
MATH 503

Fall 2018

Midterm Exam 2

Solution

Instructions: Give a complete solution to each problem. You may use any result

from class, the book, or homework except the statement you are asked to prove (or

one whose proof relies on the given statement). Be sure to justify your statements.

1. (10 points). If ϕ : G → G′ is a surjective homomorphism, and N / G, prove

ϕ(N) / G′.

Solution: Let x ∈ ϕ(N), and h ∈ G′. Then x = ϕ(n) for some n ∈ N, and

since ϕ is surjective, h = ϕ(g) for some g ∈ G. Now hxh−1 = ϕ(g)ϕ(n)ϕ(g)−1.

Since ϕ is a homomorphism, ϕ(g)ϕ(n)ϕ(g)−1 = ϕ(gng−1). Since N / G, we have

gng−1 ∈ N, so ϕ(gng−1) ∈ ϕ(N). Thus, for all x ∈ ϕ(N) and any h ∈ G′, we have

hxh−1 ∈ ϕ(N), so ϕ(N) / G′. �

2. (12 points) Let n ≥ 1. Prove that Z/nZ has non-zero nilpotent elements if and

only if p2|n for some prime p.

Solution: An element a ∈ Z/nZ is nilpotent if ak = 0, for some k > 0. That

is, ak ≡ 0 mod n for some k > 0. First suppose there is a prime p with p2|n,

and let a =
a

p
. Then 1 < a < n, and a2 =

n2

p2
= n

n

p2
. By assumption n/p2 ∈ Z,

so a2 = 0, and so a is nilpotent. Converseley, suppose a ∈ Z/nZ is a non-zero

nilpotent element. Choose k > 0 with ak = 0. Suppose a = pα1
1 p

α2
2 · · · pαr

r , where

p1, p2, . . . , pr are distinct primes, and each αi > 0. For each i, we have pi|n, so

pi|ak, and hence, since pi is prime, pi|a. So, if αi = 1 for each i, then n|a, which

contradicts our choice of a, and thus, αi ≥ 2, for some i. So there is a prime p with

p2|n. �

3. True/False (5 points each) Determine whether each of the following statements

is true or false. If true, give a proof. If false, give a concrete counterexample.
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(a) If G is a non-abelian group and N / G, with {e} ( N ( G, then G/N is

non-abelian.

(b) Z[x2] is an ideal of Z[x].

(c) If R is an integral domain and x2 = 1, then x = ±1.

(d) If α is an odd permutation, then α−1 is an odd permutation.

(e) 2Z and 3Z are isomorphic rings.

Solution:

(a) False. Let G = S3, which is nonabelian, and N = 〈(123)〉 = {1, (123), (132)}.

Then |G : N | = 2, so N / G, and G/N ' Z/2Z is abelian.

(b) False.. Note x ∈ Z[x] and x2 ∈ Z[x2], but x · x2 = x3 6∈ Z[x2], so Z[x2] is not

an ideal of Z[x].

(c) True. If x2 = 1, then x2 − 1 = (x − 1)(x + 1) = 0. Since R is an integral

domain, one of the two factors is zero, so x− 1 = 0, or x+ 1 = 0, i.e., x = ±1.

(d) True. Suppose α = α1α2 · · ·α2k+1, with each αi a transposition, then a−1 =

α2k+1 · · ·α2α1 is also a product of an odd number of transpositions, so is also

odd. (Alternatively, αα−1 = 1 is even, and since α is odd, α−1 must also be

odd.)

(e) False. Suppose ϕ : 2Z → 3Z is any homomorphism. Let ϕ(2) = 3a. Then

ϕ(4) = ϕ(2 + 2) = ϕ(2) + ϕ(2) = 6a, but ϕ(4) = ϕ(22) = ϕ(a)2 = 9a.

So, 9a = 6a, which says 3a = 0, or a = 0. Thus the zero map is the only

homomorphism from 2Z to 3Z, and hence there is no isomorphism between

these two rings. �

4. (15 points) Let G be a finite group of composite order n with the property that

G has a subgroup of order k for each k|n. Prove G is not simple.

Solution: Since n is composite, there is some prime p with 1 < n/p < n. Let

p be the smallest prime dividing n and let n = pk. Then, by assumption, there is

a subgroup H of G with |H| = k. Thus, |G : H| = p, with p the smallest prime

dividing |G|, so H / G, with 1 ( H ( G. Thus, G is not simple. �



5. (20 points) Let R be a ring, and I ⊂ R an ideal of R.. Let Mn(R) be the ring of

n× n matrices of R. Prove Mn(R)/Mn(I) 'Mn(R/I).

Solution:. Let ϕ : R → R/I be the natural map, i.e., ϕ(a) = a + I. Let

ψ : Mn(R)→Mn(R/I) be given by ψ(A)ij = ϕ(Aij), i.e., we apply ϕ to the entries

of A. Then, since the operations of Mn(R) and Mn(R/I) are given by combinations

of the ring operations in R and R/I, respectively, and all such operations are

respected by ϕ, we have ψ is a ring homomorphism. Now we clearly have ψ is

surjective, and A ∈ kerϕ if and only if Aij ∈ I, for each i, j, i.e., kerϕ = Mn(R/I).

Thus, by the First Isomorphism Theorem,

Mn(R)/Mn(I) 'Mn(R/I).

�

6. ( 18 points) State and prove the Class Equation.

Theorem (The Class Equation): Let G be a finite group with center Z and

let g1, g2, . . . , gk be a set of representatives for the non-central conjugacy classes in

G. Then

|G| = |Z|+
k∑
i=1

|G : CG(gi)|.

Proof: Consider G acting on itself by conjugation. Since conjugacy the classes

are the equivalence classes of this action, they partition G. Note, if z ∈ Z, then

xzx−1 = z for all x ∈ G, so {z} is its conjugacy class. Let Cj = {xgjx−1|x ∈ G}

be the conjugacy class of gj. Then, we have

(1) G = Z
∐
C1

∐
C2 · · ·

∐
Ck.

For each j, the conjugacy class Cj is the orbit of gj under conjugation, and hence,

by the Orbit-Stabilizer Theorem |Cj| = |G : StabG(gj)|. Now

StabG(gj) = {x ∈ G|xgjx−1 = gj} = {x ∈ G|xgj = gjx} = CG(gj).



Now from equation (1) we have

|G| = |Z|+
k∑
i=1

|Ci| = |Z|+
k∑
i=1

|G : CG(gi)|,

as claimed. �


