Math 460: Homework \# 8. Due Thursday, October 17

1. (Use Geometer's Sketchpad.) Start with triangle $A B C$. Draw a line ℓ that crosses all three lines $A B, A C$ and $B C$, and let P, Q and R be the intersections of ℓ with the lines $A B, A C$ and $B C$ respectively. Next draw another line m that crosses all three lines $A B, A C$ and $B C$, and let P^{\prime}, Q^{\prime} and R^{\prime} be the intersections of m with $A B, A C$ and $B C$ respectively. Now let X be the intersection of $B C$ and $Q P^{\prime}, Y$ the intersection of $A C$ and $P R^{\prime}$, and Z the intersection of $A B$ and $R Q^{\prime}$. What do you notice about the points X, Y, and Z ? Print out a picture, then change the position of the lines l and m and print another copy.
2. (Use Geometer's Sketchpad.)
(a) Write a tool (or script) that constructs a square with a given line segment as its side. Print out a copy of this script.
(b) Use the script from part (a) to make a picture like Figure 1. Here $A B C$ is an arbitrary triangle, and the things that look like squares are squares.
(c) Find an equation relating the areas of the shaded triangles. Then change the shape of triangle $A B C$ and verify that this equation still holds.

Figure 1
3. (See Figure 2.) Given: M, N and P are the midpoints of $A B, A C$ and $B C$ respectively, $M D$ is parallel to $A P$, and $M D=A P$. To prove: $C D=N B$. (Hint: there are three parallelograms in this picture. Do not draw in any extra lines.)

Figure 2
4. (See Figure 3.) Prove that

$$
\frac{A^{\prime} B}{A^{\prime} C} \frac{B^{\prime} C}{B^{\prime} A} \frac{C^{\prime} A}{C^{\prime} B}=1
$$

(Hint: Use a strategy similar to Problem 3 from Assignment 7.)

Figure 3
5. (See Figure 4.) Given: $A B$ is parallel to $D E, A C$ is parallel to $D F$, and $B C$ is parallel to $E F$. To prove: the lines $A D, B E$ and $C F$ are concurrent.

Figure 4
6. (In this problem we begin to prove the fact that you discovered in Problem 2 of Assignment 7.) See Figure 5. Given: M, N and P are the midpoints of $A B, A C$ and $B C$ respectively, and U, V, W, X, Y and Z are the centroids of the six "little triangles." To prove: $U V$ is parallel to $A B$.

Figure 5
7. (See Figure 6.) Given $A B C D$ is a parallelogram, and $B G$ is parallel to $D H$. To prove: $D F=B E$.

Figure 6
8. (10 points) (a) Given a segment $A B$ and a point C (which may or may not be on $A B)$. Prove:
C is on the perpendicular bisector of $A B \Longleftrightarrow A C=B C$.
(b) Use part (a) to give a shorter proof of Theorem 24. Begin as usual by constructing two perpendicular bisectors and their intersection X. Then connect X to the three vertices. After that you may not use any Basic Fact or Theorem.
9. A quadrilateral $A B C D$ is called a cyclic quadrilateral if the vertices A, B, C, D lie on a common circle.
(See Figure 7) Given a cyclic quadrilateral $A B C D$, prove that
(a) $\angle B A C=\angle B D C$ and $\angle A B D=\angle A C D$.
(b) $\angle A D C+\angle A B C=180^{\circ}=\angle B A D+\angle B C D$.
(Hint: The proof of (a) should be extremely short. Then (a) will help you do (b).)

Figure 7
10. (See Figure 8.) Given: $A C=B C$ and $A D=B F$. To prove: $D E=E F$. Do not draw in any extra lines!

Figure 8
11. (See Figure 9.) Suppose that $A B, X Y$ are two different chords of a given circle, which intersect at a point E. Given that $A B$ and $X Y$ bisect each other, prove that E must be the center of the circle. (Hint: Use proof by contradiction. Assume E is not the center of the circle, and draw in the center as point O. Connect O to E, and show that this line must be perpendicular to both $A B$ and $X Y$. Then use a Basic Fact to get a contradiction.)

Figure 9

