Math 460: Homework \# 4 due Thursday September12

1. (Use Geometer's Sketchpad.) Let $A B C$ be a triangle, Let A^{\prime} be a point on the segment $B C, B^{\prime}$ a point on $A C$, and C^{\prime} be the intersection of line $A^{\prime} B^{\prime}$ with line $A B$. Find an equation relating the three ratios

$$
\frac{A^{\prime} B}{A^{\prime} C} \quad \frac{B^{\prime} C}{B^{\prime} A} \quad \text { and } \quad \frac{C^{\prime} A}{C^{\prime} B}
$$

Print out a picture showing this equation. (Hint: the equation doesn't involve addition or subtraction.) You do not have to prove anything for this problem.
2. (Use Geometer's Sketchpad.) Draw an equilateral triangle $A B C$ using only "Circle by center and radius" and "Segment" from the "Construct" menu. Measure the height of the triangle. In Problem 3 of Homework \# 1 you proved an equation relating the height of $\triangle A B C$ to the distances from P to the three sides of the triangle when P is a point inside the triangle. Now find a similar equation that works when P is outside the triangle, but inside $\angle A B C$. Make sure you say exactly what equation you have in mind. Then verify your equation using the calculator in Geometer's Sketchpad, and make a printout. Then move the point P (staying outside the triangle and inside $\angle A B C$), verify your equation again, and make a second printout. (You do not have to prove anything for this problem.)
3. Let $A B C$ be a triangle and let D and E be points on the segments $A C$ and $B C$, respectively, with $D E$ parallel to $A B$. Let M be the midpoint of $A B$, and let N be the intersection of $D E$ and $C M$. Prove that N is the midpoint of $D E$. (Hint: Use two pairs of similar triangles).
4. (See Figure 1.) Suppose $A B C D$ is a parallelogram, E is the midpoint of $C D$, and F is the midpoint of $B C$. Prove $D P=P Q=Q B$. You don't need to draw any extra lines.

Figure 1
5. (15 points) In this problem we prove the fact which was suggested experimentally by Problem 2 of assignment 3. Let $A B C$ be a triangle. Let D and E be points on the segments $A C$ and $B C$, respectively, with $D E$ parallel to $A B$. Let F be the intersection of the segments $D B$ and $A E$, let G be the intersection of $A B$ with the ray $C F$, and let H be the intersection of $D E$ with ray $C F$.
(a) Prove that

$$
\frac{A G}{D H}=\frac{B G}{E H}
$$

(Hint: Use two pairs of similar triangles.)
(b) Prove that

$$
\frac{A G}{E H}=\frac{B G}{D H} .
$$

(Hint: Use two other pairs of similar triangles.)
(c) Use (a) and (b) to show that G is the midpoint of $A B$.
6. Suppose O is the center of a circle, and A, B, and C are three distinct points on the circle. (See Figure 2.) Prove $\angle A O C=2 \angle A B C$. (Hint: Use algebra as one part of the proof.)

Figure
7. Prove Theorem 20. (Hint: Use a strategy similar to the one we used in class (and the Notes) to prove Theorem 19.)
8. (see Figure 3). Give the proof of Theorem 24 for Case (ii). Given: M, N, and P are the midpoints of $A B, A C$, and $B C$ respectively, $M X \perp A B$, and $N X \perp A C$. To prove: X is on the perpendicular bisector of $B C$. (Hint: Use the same strategy
that was used in the course notes for Case (i)).

Figure 3
9. (See Figure 4) Given $A D$ is parallel to $B E$, and $B E$ is parallel to $C F$, prove $\frac{A B}{A C}=\frac{D E}{D F}$.

Figure 4

