MATH 503

Fall 2018

Midterm Exam 2

Solution

Instructions: Give a complete solution to each problem. You may use any result from class, the book, or homework except the statement you are asked to prove (or one whose proof relies on the given statement). Be sure to justify your statements.

1. (10 points). If $\varphi: G \rightarrow G^{\prime}$ is a surjective homomorphism, and $N \triangleleft G$, prove $\varphi(N) \triangleleft G^{\prime}$.

Solution: Let $x \in \varphi(N)$, and $h \in G^{\prime}$. Then $x=\varphi(n)$ for some $n \in N$, and since φ is surjective, $h=\varphi(g)$ for some $g \in G$. Now $h x h^{-1}=\varphi(g) \varphi(n) \varphi(g)^{-1}$. Since φ is a homomorphism, $\varphi(g) \varphi(n) \varphi(g)^{-1}=\varphi\left(g n g^{-1}\right)$. Since $N \triangleleft G$, we have $g n g^{-1} \in N$, so $\varphi\left(g n g^{-1}\right) \in \varphi(N)$. Thus, for all $x \in \varphi(N)$ and any $h \in G^{\prime}$, we have $h x h^{-1} \in \varphi(N)$, so $\varphi(N) \triangleleft G^{\prime}$.
2. (12 points) Let $n \geq 1$. Prove that $\mathbb{Z} / n \mathbb{Z}$ has non-zero nilpotent elements if and only if $p^{2} \mid n$ for some prime p.

Solution: An element $a \in \mathbb{Z} / n \mathbb{Z}$ is nilpotent if $a^{k}=0$, for some $k>0$. That is, $a^{k} \equiv 0 \bmod n$ for some $k>0$. First suppose there is a prime p with $p^{2} \mid n$, and let $a=\frac{a}{p}$. Then $1<a<n$, and $a^{2}=\frac{n^{2}}{p^{2}}=n \frac{n}{p^{2}}$. By assumption $n / p^{2} \in \mathbb{Z}$, so $a^{2}=0$, and so a is nilpotent. Converseley, suppose $a \in \mathbb{Z} / n \mathbb{Z}$ is a non-zero nilpotent element. Choose $k>0$ with $a^{k}=0$. Suppose $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes, and each $\alpha_{i}>0$. For each i, we have $p_{i} \mid n$, so $p_{i} \mid a^{k}$, and hence, since p_{i} is prime, $p_{i} \mid a$. So, if $\alpha_{i}=1$ for each i, then $n \mid a$, which contradicts our choice of a, and thus, $\alpha_{i} \geq 2$, for some i. So there is a prime p with $p^{2} \mid n$.
3. True/False (5 points each) Determine whether each of the following statements is true or false. If true, give a proof. If false, give a concrete counterexample.
(a) If G is a non-abelian group and $N \triangleleft G$, with $\{e\} \subsetneq N \subsetneq G$, then G / N is non-abelian.
(b) $\mathbb{Z}\left[x^{2}\right]$ is an ideal of $\mathbb{Z}[x]$.
(c) If R is an integral domain and $x^{2}=1$, then $x= \pm 1$.
(d) If α is an odd permutation, then α^{-1} is an odd permutation.
(e) $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are isomorphic rings.

Solution:

(a) False. Let $G=S_{3}$, which is nonabelian, and $N=\langle(123)\rangle=\{1,(123),(132)\}$. Then $|G: N|=2$, so $N \triangleleft G$, and $G / N \simeq \mathbb{Z} / 2 \mathbb{Z}$ is abelian.
(b) False. Note $x \in \mathbb{Z}[x]$ and $x^{2} \in \mathbb{Z}\left[x^{2}\right]$, but $x \cdot x^{2}=x^{3} \notin \mathbb{Z}\left[x^{2}\right]$, so $\mathbb{Z}\left[x^{2}\right]$ is not an ideal of $\mathbb{Z}[x]$.
(c) True. If $x^{2}=1$, then $x^{2}-1=(x-1)(x+1)=0$. Since R is an integral domain, one of the two factors is zero, so $x-1=0$, or $x+1=0$, i.e., $x= \pm 1$.
(d) True. Suppose $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{2 k+1}$, with each α_{i} a transposition, then $a^{-1}=$ $\alpha_{2 k+1} \cdots \alpha_{2} \alpha_{1}$ is also a product of an odd number of transpositions, so is also odd. (Alternatively, $\alpha \alpha^{-1}=1$ is even, and since α is odd, α^{-1} must also be odd.)
(e) False. Suppose $\varphi: 2 \mathbb{Z} \rightarrow 3 \mathbb{Z}$ is any homomorphism. Let $\varphi(2)=3 a$. Then $\varphi(4)=\varphi(2+2)=\varphi(2)+\varphi(2)=6 a$, but $\varphi(4)=\varphi\left(2^{2}\right)=\varphi(a)^{2}=9 a$. So, $9 a=6 a$, which says $3 a=0$, or $a=0$. Thus the zero map is the only homomorphism from $2 \mathbb{Z}$ to $3 \mathbb{Z}$, and hence there is no isomorphism between these two rings.
4. (15 points) Let G be a finite group of composite order n with the property that G has a subgroup of order k for each $k \mid n$. Prove G is not simple.

Solution: Since n is composite, there is some prime p with $1<n / p<n$. Let p be the smallest prime dividing n and let $n=p k$. Then, by assumption, there is a subgroup H of G with $|H|=k$. Thus, $|G: H|=p$, with p the smallest prime dividing $|G|$, so $H \triangleleft G$, with $1 \subsetneq H \subsetneq G$. Thus, G is not simple.
5. (20 points) Let R be a ring, and $I \subset R$ an ideal of R.. Let $M_{n}(R)$ be the ring of $n \times n$ matrices of R. Prove $M_{n}(R) / M_{n}(I) \simeq M_{n}(R / I)$.

Solution:. Let $\varphi: R \rightarrow R / I$ be the natural map, i.e., $\varphi(a)=a+I$. Let $\psi: M_{n}(R) \rightarrow M_{n}(R / I)$ be given by $\psi(A)_{i j}=\varphi\left(A_{i j}\right)$, i.e., we apply φ to the entries of A. Then, since the operations of $M_{n}(R)$ and $M_{n}(R / I)$ are given by combinations of the ring operations in R and R / I, respectively, and all such operations are respected by φ, we have ψ is a ring homomorphism. Now we clearly have ψ is surjective, and $A \in \operatorname{ker} \varphi$ if and only if $A_{i j} \in I$, for each i, j, i.e., $\operatorname{ker} \varphi=M_{n}(R / I)$. Thus, by the First Isomorphism Theorem,

$$
M_{n}(R) / M_{n}(I) \simeq M_{n}(R / I)
$$

6. ($\mathbf{1 8}$ points) State and prove the Class Equation.

Theorem (The Class Equation): Let G be a finite group with center Z and let $g_{1}, g_{2}, \ldots, g_{k}$ be a set of representatives for the non-central conjugacy classes in G. Then

$$
|G|=|Z|+\sum_{i=1}^{k}\left|G: C_{G}\left(g_{i}\right)\right| .
$$

Proof: Consider G acting on itself by conjugation. Since conjugacy the classes are the equivalence classes of this action, they partition G. Note, if $z \in Z$, then $x z x^{-1}=z$ for all $x \in G$, so $\{z\}$ is its conjugacy class. Let $\mathcal{C}_{j}=\left\{x g_{j} x^{-1} \mid x \in G\right\}$ be the conjugacy class of g_{j}. Then, we have

$$
\begin{equation*}
G=Z \coprod \mathcal{C}_{1} \coprod \mathcal{C}_{2} \cdots \coprod C_{k} . \tag{1}
\end{equation*}
$$

For each j, the conjugacy class C_{j} is the orbit of g_{j} under conjugation, and hence, by the Orbit-Stabilizer Theorem $\left|\mathcal{C}_{j}\right|=\left|G: \operatorname{Stab}_{G}\left(g_{j}\right)\right|$. Now

$$
\operatorname{Stab}_{G}\left(g_{j}\right)=\left\{x \in G \mid x g_{j} x^{-1}=g_{j}\right\}=\left\{x \in G \mid x g_{j}=g_{j} x\right\}=C_{G}\left(g_{j}\right)
$$

Now from equation (1) we have

$$
|G|=|Z|+\sum_{i=1}^{k}\left|\mathcal{C}_{i}\right|=|Z|+\sum_{i=1}^{k}\left|G: C_{G}\left(g_{i}\right)\right|
$$

as claimed.

