Math 490A Number Theory Midterm Exam Solution

Instructions: Give a complete solution to each problem. You may use any result from class or the homework (except the result in question or a result whose proof depends on the result in question). When using a result be sure to either give it's name, or allude to its content. Be sure to work the problems in an order that will maximize *your* score. You may use a (non programmable) calculator.

1. (6 points) Prove that there is no pair of integers satisfying (x, y) = 7 and x + y = 1000.

Solution. If (x, y) = 7, then 7|x + y. Thus, if (x, y) = 7 and x + y = 1000, we would have 7|1000, which is a contradiction.

2. (8 points) Use the Euclidean algorithm to find d = (3672, 1566). Write d as an integer linear combination of 3672 and 1566.

Solution. we iterate the Division Algorithm:

$$3672 = 2 \cdot 1566 + 540$$
$$1566 = 2 \cdot 540 + 486$$
$$540 = 1 \cdot 486 + 54$$
$$486 = 9 \cdot 54 + 0.$$

Thus, d = 54. We now back substitute:

$$54 = 540 - 486 = 540 - (1566 - 2 \cdot 540) = 3 \cdot 540 - 1566 =$$

 $3(3672 - 2 \cdot 1566) - 1566 = 3 \cdot 3672 - 7 \cdot 1566.$

3.

- (a) (15 points) State and Prove Euler's Theorem.
- (b) (8 points) Show that, for any integer n, $n^7 n$ is divisible by 42.

(a)

EULER'S THEOREM. If m > 0 and (a, m) = 1, then $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. Let $r_1, r_2, \ldots, r_{\varphi(m)}$ be a reduced residue system modulo m. Then, since $(a, m) = 1, ar_1, ar_2, \ldots, ar_{\varphi(m)}$ is another reduced residue system modulo m. Thus,

$$ar_1 \cdot ar_2 \cdot \ldots \cdot ar_{\varphi(m)} \equiv r_1 r_2 \ldots r_{\varphi(m)} \pmod{m}$$

 $\Rightarrow a^{\varphi(m)} r_1 r_2 \ldots r_{\varphi(m)} \equiv r_1 r_2 \ldots r_{\varphi(m)} \pmod{m}$
 $\Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m},$

since each r_i is invertible, modulo m. \square

(b)

Proof. Since $42 = 2 \cdot 3 \cdot 7$, we need to show $n^7 \equiv n \pmod{p}$, for p = 2, 3, and 7. Note $n^7 \equiv n \pmod{2}$ since n^7 is odd if and only if n is. By Fermat's Theorem, $n^3 \equiv n \pmod{3}$, for any n. Thus $n^7 \equiv (n^3)^2 \equiv n^3 \equiv n \pmod{3}$, as we claim. Finally, Fermat's Theorem implies $n^7 \equiv n \pmod{7}$ for all n. Thus, $n^7 - n$ is divisible by 2, 3, and 7, and hence by 42. \square

4. (10 points) Find all solutions to the congruence

$$20x \equiv 30 \pmod{35}.$$

We give two solutions:

Solution 1. Since (20,35) = 5, and 5|30, there are 5 solutions to this congruence, (mod 35). Morevoer, these are given by all solutins to

$$\frac{20}{5}x \equiv \frac{30}{5} \pmod{\frac{35}{5}},$$

which gives

$$4x \equiv 6 \pmod{7}$$
.

Since $2\cdot 4\equiv 1\ (\mod 7)$, we get $x\equiv 5\ (\mod 7)$. Thus, the solutions are $x\equiv 5,12,19,26,33\ (\mod 35)$. \square

Solution 2. Note, by the Chinese Remainder Theorem, $20x \equiv 30 \, (\mod 35)$ is equivalent to

$$\begin{cases} 20x \equiv 30 \pmod{5} \\ 20x \equiv 30 \pmod{7} \end{cases} \Leftrightarrow \begin{cases} 0x \equiv 0 \pmod{5} \\ 6x \equiv 2 \pmod{7}. \end{cases}$$

The first congruence is always satisfied. Further, since $6^2 \equiv 1 \pmod{7}$, we have $x \equiv 6 \cdot 2 \equiv 5 \pmod{7}$. Thus

$$x \equiv 5, 12, 19, 26, \text{ and } 33 \pmod{35}$$

are all of the solutions. \square

5. (13 points) Let $f(x) = x^3 + 4x^2 + 2x + 8$. Determine the number of solutions to $f(x) \equiv 0 \pmod{27}$.

Solution. We first solve $f(x) \equiv 0 \pmod{3}$. By Fermat's Theorem, and reduction modulo 3, we have

$$f(x) \equiv x^2 + 2 \pmod{3}.$$

This has solutions $x \equiv \pm 1 \pmod{3}$. Note that

$$f'(x) = 3x^2 + 8x + 2 \equiv 2x + 2 \pmod{3}$$
.

Since $f'(1) \not\equiv 0 \pmod{3}$ we know there is a unoque solution s_0 to $f(x) \equiv 0 \pmod{27}$, with $s_0 \equiv 1 \pmod{3}$. Note $f'(-1) \equiv 0 \pmod{3}$. Further $f(-1) = 9 \equiv 0 \pmod{9}$. Thus all of the integers -1 + 3t, for t = 0, 1, and 2, are solutions to $f(x) \equiv 0 \pmod{27}$. So, $x \equiv -1, 2, 5 \pmod{9}$ are solutions modulo 9. Note that $f(-1) \not\equiv 0 \pmod{27}$. Further $f(2) = 36 \not\equiv 0 \pmod{27}$. finally,

$$f(5) = 5^3 + 4 \cdot 5^2 + 2 \cdot 5 + 8 \equiv 5(-2) + 4(-2) + 5(2) + 8 \equiv 0 \pmod{27}.$$

Thus $x \equiv 5, 14, 23 \pmod{27}$ are all solutions. Hence there are 4 solutions. \square

- **6.** (7 points each) Determine for which of the following values of n, x^n-1 has n solutions modulo 17.
 - (a) n = 8.
 - (b) n = 9.

Solution.

- (a) Since 17 is prime, and 8|16, we know there are 8 solutions to $x^8 1 \equiv 0 \pmod{17}$.
- (b) Note that, using the division algorithm for polynomials,

$$x^{17} - x = (x^9 - 1)x^8 + (x^8 - x).$$

Since the remainder $x^8 - x$ does not have all of its coefficients divisible by 17, Chebyshev's Theorem implies $x^9 - 1 \equiv 0 \pmod{17}$ has fewer than 9 solutions. \square

7. (15 points) Prove that for every prime p > 5 either $p^2 - 1$ or $p^2 + 1$ is divisible by 10.

Proof. . Since p>5, and p is prime, we have p is odd. Thus, $2|p^2-1$ and $2|p^2+1$. Also, since 5 $\not|p$, we have $p\equiv 1,2,3$, or4 (mod 5). Thus $p^2\equiv \pm 1$ (mod 5). Thus either $5|p^2-1$ or $5|p^2+1$. Thus, one of p^2-1 or p^2+1 is a multiple of 10.

Alternate proof. Since p > 5, we know 5 /p, and thus $p \equiv 1, 3, 7$, or 9 (mod 10). Thus $p^2 \equiv 1$, or 9 (mod 10). Thus $10|p^2 - 1$, or $10|p^2 + 1$. \square

8. (11 points) Prove that, $\varphi(12^k) = \varphi(12) \cdot 12^{k-1}$.

Solution. Note that

$$\varphi(12) = \varphi(2^2)\varphi(3) = 2 \cdot 2 = 4.$$

Further,

$$\varphi(12^k) = vp(2^{2k}3^k) = \varphi(2^{2k})\varphi(3^k) = 2^{2k-1} \cdot (2-1)3^{k-1}(3-1)$$
$$= 2^{2k}3^{k-1} = 4 \cdot 2^{2(k-1)}3^{k-1} = \varphi(12)12^{k-1}.$$

Extra Credit: (10 points) Find all solutions to $f(x) \equiv 0 \pmod{27}$, with f(x) as in problem 5.

Solution. We need only find the solution $s_0 \equiv 1 \pmod{3}$. Since $f'(1) \equiv 1 \pmod{3}$, we have a unique solution $s_2 \equiv 1 \pmod{3}$ with $f(s_2) \equiv 0 \pmod{9}$, and $s_2 = 1 + 3t$, where

$$f'(1)t \equiv \frac{-f(1)}{3} \pmod{3}.$$

Thus $t \equiv \frac{-15}{3} \equiv 1 \pmod{3}$, and $s_2 \equiv 4 \equiv (-5) \pmod{9}$. note

$$f(5) \equiv -5(-2) + 4(-2) + 2(-5) + 8 \equiv 0 \pmod{27}$$
.

Thus $s_3 \equiv -5 \pmod{27}$ is the unique solution with $s-3 \equiv 1 \pmod{3}$. therefore, the four solutions are $x \equiv 5, 14, 22, 23 \pmod{27}$.

Note: An alternative way to compute the solution s_3 :

$$f(4) = 4^3 = 4 \cdot 4^2 + 2(4) + 8 \equiv 10 + 10 + 8 + 8 \equiv 9 \pmod{27}.$$

Thus, $s_3 = s_2 + 9t$, with

$$f'(s_2)t \equiv \frac{-f(4)}{9} \pmod{3},$$

which says $t \equiv -1 \pmod{3}$, so we get $s_3 \equiv 4 - 9 = -5 \pmod{27}$. \square