## Math 460: Homework \# 3. Due Thursday, September 5

1. Use Geometer's Sketchpad to construct a triangle, along with the following
(a) its circumcenter (labeled $O$ )
(b) its incenter (labeled $I$ )
(c) its orthocenter (labeled $H$ )
(d) its centroid (labeled $G$ )
(e) the line through $O$ and $H$.

Hide all the lines used in constructions (a)-(d). Print out a copy, then change the shape of the triangle and print another copy. The line through $O$ and $H$ has a special property that should be obvious from your pictures-what is it? (You do not need to prove anything for this problem.)
2. (Use Geometer's Sketchpad) Start with a triangle $A B C$. Let $D$ and $E$ be points on the segments $A C$ and $B C$, respectively, with $D E$ parallel to $A B$. Let $F$ be the intersection of the segments $D B$ and $A E$, and let $G$ be the intersection of $A B$ with the ray $C F$. What special property does $G$ have? Display a measurement which shows it has this property. Print the picture, then change the shape of the triangle, check that $G$ still has this property, and print the new picture. You do not have to prove anything for this problem.
3. Give a proof of Theorem 13.
4. Give a proof of Theorem 14.
5. Let $A B C D$ be a parallelogram, and let $M$ and $N$ be the midpoints of $A B$ and $C D$. Prove that $M N$ is parallel to $B C$.
6. (See Figure 4.) Given $A E \perp B C, B D \perp A C$, and $A F=B F$, prove that $A C=B C$.


Figure 4
7. (See Figure 5) Given $M K=M Q, \angle K=\angle Q, P M$ is perpendicular to $M K$, and $L M$ is perpendicular to $M Q$, prove $R S=T S$. (Hint: Use what was shown in problem 7 of the last assignment.) Warning: Although it is true that equals subtracted from equals give equals, the same idea is not valid for congruence (it is not always true that congruent triangles subtracted from congruent triangles give congruent triangles.)


Figure 5
8. Given a quadrilateral $A B C D$ with $A B=B C$ and $C D=A D$, prove that the diagonals $A C$ and $B D$ are perpendicular.
9. Given: $A B C D$ is a trapezoid in which $A B$ is parallel to $D C, E$ is the midpoint of $A D$, and $E G$ is parallel to $A B$. To prove: $G$ is the midpoint of $B C$.


Figure 6
10. See Figure 7.Let $A B C$ be a triangle and let $A^{\prime} B C$ and $A B C^{\prime}$ be equilateral triangles. Show $A A^{\prime}=C C^{\prime}$.


Figure 7
11. (See Figure 8) Given: $D E$ is parallel to $A B, E F$ is parallel to $B C$, and $D F$ is parallel to $A C$. To prove: $\triangle A B C$ is similar to $\triangle D E F$.


Figure 8
12. Use Figure 9. Assume the lines that look straight are. Let $A B C D$ be a quadrilateral. Given $A H, B H, C F$ and $D F$ are the angle bisectors of $A B C D$, prove $\angle F E H+\angle F G H=180^{\circ}$.


Figure 9

