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INTRODUCTION

In (3), the author defined the notion of a G-space. A G-space is a weaker notion than
that of an H-space. The main purpose of this paper is to present various means of
constructing G-spaces. As an application of some of the techniques of (3) and of this
paper (though not an application of the concept of G-space) we shall prove the following
theorem: '

. THEOREM. Let G be a connected compact Lie group and let H be a connected subgroup of
mazimal rank. Then Hy(G[H; Z) = 0. In fact, the Hurewicz homomorphism is trivial for
odd dimensions.

This paper is divided into five sections. The first section is devoted to restating the
definition of a G-space and reviewing some properties of G-spaces. In section 2 we
show that the n-connective covering of a G-space is a G-space. In section 3 we show
how to form two-stage Postnikov systems which are G-spaces. The next section,
section 4, is devoted to the construction of finite dimensional G-spaces. This is done by
considering homogeneous spaces, an idea which Jerrold Siegel first used in (6) to find
a finite dimensional G-space which is not an H-space. For the case when 7' is a toroidal
subgroup of a Lie group G, we show that G/T is a G-space if and only if 7,(G/T) = 0.
The last section, section 5, is devoted to the proof of the theorem mentioned in the
previous paragraph. This section is independent of the rest of the paper, with the
exception of some lemmas in section 4.

1. PRELIMINARIES

We shall always assume that we are dealing with spaces homotopic to CW complexes.
Consider the set of all maps F: X x 87— X such that F|X is the identity on X. Now
F| 8™ gives us a subset of base point preserving maps of §*— X. The set of homotopy
classes of these maps is a subgroup &, (X, %) of the nth homotopy group 7,(X, *). We
call this subgroup the nth evaluation subgroup of m,(X).

There is another definition of &, (X). Let XX = the space of maps from X to X with
the compact open topology. Let w: XXX be the evaluation map f—f(*). Then
G (X, *) may be defined as the image of 7,(XX, 1y) under w,. That is, -

| Gu(X) = 0ym (X5, 15)]. W
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Now a connected CW-complex X is a G-space if G, (X) = n,(X) for all n. Thus a
G-space is characterized by the property that any map X v 8-> X may be extended

to a map X x 87— X for all n.
We summarize below the known results about G-spaces:

ProprosiTION 1-1

(@) Any connected H-space is o G-space (3).

(b) Every Whitehead Product vanishes in a G-space (6).

(¢) Ewvery higher order spherical Whitehead Product contains zero in a G-space (6).

(@) Let X be a G-space with finitely generated homology. If X is not contractible, then
the Euler—Poincaré number y(X) = 0. Also 7y(X) has no torsion-free element (3).

(e) Let X be a simply connected G-space with finitely generated homology. Then the
rational cohomology ring is the tensor product of exterior algebras with odd dimensional

generators. (Haslam (8).)

We now describe Theorem 6-3 of (3). Let X be a CW-complex. Corresponding to any
element ¢ € G,,(X), there is a homomorphism A: H*(X ; @) - H(X; G) for alli and any
coefficient ring G. We write A as acting on the right, i.e. X: 2 ->zA. We have the follow-

ing formula

Nowsuppose p: £ — X is a principal fibration with fibre of type (7, m — 1) (7 Abelian).

(WU )A = wUvA+(—1)rdmvgd yp, (2)

This fibration corresponds to an element e H™(X ;).
Now we quote Theorem 6-3 of (3) using the above notation: .

ProrosITION 1-2. Suppose F: X x S*— X is such that F|S8" = a and F|X = I4.
Then there exists a map F: E x 8" — B such that F|E =1z and

if and only if uA = 0.

7
ExSr—-F
px1 l 7 l p commules
Xx8r——>X

We consider one more fact, which is of use in sections 3 and 4.

ProrosiTioN 1-3. Given & map ¢: A—>X and a mop ®: Ax X—->X such that
D)4 = ¢ and O|X = 14, then we have ¢ : m(A) > G(X) for oll 4.

Proof. Consider the map

In this section we shall record that an n-connective covering of a G-space is a
G-space. The proof is an application of Proposition 1-2. Then we shall note that any

covering space of a G-space is a G-space.

Now F|X = 1y and [F|8] = [®of] = [$of] = $Lf]. Hence ¢.[f]€Gy(E).

Ixf [0}
F: Xx8—Xx4—X.

2. COVERING SPACES OF (J-SPACES
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* 'TunorEM 2-1. An n-connective covering space of a G-space is a G-space.

~ P
Proof. Suppose X is n— 1 connected. Let X — X be the n-connective covering for X.

Then X i X corresponds to an element u e HYX ; 7,,(X)). Now every a e, ,(X) gives
rise to a homomorphism A: H*(X ;7 (X))~ H* "X ;m, (X)) and by dimensional
considerations %A = 0. Thus for every ae@, ,(X), there is an de@,,X) such that
P4(d) = . Since p, is an isomorphism for ¢ > 0, we have that G, «(X) = 7,.«(X) for
all 2 > 0.

THEOREM 2-2. Any covering épace of a G-space is a G-space.

P

Proof. The proof follows from the observation that for any covering space X — X,

we have p(e) € G,(X) only if xe@,(X). (See Theorems 6-1 and 6-2 of (3).) Since X is
a G-space, we are finished.

3. Two-sTAGE POSTNIKOV SYSTEMS

If we wish to use Proposition 1-2 to construct a G-space by beginning with a K(m, n)
and building up a Postnikov system, we shall see that the problem becomes very
complicated. This is because we have to check that the k-invariant vanishes under
every possible A. We shall, however, demonstrate a method for creating G-spaces out
of two-stage Postnikov systems.

Let p be a prime number and consider the Eilenberg-MacLane space K(Z,, 2n).
Leta e H*(K(Z,,2n); Z,) = Z, be a generator. Then " + O for allr. Let p: £ — K(Z,, 2n)
be a principal fibration with k-invariant a*® (for integer & > 0). So

ok® e H*o(K(Z,,,2n);2,,)
and the fibre of p is a K(Z,, 2nkp—1).

TurorEM 3-1. F is a G-space.

Proof. E has two non-zero homotopy groups, 7,,(E) = 7y, 1(E) = Z,. We shall
use Proposition 1-2 to show that G,,(E) = m,,(K). First note that K(Z,,2n) is an
H-space. Let X = K(Z,, 2n). Then we can find a map F': X x 8% — X so that f = F|8

- represents any element of Gy, (X) = 7., (X) = Z,. In particular, we choose F so that

f*(a)is a generator of H2»(82»; Z, ). Then F givesrise toa \: H*(X; Z,) > H**X; Z,)
such that 2 = 1€ HY(X; Z,), see (3), section 5. Then, by induction since A is a deriva-
tion, (a*P)A = kpa*P—1 = 0 since p = 0€Z,. Thus by Proposition 1-3 there is a
F: E x 82" E such that f = F|S2 represents a class [f]€ Gy, (B). Since

pslf1=[0f]1=[f1*0,
then [f] & 0 and so generates 7,,(E) = Z,,. Thus Gy, (E) = m,,(¥).
The other half of the proof consists of showing that Gy, —1(B) = Topz,3(E). Since
i: K(Z,, 2nkp — 1) - E induces an isomorphism on the 2nkp — 1 dimensional homotopy
groups, the result follows from the following lemma.

- LigmMa 32, Let p: E— B be a principal fibration with fibre F. If i: F - E is the inclu-
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Proof. Because p: E— B is a principal fibration there is a. map ®: ¥ x £ -~ F such
that ®|E = 15 and ®|F = 4. The result follows immediately by Proposition 1-3.

Under most circumstances, ¥ is not an H-space. In fact, £ is an H-space if and only
if a*? is primitive. That is, if g is the multiplication of K(Z,, 2n), we see that E is an
H-space if and only if p*(a*?) = a** @1+ 1®@c*?. Now

pHE) = ()t = (1@a+a@1)
=(1®aP+arP@1L)
= (1Qa*? +a*?®1) +ka? @aP®D 4 ..,

Now ka? @a?®1 = 0 only if k is a multiple of p. By an induction type argument we
see that F is an H-space if and only if k is a power of p.
These results were independently discovered by Harold Haslam (8).

4. CONSTRUCTION OF FINITE DIMENSIONAL (-SPACES

. We shall first discuss a method of: constructing finite dimensional G-spaces due to
Jerrold Siegel (6), who used it to find a compact G-space which is not an H-space. This re-
sult answers a question of Porter’s(5), for it provides a compact space all of whose higher
order spherical Whitehead products contain zero, and yet the space is not an H-space.

In this section and in the next, @ will denote a compact Lie group and H a closed

subgroup of @. We shall consider the fibration H > G 5 G/H. The underlying observa-
tion for this section and the next is the following lemma. '

Leua 4-1. p: m(6)—>Gy(G/H) S m(G/H). "
Proof. Apply Proposition 1-3 taking 4 = ¢, X = G/H, ¢ = pand (I) GxG/H—~G/H
given by ®(g,xH) = gxH.

COROLLARY 4-2. G(G[H) = mw(G[H) if py: 7 (@) > 7y X) is onto, or equivalently, if
Ty My (H)—>m;_1(Q) is injective.

Now let H be a closed toroidal subgroup, 7. Since Tis aspherical, p,: 7,(GF) = m(G/T)
is onto for ¢ > 2, and also since 7' is connected, p is onto for 7+ = 1. This follows from
the fibre homotopy exact sequence of the fibration p: G— G/T. Thus, by virtue of the
above corollary, G,(G|T) = m,(G|T) for 7 & 2. Thus G/T is a G-space if and only if
moQT) = G4(G/T).

THEOREM 4-3. With notation of the precedmg pamgmph G|T is a G-space if and
only if my(GT) = 0.

Proof. First assume 77,(G/T') = 0. In this case Go(G/T) = my(G|T) so by the previous
paragraph, G/T"is a G-space.

Conversely assume that 7,(G/T) # 0. We know 77,(G) = 0 because @ is a Lie group,
and we know that 7;(7") is a free Abelian group. Then from the fibre homotopy exact
sequence we have 0->7,(Q[T)—>m(T), so my(G/T) is a free Abelian group. Now
according to Proposition 1-1(d), @/T is not a finite dimensional G-space because
my(G@/T) has torsion-free elements. This proves the theorem.
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5. APPLICATIONS TO HOMOGENEOUS SPACES

The applications we have in mind are based on Corollary 4-2 and the following
proposition which is a summary of some results of (3).

- First we need some notation. Let h: my(X)—~> Hy(X; Z) be the Hurewicz homo-
morphlsm We denote by h, the Hurewicz homomorphism modp; that is, the
composition h

7ri(X)—>Hi(X; Z)— H(X; Z,).
We consider p to be a prime or p = oo, by which we mean Z,, = rational numbers.

ProrosiTiOoN 5-1. Suppose X has finitely generated homology.

() Then Gyy(X) < ker hy,.
(b) If, in addition, x(X) =% 0, then Gy ;(X) < kerh,, for all primes p and co. (See (3),
Theorems 4-1 and 5-1.)

We shall consider the following situation. Let G be a compact, connected Lie group.
Let H be a closed connected subgroup of G. We assume that H has the same rank as ¢.
(The rank of a Lie group is the dimension of the maximal connected Abelian subgroup
T contained in @, and T' is always a torus called the maximal torus of G.) The homo-
geneous spaces, G/H, have been studied by many mathematicians, starting with
H. Hopf, H. Samelson, H.C. Wang, A. Borel, to mention a few. A great deal has been
discovered about the homology groups of G/H by using the Serre Spectral Sequence,
classifying spaces, Lie algebras and other methods. One key theorem in the subject is
the following (1), (2).

THEOREM (BoTT-BOREL). Let T' be a maximal toral subgroup of a connected, compact
Lie group Q. Then H*(G|T; Z) has no torsion and H(G|T; Z) = 0 for odd r.

Now, as a corollary to this theorem we obtain the following lemma.

Lemma 5-2. Let T be a maximal torus of a compact connected Lie group G. Then the
Hurewicz homomorphism h: w,(G|T)— H,(G|T; Z) is trivial for all n + 2.

Proof. From the fibre homotopy exact sequence for the fibration p: G — G/T, using
the fact that 7' is connected and aspherical, we see that p: 7, (@), (G/T) is onto
for n + 2. Thus, by Corollary 4-2, G,,(G/T) = m,,(G/T).

If nis odd, then H,(G/T) = 0 by the Bott—Borel Theorem. Hence the Hurewicz map
is trivial for odd dimensions. '

If n is even and n % 2, then H (G/T) is a free Abelian group (or the trivial group).
By Proposition 5:1a, G,(G/T) < kerk,, = kerh. Since G,,(G/T) = m,(G/T), we see that
b is the zero homomorphism.

THEOREM 5-3. Let H be a connected subgroup of mammal rank in a connected, compact
Lie group Q. Then the Hurewicz homomorphism of G[H is zero for odd dimensions.

Proof. The subgroups 7' < H < @ give rise to a fibration p: G/T - G/H with fibre
H|T. This, in turn gives rise to the exact ladder

oo TG T) —> mo (T, H|T) 2 HT)—>
) | O
H(QT)—> H (YT, H|T)—> H, (H|T)—...
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where k; and A’ are the appropriate Hurewicz homomorphisms. If # is odd, and » + 3,
we have from (* a
drom () (T —> 7 (YT, HIT)——> m,_(H|T)
% , 0
0—— H,(G|T,H|T)— H, ,(H|T)

Thus A’ = 0. From the commutative diagram

(G T, H/T)L H,(QT, H|T)

x| Py A DPx
ﬂn(G/H’ ale) - Hn(G/H’ *)
we have that & is trivial.

For n = 3 we can easily show that 2" = 0, hence » = 0. This follows from the fact
that the inclusion induces a monomorphism iy: 7,(H|T)—my(G/T) (see below). Then
exactness implies that d: 7y(G/T, H|T)—my(H|T) is trivial. Hence we have the same
situation as for any odd n except that now d = Oinstead of &, = 0: w,(H|T)— Hy(H|T).
Hence £ is trivial.

To see that ¢y: mo(H|T)—>m,(G/T) is a monomorphism, we observe that the inclusion
map H < G is a fibre preserving map from the fibration H > H/|T to the fibration

G- @G/T. Thus we get the exact ladder
cei——> My(H)— my(H[T)—> 7,(T)— ...
’i# ~
oo ——> T () —— T GT)— 1 (T)—— ...
Since 7,(H )' = 7y(() = 0 (because 7, of a Lie group is zero), examination of the diagram
reveals that ¢, is a monomorphism.

The above theorem seems to be new; at any rate I could not find it in the literature.
There are examples of homogeneous spaces as in the theorem with non-zero odd

homology groups. One such space is &,/SO,. Thus the Hurewicz homomorphism is not

trivially null. We easily obtain the following corollaries.

CoROLLARY 5-4. Let H be a closed connected subgroup in a compact, connected Lie
group G. Let m,(G[H) be the first non-zero homotopy group. Then, if x(G[H) + 0

(@) n is even,

(®) H,(GIH; Z) = 0.

Proof. The Hopf—Samelson theorem (4) says y(G/H) + 0if and only if H has maximal
rank. Now apply the Hurewicz isomorphism theorem to Theorem 5-3.

COROLLARY 5-5. Hy(G[H; Z) = 0.

Proof. m,(G/H) is Abelian, hence G/H is simply connected (as is well known) by the
above corollary. Thus n is at least 2 and hence Hy(G/H; Z) = 0.

These corollaries are easy consequences of a spectral sequence argument using the
Bott-Borel theorem, the Hopf-Samelson theorem, and the fact that the odd homology
groups of G/H are torsion. We may also prove the corollaries directly by using
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Proposition 5-1 (b) and Lemma 4-1 and the Hurewicz isomorphism theorem. We do
not need the Bott—Borel or the Hopf-Samelson theorems.

I would like to thank Jerrold Siegel and H. C. Wang for helpful suggestions.
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