Math 460: Homework \# 13. Due Tuesday, December 2

1. (In this problem we prove the fact that you discovered in Problem 1 of Assignment 12.) In Figure 1, prove that $\angle 1=\frac{1}{2} \operatorname{arc} D E F-\frac{1}{2} \operatorname{arc} A B C$.

Figure 1
2. (In this problem we prove the fact that you discovered in Problem 2 of Assignment 12.) See Figure 2. Given: I is the incenter of $\triangle A B C$ and the lines $I D, I E$ and $I F$ are perpendicular to $A B, A C$ and $B C$ respectively. To prove: the lines $A F$, $B E$ and $C D$ are concurrent. (Hint: use Theorem 37.)

Figure 2
3. Prove the \Longrightarrow direction of Theorem 43 of the course notes, using only the definition of tangent and facts from Euclid. (Hint: proof by contradiction; see Figure 3. If m is not perpendicular to $O A$, show that it is possible to construct a second point A^{\prime} on m with $O A=O A^{\prime}$.)

Figure 3
4. Here we prove the fact you discovered in problem 3 of Homework 12. A quadrilateral $A B C D$ is called incyclic if a circle can be inscribed inside of it-meaning that the circle is tangent to all the sides (see Figure 4). Prove that if $A B C D$ is incyclic, then $A B-B C=A D-D C$.

Figure 4
5. Given: Two parallel lines l and m, and a transversal k. Prove that there is a circle which is tangent to all three lines. (Hint: Think about how we constructed the inscribed and escribed circles of a triangle).

Figure 5
6. (See Figure 9) Given: H is the orthocenter of $\triangle A B C ; P, Q$, and R are the midpoints of $A B, A C$, and $B C ; U, V$, and W are the midpoints of $A H, C H$, and $B H$. Prove that P, Q, R, U, V, and W all lie on a common circle. (Hint: Draw the circle through three of the points - you will have to figure out which ones to choose - and then show that the other points lie on this circle. Use cyclic quadrilaterals.)

Figure 6

