Math 460: Homework \# 1. Due Thursday August 22

Rules for writing up proofs on the homework:

- Any fact you use must be from the Course Notes or from previous homework (but not from the Geometer's Sketchpad problems).
- You must give a justification for every step in your proof (but there are three exceptions: when you draw in a line you don't have to mention BF 7 , when you extend a line you don't have to mention BF 9, and when you know two lines are parallel you can assume that any segments on those lines are parallel.)
- If you are using a definition, say which one it is (that is, say "definition of parallelogram" or "definition of congruent triangles"). If you are using a Basic Fact or Theorem, refer to it by number. If you are using a fact from a previous homework problem, say which problem it was, and make it clear what fact you have in mind.
- When you use a definition, Basic Fact, or Theorem, say how it applies to your situation. For example, if you use BF 5 or Theorem 2, say what pair of parallel lines you are using; if you use BF 4, say what pair of similar triangles you are using; if you are using Theorem 14, say what triangle you are applying it to.
- For an if and only if (\Longleftrightarrow) proof you must say specifically what the given and to prove are for both directions.
- You must sum up at the end of the proof to show that you proved what was required.
- If your proof is too complicated for the grader to follow, you may lose points.

1. Let A and B be two points on a circle with center O. Prove that O lies on the perpendicular bisector of $A B$.
2. (See Figure 1) Given: $U V$ is parallel to $A B, U W$ is parallel to $B C$, and $V W$ is parallel to $A C$. To prove: $\triangle A W U \cong \triangle W B V$.

Figure 1
3. (See Figure 2) Given $A B=A C=B C$ (that is, $\triangle A B C$ is an equilateral triangle). Let P be a point inside the triangle. Let a, b, and c be the distances from P to $\overleftrightarrow{A B}, \overleftrightarrow{A C}$ and $\overleftrightarrow{B C}$ respectively. Let h be the distance from A to $\overleftrightarrow{B C}$. To prove: $a+b+c=h$. (Hint: think about areas.)

Figure 2

