Math 460: Homework \# 7. Due Thursday, October 10

1. (Use Geometer's Sketchpad.) Consider the following algorithm for constructing a triangle with three given sides, using "Circle by center and radius" and "Segment" commands: Start with 3 line segments $X Y, Z W$ and $S T$.

Step 1: Draw a circle, \mathcal{C}_{1}, with center Y and radius $Z W$.
Step 2: Draw a circle \mathcal{C}_{2}, with center X and radius $S T$.
Step 3: Let U be a point of intersection of \mathcal{C}_{1} and \mathcal{C}_{2}.
Step 4: Draw $X U$ and $Y U$.
Then $X Y U$ has side $X Y$, side $Y U=Z W$ and side $X U=S T$, so has sides equal to the three given lengths. Note, in Step 3, there may fail to be an intersection of the two circles, in which case there is no triangle with the three given lengths (more on this later in the semester). Note, by copying the segment $X Y$ to a given point P you can construct this triangle with the given three sides at any point P and along any line $P Q$. Let $A B C$ be a triangle. Use this method to construct a second triangle $D E F$ whose sides are equal to the medians of $A B C$. (Notice that when you change the shape of $A B C$, the shape of $D E F$ changes along with it.) Do not hide the objects used in your construction. Find an equation relating the areas of $A B C$ and $D E F$. Print out a picture. Then change the shape of $A B C$ and print a second picture showing that the equation still holds. You may want to use this as an opportunity to investigate scripts, or tools in GSP. You can create a tool by selecting the objects used to construct another object, and then selecting the object. Then click on the tool icon (bottom button on the toolbox) and select "Create New Tool". If it is not highlighted (i.e. you can't select it) your objects, as selected do not constitute a tool. GSP is a little picky about this, so you may have to experiment. So, see if you can write a script to create a triangle with three given sides.
2. (Use Geometer's Sketchpad.) Construct a triangle and its three medians. The medians divide the triangle into 6 smaller triangles - use a script to construct their centroids (hide the lines you use to do this). Now connect these 6 centroids to form a hexagon. Find the ratio of the area of this hexagon and the area of the original triangle. (Sketchpad will give you a decimal approximation to this ratio: try to find the exact ratio as a fraction. It is not $9 / 25$.) Print out a picture.
3. (In this problem we prove the fact that you demonstrated experimentally in Problem 2 of the fifth assignment.) Let $A B C$ be a triangle, and let P be a point in the interior of $A B C$. Construct the lines connecting P to each of the vertices, and let A^{\prime}, B^{\prime} and C^{\prime} be the points where these lines meet the sides $B C, A C$, and $A B$,
respectively. Prove that

$$
\frac{A^{\prime} B}{A^{\prime} C} \frac{B^{\prime} C}{B^{\prime} A} \frac{C^{\prime} A}{C^{\prime} B}=1
$$

(Hint: Use Theorem 31, twice.)
4. (10 points) In this problem we prove Theorem 27. Let $\triangle A B C$ be a triangle, and draw the line ℓ through A parallel to $B C$, the line m through B parallel to $A C$, and the line n through C parallel to $A B$. Let D be the intersection of ℓ and m, E the intersection of ℓ and n, and F the intersection of m and n.
(i) Prove that the altitudes of $\triangle A B C$ are the same lines as the perpendicular bisectors of $\triangle D E F$.
(ii) Use (i) to prove that the altitudes of $\triangle A B C$ are concurrent.
5. (See Figure 1.) Given: $\angle C$ and $\angle D$ are right angles and $\triangle A P R \cong \triangle B Q T$. To prove $\triangle A D F \cong \triangle B C E$

Figure 1
6. (See Figure 2) Given: $D F$ is parallel to $C B$, the lines that look straight are straight, and $A E=3 * G E$. Prove that the area of $\triangle A F D$ is $9 / 16$ times the area of $\triangle A B C$.

Figure 2
7. (See Figure 3.) Given: $C D$ is parallel to $A B$. To prove: the triangles $A E D$ and $C E B$ have the same area.

Figure 3
8. (See Figure 4.) Given: $A B C D$ is a parallelogram, M is the midpoint of $B C$ and N is the midpoint of $A D$. To prove: $A Q=Q P=P C$.

Figure 4
9. (This is a problem about three-dimensional geometry. For problems like this you are allowed to use anything in the course notes up to Theorem 5 except BF 5 and Theorem 2.) See Figure 5. Given: $\angle P M N=\angle P N M$ and $\angle M P Q=\angle N P Q$. To prove: $\angle P M Q=\angle P N Q$..

Figure 5
10. Let $A B C D$ be a parallelogram, and suppose $\triangle B C A^{\prime}$ AND $\triangle A B C^{\prime}$ are equilateral triangles. Prove $\triangle D A^{\prime} C^{\prime}$ is an equilateral. (Be careful here, you may be tempted to use the word "similarly" in a situation where it does not apply)

Figure 6
11. This is a continuation of problems 6 and 7 from Homework \#6. First, we'll say that two circles C and D are called tangent if they meet in exactly one point. For this problem you may assume that tangent circles share the same tangent line at their point of intersection. (This is 'obvious', but we will eventually prove it.)

Given: A circle C with center O, two points A and B on C, and the tangent line l to the circle at A. Devise a method for constructing a new circle which is tangent to C at B, and which is also tangent to the line l. Write down the list of your steps, and use Geometer's Sketchpad to make a diagram demonstrating the construction. (Remember that you may only use the basic constructions listed in problem 7 of Homework \#6 - except even though it doesn't say it there, you are always allowed to extend line segments into lines. Of course you may use any of the constructions from problems 7 and 8 of Homework $\# 6$. You do not need to prove anything for this problem.
(Hint: It might help to figure out the following question. Suppose you have two points X and Y on a circle C, you draw the tangent lines at both these points, and these lines intersect in the point P. What do you know about $X P$ and $Y P$?)

