
July 8, 2004
Math 490A

Number Theory
Midterm Exam

Solution

Instructions: Give a complete solution to each problem. You may use any result from
class or the homework (except the result in question or a result whose proof depends on
the result in question). When using a result be sure to either give it’s name, or allude to
its content. Be sure to work the problems in an order that will maximize your score. You
may use a (non programmable) calculator.

1. (6 points) Prove that there is no pair of integers satisfying (x, y) = 7 and x+y = 1000.

Solution. If (x, y) = 7, then 7|x + y. Thus, if (x, y) = 7 and x + y = 1000, we would
have 7|1000, which is a contradiction.

2. (8 points) Use the Euclidean algorithm to find d = (3672, 1566). Write d as an integer
linear combination of 3672 and 1566.

Solution. we iterate the Division Algorithm:

3672 = 2 · 1566 + 540

1566 = 2 · 540 + 486

540 = 1 · 486 + 54

486 = 9 · 54 + 0.

Thus, d = 54. We now back substitute:

54 = 540 − 486 = 540 − (1566 − 2 · 540) = 3 · 540 − 1566 =

3(3672 − 2 · 1566) − 1566 = 3 · 3672 − 7 · 1566.

3.

(a) (15 points) State and Prove Euler’s Theorem.
(b) (8 points) Show that, for any integer n, n7 − n is divisible by 42.



(a)

Euler’s Theorem. If m > 0 and (a, m) = 1, then aϕ(m) ≡ 1( mod m).

Proof. Let r1, r2, . . . , rϕ(m) be a reduced residue system modulo m. Then, since (a, m) =
1, ar1, ar2, . . . , arϕ(m) is another reduced residue system modulo m. Thus,

ar1 · ar2 · . . . · arϕ(m) ≡ r1r2 . . . rϕ(m)( mod m)

⇒ aϕ(m)r1r2 . . . rϕ(m) ≡ r1r2 . . . rϕ(m)( mod m)

⇒ aϕ(m) ≡ 1( mod m),

since each ri is invertible, modulo m.

(b)

Proof. Since 42 = 2 · 3 · 7, we need to show n7 ≡ n( mod p), for p = 2, 3, and 7.
Note n7 ≡ n( mod 2) since n7 is odd if and only if n is. By Fermat’s Theorem, n3 ≡ n(
mod 3), for any n. Thus n7 ≡ (n3)2 ≡ n3 ≡ n( mod 3), as we claim. Finally, Fermat’s
Theorem implies n7 ≡ n( mod 7) for all n. Thus, n7 − n is divisible by 2, 3, and 7, and
hence by 42.

4. (10 points) Find all solutions to the congruence

20x ≡ 30 (mod 35).

We give two solutions:

Solution 1. Since (20, 35) = 5, and 5|30, there are 5 solutions to this congruence, (
mod 35). Morevoer, these are given by all solutins to

20
5

x ≡ 30
5

( mod
35
5

),

which gives
4x ≡ 6( mod 7).

Since 2·4 ≡ 1 ( mod 7), we get x ≡ 5 ( mod 7). Thus, the solutions are x ≡ 5, 12, 19, 26, 33 (
mod 35).

Solution 2. Note, by the Chinese Remainder Theorem, 20x ≡ 30 ( mod 35) is equiva-
lent to { 20x ≡ 30 ( mod 5)

20x ≡ 30 ( mod 7)
⇔

{ 0x ≡ 0( mod 5)

6x ≡ 2 ( mod 7).



The first congruence is always satisfied. Further, since 62 ≡ 1 ( mod 7), we have x ≡
6 · 2 ≡ 5 ( mod 7). Thus

x ≡ 5, 12, 19, 26, and 33 ( mod 35)

are all of the solutions.

5. (13 points) Let f(x) = x3 + 4x2 + 2x + 8. Determine the number of solutions to
f(x) ≡ 0 ( mod 27).

Solution. We first solve f(x) ≡ 0 ( mod 3). By Fermat’s Theorem, and reduction
modulo 3, we have

f(x) ≡ x2 + 2 ( mod 3).

This has solutions x ≡ ±1 ( mod 3). Note that

f ′(x) = 3x2 + 8x + 2 ≡ 2x + 2 ( mod 3).

Since f ′(1) �≡ 0 ( mod 3) we know there is a unoque solution s0 to f(x) ≡ 0 ( mod 27),
with s0 ≡ 1 ( mod 3). Note f ′(−1) ≡ 0 ( mod 3). Further f(−1) = 9 ≡ 0 ( mod 9). Thus
all of the integers −1 + 3t, for t = 0, 1, and 2, are solutions to f(x) ≡ 0 ( mod 27). So,
x ≡ −1, 2, 5 ( mod 9) are solutions modulo 9. Note that f(−1) �≡ 0 ( mod 27). Further
f(2) = 36 �≡ 0 ( mod 27). finally,

f(5) = 53 + 4 · 52 + 2 · 5 + 8 ≡ 5(−2) + 4(−2) + 5(2) + 8 ≡ 0 ( mod 27).

Thus x ≡ 5, 14, 23 ( mod 27) are all solutions. Hence there are 4 solutions.

6. (7 points each) Determine for which of the following values of n, xn−1 has n solutions
modulo 17.

(a) n = 8.

(b) n = 9.

Solution.

(a) Since 17 is prime, and 8|16, we know there are 8 solutions to x8 − 1 ≡ 0 ( mod 17).

(b) Note that, using the division algorithm for polynomials,

x17 − x = (x9 − 1)x8 + (x8 − x).



Since the remainder x8 − x does not have all of its coefficients divisible by 17, Cheby-
shev’s Theorem implies x9 − 1 ≡ 0 ( mod 17) has fewer than 9 solutions.

7. (15 points) Prove that for every prime p > 5 either p2 − 1 or p2 +1 is divisible by 10.

Proof. . Since p > 5, and p is prime, we have p is odd. Thus, 2|p2 − 1 and 2|p2 + 1.

Also, since 5 � |p, we have p ≡ 1, 2, 3, or4 ( mod 5). Thus p2 ≡ ±1 ( mod 5). Thus either
5|p2 − 1 or 5|p2 + 1. Thus, one of p2 − 1 or p2 + 1 is a multiple of 10.

Alternate proof. Since p > 5, we know 5 � |p, and thus p ≡ 1, 3, 7, or 9 ( mod 10).
Thus p2 ≡ 1, or 9 ( mod 10). Thus 10|p2 − 1, or 10|p2 + 1.

8. (11 points) Prove that, ϕ(12k) = ϕ(12) · 12k−1.

Solution. Note that
ϕ(12) = ϕ(22)ϕ(3) = 2 · 2 = 4.

Further,

ϕ(12k) = vp(22k3k) = ϕ(22k)ϕ(3k) = 22k−1 · (2 − 1)3k−1(3 − 1)

= 22k3k−1 = 4 · 22(k−1)3k−1 = ϕ(12)12k−1.

Extra Credit: (10 points) Find all solutions to f(x) ≡ 0( mod 27), with f(x) as in
problem 5.

Solution. We need only find the solution s0 ≡ 1 ( mod 3). Since f ′(1) ≡ 1 ( mod 3),
we have a unique solution s2 ≡ 1 ( mod 3) with f(s2) ≡ 0 ( mod 9), and s2 = 1 + 3t,

where

f ′(1)t ≡ −f(1)
3

( mod 3).

Thus t ≡ −15
3

≡ 1 ( mod 3), and s2 ≡ 4 ≡ (−5) ( mod 9). note

f(5) ≡ −5(−2) + 4(−2) + 2(−5) + 8 ≡ 0 ( mod 27).

Thus s3 ≡ −5 (mod27) is the unique solution with s − 3 ≡ 1 ( mod 3). therefore, the four
solutions are x ≡ 5, 14, 22, 23 ( mod 27).



Note: An alternative way to compute the solution s3 :

f(4) = 43 = 4 · 42 + 2(4) + 8 ≡ 10 + 10 + 8 + 8 ≡ 9 ( mod 27).

Thus, s3 = s2 + 9t, with

f ′(s2)t ≡
−f(4)

9
( mod 3),

which says t ≡ −1 ( mod 3), so we get s3 ≡ 4 − 9 = −5 ( mod 27).


