## NAME:

## MATH 503

## Fall 2018

## Midterm Exam 1

Instructions: Give a complete solution to each problem. You may use any result from class, the book, or homework except the statement you are asked to prove (or one whose proof relies on the given statement). Be sure to justify your statements.

1. (13 points) Suppose $G$ is a finite group of even order. Show there must be some non-identity element, $x \in G$ with $x=x^{-1}$.

Solution: Let $G=\left\{1=x_{1}, x_{2}, \ldots, x_{2 n}\right\}$ for some $n>0$. For each $i$, we let $X_{i}=\left\{x_{i}, x_{i}^{-1}\right\}$. Then, for each $i$ we have $1 \leq\left|X_{i}\right| \leq 2$. Note $X_{1}=\{1\}$. Without loss of generality, we may assume $G=\coprod_{i=1}^{k} X_{i}$, for some $k$. Now

$$
2 n=|G|=\sum_{i=1}^{k}\left|X_{i}\right|=1+\sum_{i=2}^{k}\left|X_{i}\right|
$$

and thus $\left|X_{i}\right|=1$ for some $i>1$. So for some $x \neq 1$, we have $x=x^{-1}$.
2. (18 points) Prove that a group $G$ is abelian if an only if the map $f: G \rightarrow G$ given by $f(x)=x^{-1}$ is an isomorphism.

Proof: Note that $f(x)=f(y)$ if and only if $x^{-1}=y^{-1}$, if an only if $x=y$. So $f$ is injective. Also, $x=f\left(x^{-1}\right)$, so $f$ is also surjective. Suppose $G$ is abelian, so $x y=y x$ for all $x, y \in G$. Then, for any $x, y \in G$,

$$
f(x y)=(x y)^{-1}=y^{-1} x^{-1}=x^{-1} y^{-1}=f(x) f(y) .
$$

So $f$ is a homomorphism, and hence an isomorphism.
Now suppose $f$ is an isomorphism. Then, for any $x, y \in G$,

$$
y x=\left(x^{-1} y^{-1}\right)^{-1}=f\left(x^{-1} y_{1}^{-1}\right)=f\left(x^{-1}\right) f\left(y^{-1}\right)=x y .
$$

So $G$ is abelian.
3. Let $G=S_{n}$, and suppose $1 \leq i \leq n$. Set $G_{i}=\{\sigma \in G \mid \sigma(i)=i\}$.
(a) (10 points) Prove $G_{i}$ is a subgroup
(b) (6 points) Is $G_{i}$ a normal subgroup of $G$ ?. Explain.

## Solution:

(a) Consider the natural action of $G$ on $\{1,2, \ldots, n\}$, given by $\sigma \cdot i=\sigma(i)$. Then $G_{i}=\operatorname{Stab}_{G}(i)$, and hence is a subgroup of $G$.
(b) No. Consider $n=3=i$, so $G_{3}=\{1,(12)\}$. Note (13)(12)(13) $=(23) \notin G_{3}$, so $G_{3}$ is not normal.
Remark: In fact, with the exception of the trivial cases $n=1,2$ we see $G_{i}$ is never normal.
4. (18 points) Let $G$ be a group and suppose $A$ is a non-empty subset of $G$. Let $\langle A\rangle=\bigcap_{A \subset H \leq G} H$. Prove $\langle A\rangle$ is the smallest subgroup of $G$ containing $A$.

Proof. Let $\mathcal{A}=\{H \leq G \mid A \subset H\}$. We proved intersection of an arbitrary collection of subgroups of $G$ is a subgroup of $G$. Therefore

$$
A \subset \bigcap_{H \in \mathcal{A}} H=\langle A\rangle
$$

is a subgroup of $G$.

## Alternative proof of this part

Note, $A \subset\langle A\rangle$, so $\langle A\rangle \neq \emptyset$. Suppose $x, y \in\langle A\rangle$. Then $x, y \in H$, for all $H \in \mathcal{A}$. Since each $H \leq G$, we have $x y^{-1} \in H$ for all $H \in \mathcal{A}$. Thus,

$$
x y^{-1} \in \bigcap_{H \in \mathcal{A}} H=\langle A\rangle
$$

Thus, $\langle A\rangle$ is a subgroup of $G$.

We have shown $A \subset\langle A\rangle$. Note, if $A \subset H_{1}$, for some subgroup of $H_{1}$ of $G$, then $H_{1} \in \mathcal{A}$, so

$$
H_{1} \supset \bigcap_{H \in \mathcal{A}} H=\langle A\rangle
$$

Thus $\langle A\rangle$ is the smallest subgroup of $G$ containing $A$.
5. True/False (3 points each) Determine whether each of the following statements is true or false. If true, give a proof. If false, give a concrete counterexample.
(a) If $p$ is a prime and $\sigma \in S_{n}$ is an element of order $p$, then $\sigma$ is a product of dispoint $p$-cycles.
(b) If $G$ is a group, and $a, b \in G$, then $\langle a\rangle \cap<b\rangle$ is a cyclic subgroup of $G$.
(c) $\mathbb{Z} \times \mathbb{Z}$ is cyclic
(d) If $G$ is a group, $H$ is a subgroup of $G$, and $H a$ and $H b$ are distinct right cosets, then $a H$ and $b H$ are distinct left cosets.
(e) If $H$ and $K$ are subgroups of a group $G$ and $H \triangleleft K$ and $K \triangleleft G$, then $H \triangleleft G$.

## Solution:

(a) TRUE If $\sigma=\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ is the disjoint cycle decomposition of $\sigma$, with each $\alpha_{i} \neq 1$, then $p=|\sigma|=\operatorname{lcm}\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{k}\right|\right)$. Since $p$ is prime, and $\left|\alpha_{i}\right| \neq 1$, we have $\left|\alpha_{i}\right|=p$, for each $i$. Since the order of a cycle is its length, each $\alpha_{i}$ is a $p$-cycle.
(b) TRUE This holds because any subgroup of a cyclic group is cyclic.
(c) FALSE Suppose $\mathbb{Z} \times \mathbb{Z}=\langle(a, b)\rangle$, for some $a, b \in \mathbb{Z}$. Then, for any $(n, m) \in$ $\mathbb{Z} \times \mathbb{Z}$ we have $(n, m)=c(a, b)=(c a, c b)$ for some $c \in \mathbb{Z}$. So $(1,0)=(c a, c b)$ for some $c$. Since $c a=1$, we have $c \neq 0$, and since $c b=0$, and $c \neq 0$, we have $b=0$. But then $(3,2) \notin\langle(a, b)\rangle=\mathbb{Z} \times \mathbb{Z}$, which is a contradiciton.
(Alternatively: The multiples of any non-zero $(a, b)$ all lie on one line in the plane, and therefore cannot include every element of $\mathbb{Z} \times \mathbb{Z}$.)
(d) FALSE Let $G=S_{3}, H=\{1,(12)\}, a=(13)$ and $b=(123)$. Then $H a \neq H b$, but $a H=b H$.
(e) FALSE Let $G=D_{8} \subset S_{4}$, let $K=\{1,(12)(34),(13)(24),(14)(23)\}$, and $H=\{1,(12)(34)\}$. Then $|G: K|=2=|K: H|$, so $K \triangleleft G$ and $H \triangleleft K$, but $(13)[(12)(34](13)=(14)(23) \notin H$, so $H$ is not normal in $G$.
6. (20 points) Consider the following three groups, $G, H$, and $K$.
i) Let $a, b \in \mathbb{R}$, and define $T_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $T_{a, b}(x)=a x+b$. You may assume $G=\left\{T_{a, b} \mid a, b \in \mathbb{R}, a \neq 0\right\}$ is a group with the operation of composition of functions, and with $T_{1,0}$ as the identity element.
ii) Let

$$
H=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}, a \neq 0\right\}
$$

Then $H$ is a subgroup of $G L_{2}(\mathbb{R})$, i.e. a group with the operation of matrix multiplication.
iii) Let $K=\mathbb{R}^{2}=\left\{\left.\binom{a}{b} \right\rvert\, a, b \in \mathbb{R}\right\}$. Then $K$ is a group with the operation of vector addition.

For each pair of groups among $G, H$, and $K$ determine whether or not they are isomorphic groups.
bigskip

## Solution:

Note, $K$ is abelian.

$$
\left(T_{a, b} T_{c, d}\right)(x)=T_{a, b}\left(T_{c, d}(x)\right)=T_{a, b}(c x+d)=a(c x+d)+b=a c x+(a d+b)=T_{a c, a d+b}(x)
$$

$$
\begin{equation*}
T_{a, b} T_{c, d}=T_{a c, a d+b} \tag{1}
\end{equation*}
$$

Then $T_{c, d} T_{a, b}=T_{c a, c b+d} \neq T_{a, b} T_{c, d}$. (For example, $T_{1,2} T_{2,3}=T_{2,5} \neq T_{2,7}=T_{2,3} T_{1,2}$.) So $G$ is non-abelian. So $G \nsucceq K$.

Also

$$
\left(\begin{array}{ll}
a & b  \tag{2}\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
c & d \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a c & a d+b \\
0 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
c & d  \tag{3}\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
c a & c b+d \\
0 & 1
\end{array}\right)
$$

So $H$ is non-abelian. Thus $H \not 千 K$.
Let $\varphi: G \rightarrow H$ be given by $\varphi\left(T_{a, b}\right)=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$. Computations (1) and (2), above,
show $\varphi$ is a homomorphism. Note $\varphi\left(T_{a, b}\right)=\varphi\left(T_{c, d}\right)$ if and only if

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
c & d \\
0 & 1
\end{array}\right)
$$

or if and only if $(a, b)=(c, d)$, which occurs if and only if $T_{a, b}=T_{c, d}$. So $\varphi$ is injective.
Note if $h \in H$, and $h=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)=\varphi\left(T_{a, b}\right)$ so $\varphi$ is surjective. Thus, $G \simeq H$.

