MATH 503 Fall 2018 Midterm Exam 2 Solution

Instructions: Give a complete solution to each problem. You may use any result from class, the book, or homework **except** the statement you are asked to prove (or one whose proof relies on the given statement). Be sure to justify your statements.

1. (10 points). If $\varphi : G \to G'$ is a surjective homomorphism, and $N \triangleleft G$, prove $\varphi(N) \triangleleft G'$.

Solution: Let $x \in \varphi(N)$, and $h \in G'$. Then $x = \varphi(n)$ for some $n \in N$, and since φ is surjective, $h = \varphi(g)$ for some $g \in G$. Now $hxh^{-1} = \varphi(g)\varphi(n)\varphi(g)^{-1}$. Since φ is a homomorphism, $\varphi(g)\varphi(n)\varphi(g)^{-1} = \varphi(gng^{-1})$. Since $N \triangleleft G$, we have $gng^{-1} \in N$, so $\varphi(gng^{-1}) \in \varphi(N)$. Thus, for all $x \in \varphi(N)$ and any $h \in G'$, we have $hxh^{-1} \in \varphi(N)$, so $\varphi(N) \triangleleft G'$.

2. (12 points) Let $n \ge 1$. Prove that $\mathbb{Z}/n\mathbb{Z}$ has non-zero nilpotent elements if and only if $p^2|n$ for some prime p.

Solution: An element $a \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if $a^k = 0$, for some k > 0. That is, $a^k \equiv 0 \mod n$ for some k > 0. First suppose there is a prime p with $p^2|n$, and let $a = \frac{a}{p}$. Then 1 < a < n, and $a^2 = \frac{n^2}{p^2} = n\frac{n}{p^2}$. By assumption $n/p^2 \in \mathbb{Z}$, so $a^2 = 0$, and so a is nilpotent. Converseley, suppose $a \in \mathbb{Z}/n\mathbb{Z}$ is a non-zero nilpotent element. Choose k > 0 with $a^k = 0$. Suppose $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, where p_1, p_2, \ldots, p_r are distinct primes, and each $\alpha_i > 0$. For each i, we have $p_i|n$, so $p_i|a^k$, and hence, since p_i is prime, $p_i|a$. So, if $\alpha_i = 1$ for each i, then n|a, which contradicts our choice of a, and thus, $\alpha_i \ge 2$, for some i. So there is a prime p with $p^2|n$.

3. **True/False (5 points each)** Determine whether each of the following statements is true or false. If true, give a proof. If false, give a concrete counterexample.

- (a) If G is a non-abelian group and $N \triangleleft G$, with $\{e\} \subsetneq N \subsetneq G$, then G/N is non-abelian.
- (b) $\mathbb{Z}[x^2]$ is an ideal of $\mathbb{Z}[x]$.
- (c) If R is an integral domain and $x^2 = 1$, then $x = \pm 1$.
- (d) If α is an odd permutation, then α^{-1} is an odd permutation.
- (e) $2\mathbb{Z}$ and $3\mathbb{Z}$ are isomorphic rings.

Solution:

- (a) False. Let $G = S_3$, which is nonabelian, and $N = \langle (123) \rangle = \{1, (123), (132)\}$. Then |G:N| = 2, so $N \triangleleft G$, and $G/N \simeq \mathbb{Z}/2\mathbb{Z}$ is abelian.
- (b) **False.** Note $x \in \mathbb{Z}[x]$ and $x^2 \in \mathbb{Z}[x^2]$, but $x \cdot x^2 = x^3 \notin \mathbb{Z}[x^2]$, so $\mathbb{Z}[x^2]$ is not an ideal of $\mathbb{Z}[x]$.
- (c) **True.** If $x^2 = 1$, then $x^2 1 = (x 1)(x + 1) = 0$. Since R is an integral domain, one of the two factors is zero, so x 1 = 0, or x + 1 = 0, i.e., $x = \pm 1$.
- (d) **True.** Suppose $\alpha = \alpha_1 \alpha_2 \cdots \alpha_{2k+1}$, with each α_i a transposition, then $a^{-1} = \alpha_{2k+1} \cdots \alpha_2 \alpha_1$ is also a product of an odd number of transpositions, so is also odd. (Alternatively, $\alpha \alpha^{-1} = 1$ is even, and since α is odd, α^{-1} must also be odd.)
- (e) False. Suppose φ : 2Z → 3Z is any homomorphism. Let φ(2) = 3a. Then φ(4) = φ(2 + 2) = φ(2) + φ(2) = 6a, but φ(4) = φ(2²) = φ(a)² = 9a. So, 9a = 6a, which says 3a = 0, or a = 0. Thus the zero map is the only homomorphism from 2Z to 3Z, and hence there is no isomorphism between these two rings.
- 4. (15 points) Let G be a finite group of composite order n with the property that G has a subgroup of order k for each k|n. Prove G is not simple.

Solution: Since *n* is composite, there is some prime *p* with 1 < n/p < n. Let *p* be the smallest prime dividing *n* and let n = pk. Then, by assumption, there is a subgroup *H* of *G* with |H| = k. Thus, |G : H| = p, with *p* the smallest prime dividing |G|, so $H \triangleleft G$, with $1 \subsetneq H \subsetneq G$. Thus, *G* is not simple.

5. (20 points) Let R be a ring, and $I \subset R$ an ideal of R.. Let $M_n(R)$ be the ring of $n \times n$ matrices of R. Prove $M_n(R)/M_n(I) \simeq M_n(R/I)$.

Solution: Let $\varphi : R \to R/I$ be the natural map, i.e., $\varphi(a) = a + I$. Let $\psi : M_n(R) \to M_n(R/I)$ be given by $\psi(A)_{ij} = \varphi(A_{ij})$, i.e., we apply φ to the entries of A. Then, since the operations of $M_n(R)$ and $M_n(R/I)$ are given by combinations of the ring operations in R and R/I, respectively, and all such operations are respected by φ , we have ψ is a ring homomorphism. Now we clearly have ψ is surjective, and $A \in \ker \varphi$ if and only if $A_{ij} \in I$, for each i, j, i.e., $\ker \varphi = M_n(R/I)$. Thus, by the First Isomorphism Theorem,

$$M_n(R)/M_n(I) \simeq M_n(R/I)$$

6. (18 points) State and prove the Class Equation.

Theorem (The Class Equation): Let G be a finite group with center Z and let g_1, g_2, \ldots, g_k be a set of representatives for the non-central conjugacy classes in G. Then

$$|G| = |Z| + \sum_{i=1}^{k} |G: C_G(g_i)|.$$

Proof: Consider G acting on itself by conjugation. Since conjugacy the classes are the equivalence classes of this action, they partition G. Note, if $z \in Z$, then $xzx^{-1} = z$ for all $x \in G$, so $\{z\}$ is its conjugacy class. Let $C_j = \{xg_jx^{-1}|x \in G\}$ be the conjugacy class of g_j . Then, we have

(1)
$$G = Z \coprod \mathcal{C}_1 \coprod \mathcal{C}_2 \cdots \coprod \mathcal{C}_k.$$

For each j, the conjugacy class C_j is the orbit of g_j under conjugation, and hence, by the Orbit-Stabilizer Theorem $|\mathcal{C}_j| = |G : \operatorname{Stab}_G(g_j)|$. Now

$$Stab_G(g_j) = \{x \in G | xg_j x^{-1} = g_j\} = \{x \in G | xg_j = g_j x\} = C_G(g_j).$$

Now from equation (1) we have

$$|G| = |Z| + \sum_{i=1}^{k} |\mathcal{C}_i| = |Z| + \sum_{i=1}^{k} |G : C_G(g_i)|,$$

as claimed.