MATH 503

Fall 2018

Midterm Exam 1

Instructions: Give a complete solution to each problem. You may use any result from class, the book, or homework **except** the statement you are asked to prove (or one whose proof relies on the given statement). Be sure to justify your statements.

1. (13 points) Suppose G is a finite group of even order. Show there must be some non-identity element, $x \in G$ with $x = x^{-1}$.

Solution: Let $G = \{1 = x_1, x_2, \dots, x_{2n}\}$ for some n > 0. For each i, we let $X_i = \{x_i, x_i^{-1}\}$. Then, for each i we have $1 \le |X_i| \le 2$. Note $X_1 = \{1\}$. Without loss of generality, we may assume $G = \prod_{i=1}^k X_i$, for some k. Now

$$2n = |G| = \sum_{i=1}^{k} |X_i| = 1 + \sum_{i=2}^{k} |X_i|,$$

and thus $|X_i| = 1$ for some i > 1. So for some $x \neq 1$, we have $x = x^{-1}$.

2. (18 points) Prove that a group G is abelian if an only if the map $f : G \to G$ given by $f(x) = x^{-1}$ is an isomorphism.

Proof: Note that f(x) = f(y) if and only if $x^{-1} = y^{-1}$, if an only if x = y. So f is injective. Also, $x = f(x^{-1})$, so f is also surjective. Suppose G is abelian, so xy = yx for all $x, y \in G$. Then, for any $x, y \in G$,

$$f(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = f(x)f(y).$$

So f is a homomorphism, and hence an isomorphism.

Now suppose f is an isomorphism. Then, for any $x, y \in G$,

$$yx = (x^{-1}y^{-1})^{-1} = f(x^{-1}y^{-1}) = f(x^{-1})f(y^{-1}) = xy.$$

So G is abelian.

- 3. Let $G = S_n$, and suppose $1 \le i \le n$. Set $G_i = \{\sigma \in G | \sigma(i) = i\}$.
 - (a) (10 points) Prove G_i is a subgroup
 - (b) (6 points) Is G_i a normal subgroup of G?. Explain.

Solution:

- (a) Consider the natural action of G on $\{1, 2, ..., n\}$, given by $\sigma \cdot i = \sigma(i)$. Then $G_i = \operatorname{Stab}_G(i)$, and hence is a subgroup of G.
- (b) No. Consider n = 3 = i, so $G_3 = \{1, (12)\}$. Note $(13)(12)(13) = (23) \notin G_3$, so G_3 is not normal.

Remark: In fact, with the exception of the trivial cases n = 1, 2 we see G_i is never normal.

4. (18 points) Let G be a group and suppose A is a non-empty subset of G. Let $\langle A \rangle = \bigcap_{A \subset H \leq G} H$. Prove $\langle A \rangle$ is the smallest subgroup of G containing A.

Proof. Let $\mathcal{A} = \{H \leq G | A \subset H\}$. We proved intersection of an arbitrary collection of subgroups of G is a subgroup of G. Therefore

$$A \subset \bigcap_{H \in \mathcal{A}} H = \langle A \rangle$$

is a subgroup of G.

Alternative proof of this part

Note, $A \subset \langle A \rangle$, so $\langle A \rangle \neq \emptyset$. Suppose $x, y \in \langle A \rangle$. Then $x, y \in H$, for all $H \in \mathcal{A}$. Since each $H \leq G$, we have $xy^{-1} \in H$ for all $H \in \mathcal{A}$. Thus,

$$xy^{-1} \in \bigcap_{H \in \mathcal{A}} H = \langle A \rangle.$$

Thus, $\langle A \rangle$ is a subgroup of G.

We have shown $A \subset \langle A \rangle$. Note, if $A \subset H_1$, for some subgroup of H_1 of G, then $H_1 \in \mathcal{A}$, so

$$H_1 \supset \bigcap_{H \in \mathcal{A}} H = \langle A \rangle.$$

Thus $\langle A \rangle$ is the smallest subgroup of G containing A.

- 5. **True/False (3 points each)** Determine whether each of the following statements is true or false. If true, give a proof. If false, give a concrete counterexample.
 - (a) If p is a prime and $\sigma \in S_n$ is an element of order p, then σ is a product of dispoint p-cycles.
 - (b) If G is a group, and $a, b \in G$, then $\langle a \rangle \cap \langle b \rangle$ is a cyclic subgroup of G.
 - (c) $\mathbb{Z} \times \mathbb{Z}$ is cyclic
 - (d) If G is a group, H is a subgroup of G, and Ha and Hb are distinct right cosets, then aH and bH are distinct left cosets.
 - (e) If H and K are subgroups of a group G and $H \triangleleft K$ and $K \triangleleft G$, then $H \triangleleft G$.

Solution:

- (a) TRUE If σ = α₁α₂···α_k is the disjoint cycle decomposition of σ, with each α_i ≠ 1, then p = |σ| = lcm(|α₁|,..., |α_k|). Since p is prime, and |α_i| ≠ 1, we have |α_i| = p, for each i. Since the order of a cycle is its length, each α_i is a p-cycle.
- (b) **TRUE** This holds because any subgroup of a cyclic group is cyclic.
- (c) **FALSE** Suppose $\mathbb{Z} \times \mathbb{Z} = \langle (a, b) \rangle$, for some $a, b \in \mathbb{Z}$. Then, for any $(n, m) \in \mathbb{Z} \times \mathbb{Z}$ we have (n, m) = c(a, b) = (ca, cb) for some $c \in \mathbb{Z}$. So (1, 0) = (ca, cb) for some c. Since ca = 1, we have $c \neq 0$, and since cb = 0, and $c \neq 0$, we have b = 0. But then $(3, 2) \notin \langle (a, b) \rangle = \mathbb{Z} \times \mathbb{Z}$, which is a contradiction.

(Alternatively: The multiples of any non-zero (a, b) all lie on one line in the plane, and therefore cannot include every element of $\mathbb{Z} \times \mathbb{Z}$.)

- (d) **FALSE** Let $G = S_3$, $H = \{1, (12)\}$, a = (13) and b = (123). Then $Ha \neq Hb$, but aH = bH.
- (e) **FALSE** Let $G = D_8 \subset S_4$, let $K = \{1, (12)(34), (13)(24), (14)(23)\}$, and $H = \{1, (12)(34)\}$. Then |G : K| = 2 = |K : H|, so $K \triangleleft G$ and $H \triangleleft K$, but $(13)[(12)(34](13) = (14)(23) \notin H$, so H is not normal in G.

- 6. (20 points) Consider the following three groups, G, H, and K.
 - i) Let a, b ∈ ℝ, and define T_{a,b} : ℝ → ℝ be defined by T_{a,b}(x) = ax + b. You may assume G = {T_{a,b}|a, b ∈ ℝ, a ≠ 0} is a group with the operation of composition of functions, and with T_{1,0} as the identity element.
 - ii) Let

$$H = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{R}, a \neq 0 \right\}.$$

Then H is a subgroup of $GL_2(\mathbb{R})$, i.e. a group with the operation of matrix multiplication.

iii) Let $K = \mathbb{R}^2 = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$. Then K is a group with the operation of vector addition.

For each pair of groups among G, H, and K determine whether or not they are isomorphic groups.

bigskip

Solution:

Note, K is abelian.

$$(T_{a,b}T_{c,d})(x) = T_{a,b}(T_{c,d}(x)) = T_{a,b}(cx+d) = a(cx+d) + b = acx + (ad+b) = T_{ac,ad+b}(x)$$

 \mathbf{SO}

(1)
$$T_{a,b}T_{c,d} = T_{ac,ad+b}.$$

Then $T_{c,d}T_{a,b} = T_{ca,cb+d} \neq T_{a,b}T_{c,d}$. (For example, $T_{1,2}T_{2,3} = T_{2,5} \neq T_{2,7} = T_{2,3}T_{1,2}$.) So G is non-abelian. So $G \not\simeq K$.

Also

(2)
$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ac & ad+b \\ 0 & 1 \end{pmatrix}$$

and

(3)
$$\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ca & cb+d \\ 0 & 1 \end{pmatrix}$$

So H is non-abelian. Thus $H \not\simeq K$.

Let $\varphi: G \to H$ be given by $\varphi(T_{a,b}) = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$. Computations (1) and (2), above, show φ is a homomorphism. Note $\varphi(T_{a,b}) = \varphi(T_{c,d})$ if and only if

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}$$

or if and only if (a, b) = (c, d), which occurs if and only if $T_{a,b} = T_{c,d}$. So φ is injective. Note if $h \in H$, and $h = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \varphi(T_{a,b})$ so φ is surjective. Thus, $G \simeq H$. \Box