Math 460: Homework \# 9. Due Thursday October 24

1. (Use Geometer's Sketchpad.)
(a) Make a script which constructs the orthocenter of a given triangle. Print out a copy.
(b) Construct a triangle $A B C$ and play your script to find the orthocenter. Label the orthocenter H. Then play your script a second time, this time to find the orthocenter of triangle $A B H$. Indicate on your picture exactly where the orthocenter of triangle $A B H$ is.
2. (Use Geometer's Sketchpad). Make a script that carries out the construction described in the proof of Euclid Proposition 11, using only the "Circle by center and radius" and "Segment" commands. Print out a copy.
3. (In this problem we prove what you discovered in Problem 2 of Assignment 8.) See Figure 1. Given: the things that look like squares are squares. To prove: the areas of the shaded triangles are all equal.

Figure 1
4. (In this problem we continue to prove what you discovered in Problem 2 of Assignment 7.) See Figure 2. Given: G is the centroid of $\triangle A B C, M, N$ and P are the midpoints of $A B, A C$ and $B C$ respectively, and U, V, W, X, Y and Z are the centroids of the six "little triangles." To prove: the lines $U V, X W$ and $G B$
are concurrent. (Hint: Use a proof similar to that of Theorem 29. You will find it helpful to consider the dashed lines in the picture. You may use Problem 6 of Assignment 8.)

Figure 2
5. (See Figure 3). Given: R is the midpoint of $B C$. Prove that $P Q$ is parallel to $B C$. (Hint: Use problem 3 from homework \#7.)

Figure 3
6. (See Figure 4.) This is a problem about three-dimensional geometry. Given: A, B and C are in the indicated plane, $R B S$ is a straight line, $R B=S B, A B \perp R S$, and $\angle C A R=\angle C A S$. To prove: $\angle A C R=\angle A C S$ and $B C \perp R S$.

Figure 4
7. (15 points.) (In this problem we begin to prove the fact that you discovered in Problem 1 of Assignment 7.) See Figure 5. Given: M, N and P are the midpoints of $A B, A C$ and $B C$ respectively, $M D$ is parallel to $A P$, and $M D=A P$.
(a) Prove that the area of $\triangle C M D$ is twice the area of $\triangle C M E$.
(b) Prove that the area of $\triangle A B C$ is twice the area of $\triangle C M B$.
(c) Prove that the area of $\triangle C M E$ is $3 / 4$ of the area of $\triangle C M B$.

Hint: You may use what you proved about this picture in Problem 3 of Assignment 8. Also, use Theorem 14 as one ingredient.

Figure 5
8. (See Figure 6) Given that $A B=B C, C D=D E$, and $A E$ is parallel to $B D$, prove that $A E=2 B D$.

Figure 6
9. (See Figure 7.) Given: Angles $A B C$ and $A H G$ are right angles, and $A B D E$ and $A C F G$ are squares. To prove: $B C=2 H I$.

Figure 7
10. See Figure 8. Given $A B C D$ a quadrilateral, $A E, B E, C G$, and $D G$ the angle bisectors of $\angle D A B, \angle A B C, \angle B C D$, and $\angle C D A$, respectively, and F and H the intersections of $D G$ and $A E$, and $C G$ and $B E$, respectively. Let P be the intersection of $\overrightarrow{A B}$ and $\overrightarrow{C D}$. Show the lines $A B, C D$ and $F H$ are concurrent. (Hint: Use the result of problem 5 of assignment 6 as one ingredient of your proof).

Figure 8

