\angle EAX = \angle DEY$.

Because $\angle EDY = \angle AEX$ (BF 5), DE = EA (definition of midpoint), and $\angle EAX = \angle DEY$ (Thm 4), then by BF $3\triangle EDY \cong \triangle AEX$.

By definition of congruence $\ell = m$.

By Theorem 15, $\ell = BG$ and m = GC.

By algebra, $\ell = m = BG = GC$.

By BF 6, BG +GC = BC.

By Theorem 16 (a) and by algebra, BC = 2BG = 2GC, which means G is the midpoint of BC, as claimed. \triangle