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Witnesses, Transgressions, and the
Evaluation Map

DANIEL HENRY GOTTLIEB

Communicated by the Editors

§1. Introduction. We study the relationship of the evaluation map
w:X* — X with the various transgression homomorphisms arising from fibra-
tions with fibre X. We observe that the transgression factors through homo-
morphisms induced by ». Thus (1) we may use facts about the evaluation map
to calculate the transgression in some cases, or conversely (2) we may apply
information about the transgression to discover facts about w. As examples of
this technique, using (1) we calculate homology with Z, coefficients of the total
space of any oriented fibration with fibre CP" where p does not divide n 4+ 1,
and using (2) we calculate w* on integral cohomology where X = CP".

Next we consider the following question. Given a principal fibration £ — B,
what can be said about the homology of the space of principal bundle maps,
L*(E, E)? We show this question is intimately related to «* in cohomology.
Then, applying results on w* developed earlier, we compute the rational homology
of L*(E, E) in terms of the homology of the space of self homotopy equivalences
of B in the case of S* principal bundles over suitable base spaces. For example,
we may calculate the rational homology of the space of equivariant maps with
respect to that action of S* on S® which results in the Hopf fibration.

Finally, we use our study of L*(E, E) to show that 2x(M)w* = 0 for M a
closed manifold and « the evaluation map from the group of homeomorphisms
of M to M. »

In this paper we shall always assume that every space X has a base point *,

" but maps do not preserve base points unless it is specifically mentioned so.

If M is a space of functions from X — Y, then ¢: M X X — Y will always denote
the evaluation map given by &(f, ) = f(x). We shall call & the generalized
evaluation map or else an action of M on X when X = V. Also w: M — Y will
always denote evaluation at the base point; that is w(f) = f(*). We shall always
call w the evaluation map. If an integer is denoted by p, then it is prime.
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826 D. H. GOTTLIEB

The term witnesses, which appears in the title, will be defined later. It refers
to a concept which gives &* a geometric interpretation, an interpretation which
will be needed in our investigation of L*(#, E).

I would like to thank James Becker and Reinhard Schultz for some helpful
conversations.

§2. Evaluation subgroups. In this section we use Weingram’s theorem to
establish some results about w, on homotopy groups. These results will relate
the transgression in the homotopy exact sequence of a fibration to the Hurewicz
homomorphism,

Recall the ntt evaluation subgroup of a space X, written G,(X), is the image
of w,:m.(X¥; 1x) — m(X; *) where w:X* — X is the evaluation map. Let
hir (X) — H,(X; Z) be the Hurewicz homomorphism. We say X is finitely
co-connected if H,(X; Z) = 0 for all k = N for some fixed N.

Theorem 1. Let X be a finitely co—coﬁnected CW complex with H,,(X) finitely
generated. Then G.,(X) C kernel of h.

Corollary 2. Let X — E — B be a Hurewicz fibration with X as above. Let
dimi1(B) — w:(F) be the transgression homomorphism in the homolopy exact
sequence of the fibration. Then the composition

d h
7r2n+1(B) '_% 7r2n(F) ; HZn(X; Z)
28 trivial.

Corollary 3. Let X be a finite CW complex with mo(X) finitely generated. Then
G(X) = 0. If in addition X — E — B is a Hurewicz fibration, then d:ws(B) —
wo(X) s trivial.

Proof of theorem 1. For any space X there exists a universal Hurewicz
fibration X — E,, — B., with fibre the homotopy type of X, [1], or [5]. Now the

transgression homomorphism d.:w;,;(B.) — m;(X) is related to G.(X) by

Go(m:4:(Ba)) = G:(X). See theorem 2, §4 of [7].

Let o & G,,(X). We want to show that h(a) = 0. We know there exists an
@ & s,41(Ba) such that do(a’) = a. Let f: 8**' — B., be a map which represents
o. Then f induces the fibration X — f*(E.) — S**'. Thus we have a map
g:Q8™*" — X which arises from the fibration. In addition, « is in the image of

g* . Tzn(Qszn+l) —> Tzn(X) .

(This follows since g, is essentially the same as A 7201 (85 — 70 (X))

Now assume k(e) % 0. Then g,:H,.(28""; Z) — H,.(X; Z) is nontrivial.
Now Weingram’s theorem, Theorem 1.10 of [14], states: Let g:Q8™*' — X be
any map such that g,: H,,(Q8™*"; Z) — H,.(X; Z) 1s nontrivial. Assume H.(X; Z)
1s finitely generated. Then X 1is not finitely co-connected. This is precisely our

it
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situation, so theorem 1 is proved since we assumed X was finitely co-connected
and so our assumption that A(a) # 0 leads to a contradiction.

Proof of corollary 2. By [7], the image of d:m,,.,(B) — =;(X) is contained
in G,(X). Apply theorem 1.

Proof of corollary 3. Since X is a finite CW complex, the universal covering
space X is a finitely co-connected complex. Also H,(X; Z) is finitely generated
since mo(X) is. Finally G(X) C G:(X) (here we identify‘r.‘(X) with =, (X)) for
7 > 1. See Theorem 6.2 of [8]. Thus, by theorem 1, Go(X) C ker 2 = 0. So
G(X) = 0.

Remarks. a) Note that if G;(X) = 0, then every Hurewicz fibration over
S*** with X as the fibre has a cross-section. In particular, every fibration over S
with fibre a finite dimensional CW complex X such that m(X) is finitely generated
has a cross-section. This is Corollary 3.4 of [14]. b) If X is an H-space, then
7.(X) = G:(X). Let X be finitely co-connected with H, (X; Z) finitely generated.
Then the Hurewicz homomorphism is trivial in even dimensions. This is Corol-
lary 2.2 of [14].

§3. The evaluation map and the Serre spectral sequence. In this section
we show that the transgression which arises in the Serre spectral sequence
factors through «* the homomorphism induced by . We then combine this
fact with a theorem about «* to gain information concerning the Serre exact
gequence.

Let G be a group of self-homotopy equivalences of a space F. We shall assume
that G is connected so that all fibrations considered will be orientable. Let
(G — E — B be a principal fibration. Then we have the commutative diagram

A

GXF

|

O e—Ime—m

(1) ExF-2s

W e—X e—X

1
—>

where E = E Xq F and é(e, ) = (e, x). (We sometimes let G be the monoid
of self-homotopy equivalences of F homotopic to 1» . In this case we get a
diagram similar to (1) for any orientable fibration F — E — B. In this case,
E will be the space £'" consisting of maps from F into fibres of & such that
each map is a homotopy equivalence of F onto the fibre. Also ¢ will be the
generalized evaluation map.)

Diagram (1) gives rise to the commutative diagram
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by evaluation at the base point.
Diagrams (1) and (2) gives rise to mappings of the Serre exact sequences

associated to the fibrations in question. We shall always let G be connected,

so that the Serre spectral sequences involved do not require local coefficients.
From diagram (2), we obtain the following theorem.

Theorem 4. F — E — B and G as above. Let F be m-connected and B be
n-connected. Then the transgression r:H'(F; =) — H**'(B; =) is defined for i <

m + n + 1 and the following diagram commules for ¢ < 2n when 7 is defined:

HiF;7) — H*YB;x)
\ w* /7"

N / y
(image of w*) C H'(G; )

where 7 1s the transgression defined on the appropriate subgroup and = is a field.

If = is an arbitrary group, then the diagram commuies for ¢ = nand1 = n + 1
and © = 2.

Proof. Let z ¢ H'(F; x). If  survives to E.’”, let k.(z) ¢ E,°" denote the
element represented by z. From diagram (2), we have a homomorphism,
{62} :E>* — E.>% of spectral sequences where {E,”*°} and {#,>°} represent
the speetral sequences corresponding to the fibrations F—~E —-Band@— E — B
respectively. _

If an element z ¢ H*(F; ) transgresses, then by the naturality of transgressions
we know that w*(x) ¢ H (G; =) transgresses. In the range where ¢ < m + n,
every element in H*(F; r) transgresses. Hence every element in the image of «*
must transgress. Thus #(w*(z)) ¢ £*"'° = quotient of H**'(B; ). To prove the
theorem, we must show that £,***° is actually equal to H***(B) in the ranges
given by the hypothesis. Then the fact that ¢,"'° is the identity will yield the
theorem.

We have d,:E,"""" — E,***°. When ¢ = norn + 1 we see that £, = 0
fori > r > 1. Thus E;***° = H**'(B; =).

Now assume that = is a field. Then E,>'¢ = H*(B; 7) @ HG; «). Let ¢ <
2n 4 1. As before, we must show that d,:E," """ — E,***° is zero for r < 1.
Fori — r < nwehave E,”""'" = 0. So we must show that d, = Ofori — r =
n4 1. Letze B, " = H™"(B) ® H (). Then z is the sum of terms of the
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form a Q b where a ¢ H'""(B) and b« H'(G). Now d,(k,.(a)) = 0 for all r. Also
d,(k,(d)) = 0 for all » < n since B is n-connected. Thus d.(k,(a) ® k,(b)) = 0
for r < nsince d, is a derivation. Thusd, = 0for r < n. Hence we have E;****° =
H''(B) for i < 2n + 1.

The theorem is true for ¢ = 2 since dy:E,""" — E,**° is trivial because G —
IY — B is orientable.

We can combine theorem 4 with results about the evaluation map in [10]
to obtain results about fibrations. For example, consider the following result
from [10] dualized to cohomology.

Let ke H(F; Z,). We shall say that k is prémstive under the action &:G X F — F
it o*k) = (*(k) ® 1) + (1 ® k) and w*(k) # 0. For example, if F is (m — 1)-
connected and k ¢ H*(F; Z,) has dimension less than 2m, then k is primitive
under any action if and only if w*(k) # 0. Let [k], denote the truncated poly-
nomial ring generated by k with height p (that is, [k], is generated by 1, - - - , k7).

Theorem 5. - ([10], Theorem 2 dualized to cohomology.) Let k ¢ H'(F; Z,) be
primitive under some action. Then there exists some Z, module M C H*(F; Z,)
such that

H*(F; Z,) =~ [k], ® M as Z,~modules if 1 1s even,
and

H*F; 2,) = [k, @ M as Z-modules if i 55 odd.

In this theorem p is a prime or p = .
Now combining theorem 4 and theorem 5 with the Serre exact sequence

. . .* . .
> HB) 2 B®) L B T BB - -

for 1 < m + n, we may obtain results like the following. Recall B is n-connected
and F is m-connected.

Corollary 6. p*:H'(B; R) — H'(E; R) is injective if 1 < 2nandi < m + n

and if F is a finite complex such that x(F) % 0. Here R = Z. , the rationals.

Proof. Tt follows easily from theorem 5, when p = <, and from the proof of
thcorem 3 of [10] that w*: H*(F; R) — H*(G; R) is trivial. Thus by theorem 4,
7. H'(F; R) — H**'(B; R) is trivial when 7 < 2n and 7 < n + m. Now the exact
sequence yields the result. '

Corollary 7. Let CP" — E — B be an oriented fibration. Then if n + 1 £ 0
(mod p), we have H(E; Z,) = H*(B; Z,) ® H*(CP"; Z,) as vector spaces.

Proof. Let o e H*(CP"; Z,) be a generator. If w*(a) # 0, then p must divide
x(CP") = n + 1 by theorem 5. Hence w*(a) = 0. Hence « is in the image of 7*.
Hence H*(CP"; Z,) is in the image of 7*. Hence the Serre spectral sequence
collapses.
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In the following theorem we use theorem 4 to compute w* for CP". Let L
denote the space of self-homotopy equivalences on CP™ homotopic to the
identity and let L, be the base-point-preserving maps in L. We give L the
compact-open topology.

Theorem 8. Let o H*(CP"; Z) 22 Z be a generator. Then w*(a) 1s an element
of order n + 1 which generates H*(L; Z) = Z,., .

Proof. It is immediate from the Federer spectral sequence that r,(L,) = Z
and (L) is finite. On the other hand, = (L) = Z,.,, follows from obstruction
theory; see Theorem 11 on page 452 of Spanier [13].

Consider the universal fibration CP" — E., — B. . Then for 7 > 1, n,(B.) &
wi-1(L), and wi(Ex) = w;_1(L,) since E,, is the classifying space for L, , [11].
Let B. be the universal covering space of B., . Then we obtain a fibration
CP"— E., — B, induced from the universal fibration by the covering projection.
Note that &, is the universal covering space of E, . The homotopy exact se-
quence gives us

73(B.) —d—> w2(CP™) zﬁ* ma(EL) &> m2(B.) — 0

which becomes

wa(B)——)Z—*)Z Z.1—0

50 1, is multiplication by »n + 1.
Consider the commutative diagram

1(CP") %5 7,(E.)
~ih =|A

H,(CP") %> Hy(E.).

Then <, is multiplication by » + 1 on homology. Hence ¢* is multiplication by
n + 1 on cohomology.

By the universal coefficient theorem, H*(B., ; Z) = Z,., @ F where F is a free
abelian group. In fact F =2 0 by the Hurewicz isomorphism theorem and the
universal coefficient theorem since B. is simply connected and m,(B.) = m,(L)
is a finite group.

We also have H*(L; Z) = Z.,., as follows: We know that H*(L; Z) = Z,.., D F
where F is the free group of rank b, , the second Betti number of H,(L; Z); but
H,(L; Z) is finite since m,(L) is finite implies that =;(B.) is finite implies that
H,(B. ; Z) is finite. Then an easy argument with the Serre spectral sequence
for the universal fibration L — E — B. , where E is essentially contractible,
shows H,(L; Z) is finite, so H*(L; Z) = Z,., .

Now we are in a position to use theorem 4 to calculate w*: H*(CP*; Z) = Z —
Z... = H?(L; Z). From the Serre exact sequence we have '
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~ X ~
— HXE.) X B (CcP" > H¥B.)
which is
PGS NP NG

Thus 7 maps Z onto Z,.., . But w*:Hz(CP") — H*(L) = Z,., is a factor of r,
80 w® must be onto, which proves the theorem.

Reinhard Schultz has another method for proving theorem 8.

§4. Witnesses. Ronald Brown, [3], has shown that there is an isomorphism
0: ... H(X; H(Y; ®)) — H*(X X Y; G) which is natural with respect to
maps of the form f X 1: X X ¥ — X’ X Y. This fact may appear to follow
immediately from the Kunneth formula or the Serre spectral sequence but
I don’t believe it does. Note the equally plausible statement that © is natural
with respect to maps of the form 1 X f: X X ¥ — X X Y’ is false, as is shown
by Brown in [3]. .

In this section we shall observe that Brown’s result may be proved by using
an idea of J. P. Meyer [12]. We shall use the splitting.given by Brown’s theorem
to write d*(k) as a sum of terms wo(k) + w (k) + -+ + w,(k) called witnesses of
ke H"(Y; () n M, a space of self homotopy equivalences of Y. These witnesses
will then determine the homotopy class of the map ks : M — K(@, n)* where k,
denotes composition by k: ¥ — K(G, n). In the next section we shall show that
ke determines spaces of bundle maps up to homotopy type.

Let ( be an abelian group. Then K(G, n) can be thought of as a topological
abelian group, [4]. Thus K(G, n)7, space of maps of Y into K(G, n) can be given
# topological abelian group structure in a natural way. Then by [4], we know
that K((/, n)" is homotopy equivalent, by an h-homomorphism, to

IT K@ (¥; 6), 9

with the group structure defined by the product. Let ¢; be the fundamental class
of K(H"(Y; @), 7). We may regard ¢; as an element of H*(K(G, n)"; H* *(YV;@)).

Now we define the isomorphism 6:>_; H/(X; H" '(Y; @)) —» H'(X X Y; G)
as follows: Every w ¢ ., H'(X; H"*(Y; G)) may be thought of as a tuple
{wo, ++, w,). This tuple gives rise to a map f:X — K(G, n)* such that v, =
f*(x.) for all 5. Let f be the adjoint map f: X X ¥ — K(G, n). Then 6(w) = f*(1)
where ¢ is the fundamental class of K(G, n).

It is immediate from the definition that © is bijective and natural with respect
to maps of the form f X 1:X X ¥ — X’ X Y. That 6 is a homomorphism
follows from the fact that K(G, n)* is h-homotopy equivalent to
I (KE (X5 6, 9). -

Let M be a space of self-homotopy equivalences of Y. Let ke H*(Y; G). Then k
may be regarded as a map k:¥Y — K(G, n). Let ky: M — K(G, n)” be the map
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given by f — k o f. Consider the commutative diagram

Mx v XY g6 x Y
) @
k

Y ——— K(G, n).

We see that a*(k) = wo(k) + - -+ + w,(k) where w,(k) is the component of w*(k)
in H*(M; H*(Y; G)) under the direct sum decomposition of H"(M X Y; G)
given by 0. We call w,(k) the ith witness of k in M. The set of witnesses of k
determines k, up to homotopy since w;(k) = ks*(v,). If 2:M’ — M is a map
of spaces of self homotopy equivalences of ¥ where ¢(f) = f as functions, then
the witnesses of k in M pull back to the witnesses of k in M’.

Note that in situations where it makes sense, the Oth witness wo(k) = 1 X k
and the nth witness w,(k) = o*(k) X 1.

§5. Bundle map theory. We summarize the main points of hundle map
theory. See [9] for details. Let @ — E — B and G — E’ -— B’ be principal bundles
and let f:E — E’ be a principal bundle map. Then we have a Serre fibration

L*(E, B') — L*(E, E') 2> L(B, B)

where &(f) is the induced map ¢(f):B — B’, and L(B, B’) is the space of maps
from B — B’ homotopic to ®(f), and L*(E, E') is the space of principal bundle
maps from E — E' inducing maps in L(B, B'). We assume that the mapping
spaces have the compact-open topology. Also L**(E, E') is the space of principal

L*(E, E), the space of bundle equivalences from £ — E. If G — E; — By is
the universal bundle, then L*(E, E.) is essentially contractible, so L** —
L*(E, E;) — L(B, Bg) is a universal principal fibration. Now if k:B — By,
we have

LYE, E) X245 14E, o)
3] (3}
L@, B) *5 1B, By)

and the first column is the pullback of the second by the composition map k,
induced by k. Thus if we know the homotopy class of &, , we may be in a position
to calculate L*(E, E).

Now let M be a space of functions from B — B’. We extend the discussion
above for M. Assume we have a map i: M — L(B, B’) such that f = 7(f) as maps.




am

;) is the component of w*(k)
sosition of H*(M X Y; G)
. The set of witnesses of k
. I i M — M is a map
i 2(f) = f as functions, then
Vil in MY

Oth witness wo(k) = 1 X k

ain points of bundle map
" — B’ be principal bundles
 we have a Serre fibration

(B, B)

B, B’) is the space of maps
¢ space of principal bundle
. agssume that the mapping
E’) is the space of principal
, B") is homeomorphic to
— E. If G —» Eg — Bg is
y contractible, so L*™ —
ation. Now if k:B — By,

y the composition map ky
s , we may be in a position

We extend the discussion
such that f = <(f) as maps.

EVALUATION MAP 833

The pullback of ¢ serves to define M* and M** in the diagram
M** —> L**(E, E’)

M* —'— L¥E, E")
<] d
M— 5 1B,B)
Again M** is homeomorphic to L**(E, E). In addition note that k, = ¢ o ky
(recall k, is composition on the left by k). Thus if we know the homotopy class
of ky: M — L(B, Bg), we know in principle the homotopy type of M*.

Let G = K(x,n —1). Then By = K(wx,n) and L(B, K(x,n)) = [ [:-1" K(=:,7)
where =, = H"*(B; x). Thus, as we have seen, the homotopy type of k&, is
determined by its set of witnesses (wo, -+ , wa) £ Dins” H'(L(B, B); H"(B; 7)).

We shall look at some examples: Let G = 7 =% K(, 0). Suppose p: B — B is
a regular covering of B where m,(B)/m(B) = x. Then it is induced by a map
k:B — K(m, 1). The space L*(B, B) is determined by the homotopy class of ks .
If r is abelian, &, is determined by the witness w, = «*(k). If w*{(k) = 0, then k,
is homotopic to a constant map and L*(B, B) is homotopy equivalent to
L(B, B) X =. In that case we have the commutative diagram

L*B,B) > B
™ sl |® P
L(B,B) 5B

where s:L - L* is a cross-section. Thus w:L(B, B) — B factors through
p o w:L*(B, B) — B. We may apply this fact to get the following result.

Theorem 9. Let Y be a closed topological manifold and M be a space of homeo-
morphisms on Y with topology as in the third paragraph above. Then
2x(V)w*: H¥(Y; R) — H*(M; R)
18 trivial for any ring with unit R as coefficients.
Proof. Let w, ¢ H'(Y; Z,) be the Stiefel-Whitney class of ¥ in the sense of

Fadell. Then w*(w,) = 0, see [9], §8. Thus from Diagram (*) we have (where ¥
is oriented covering of Y) ' .

w

M* =7
fle o
M 25y

Now we know that x(¥)w*: H*(¥Y; R) — H*(M*; R) is the zero map (see theorem.
(8.13) of [9]). The diagram yields the theorem since x(¥) = 2x(Y).
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Remark. For R = Z;, we have x(M)w* = 0 since every closed manifold is
Z,-orientable. Also a much more general version of the above theorem is true.

In the case of principal S'-bundles, we may determine L* as follows. The
S'-bundle E — B is classified by a map k:B — Bs. = K(Z, 2). Thus k, is
determined by the 1st and 2nd witnesses. We may frequently determine these
witnesses. Thus if 7,(B) has no elements of infinite order, then H'(B; Z) =
50 w;(k) = 0. This proves

Lemma 10. The first witness of k ¢ H*(B; Z) 1is zero if w,(B) s finite. Hence
L** ¢s homotopy equivalent to S'.

If G1(B) is trivial (G, (B) is the image of w,,: 7rl(BB 1z) — m(B)), then L*(B, B)
is the union of disjoint copies of L(B, B). Here B is the universal coverlng space
of B. This leads to a commutative diagram

L*B,B) 2> B
s||® ¥4
L(B,B) 2> B

where s is the cross-section into the identity component. of L*(B, B). Thus

‘W = PwS.

Since 7, (B) = 0, we know that w*:H*(B; Q) — H*(L*; Q) must be trivial
if B is finite dimensional. Here Q is the rational numbers. (See theorem 5). Thus
w*:H*(B; Q) — H*(L(B, B); Q) is trivial. Hence the image of «* in H*(B; Z)
consists of torsion elements. This proves

Lemma 11. If B is finite dimensional and G41(B) = 0, then
ws(k) ¢ H*(L(B, B); Z),
the second witness for k ¢ H*(B; Z) has finite order.

A consequence of these lemmas is the following theorem. We say E splits
rationally as a product of 4 and Bif H*(E;Q) = H*(4;Q) X H*(B;Q) as groups.

Theorem 12. Let B be a finite polyhedron and E — B a principal S*-bundle.
Suppose x(B) £ 0 and w,(B) is finite. Then L*(E, E) splits rationally as a product
of L(B, B) and 8.

Proof. We need to show that for k ¢ H*(B; Z), which classifies £ — B, there
is an integer m such that (mk), is homotopy trivial. Thus we must show that the
witnesses for & have finite orders. Now w; = 0 by lemma 10 and w, has finite
order by lemma 11 and the fact that G;(B) = 0. (Theorem (IV.1), [6]). Note
that L**(E, E) is actually homotopy equivalent to S*.

An easy spectral sequence argument, similar to the ones in §3, shows that
the spectral sequence for 8 — L* — L collapses.

Remark. The theorem is true if x(B) # 0 is replaced by G,(B) = 0 and if
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L(B, B) is replaced by any space of maps M from B — B such that there is
amap ©:M — L(B, B; 1;) such that i(f) = {.

Theorem 13. Let X be a compact connected CW complex. Then for a principal
S'-bundle over =X, the space L*(E, E) splits rationally, (and also splits mod P
where p is an odd prime), as a product of L(B, B) and S

Proof. Let k classify 8* — E — 2X. Then w,(k) e H*(ZX; Z) = 0s0 L**is St
and w; = 0. Now w, = w*(k). We need to show that w*(k) is of order two.

Consider &*(k) = 1 X k + w*(k) X 1. Now k* = 0 since cup products in 2
suspension are trivial. Thus 0 = &*(k?) = 2w*(k) X k. Now k must have infinite
order since H*(ZX;Z) is a free abelian group. Thus if & is a generator of
H*(2X; Z), we must have 20*(k) = 0. Thus 2w*(k) = 0 for arbitrary k.

As examples of the theory outlined above, we calculate the homotopy type of
L*(E, E), where E is a principal S'-bundle over RP* or over CP".

Example 1. For a principal S-bundle over RP?", we have L*(#, E) is

homotopy equivalent to L(RP", RP") X S

Proof. Let o.e H*(RP™; Z). The first witness w;(a) = 0since H*(RP*; Z) = 0.
Thus L**(E, E) is homotopy equivalent to S*. Since x(RP*™") = 1 is not zero,
we have G;(RP®™) = 0. As in the proof of Lemma 11, we obtain a commutative
diagram

L*(Sh’ Szn) L Szn
s||¢
L(R 2n’ RP2n) w ; RP2n

Thus wy(a) = w*(e) = 0. Hence ay is homotopic to a constant, so the fibration
it induces, S* — L*(E, E) — L(RP*, RP*"), must be trivial.

Example 2. Let a ¢ H*(CP*; Z) be the generator. Then w, (o) = 0 and
wy(a) = w*(a) is the generator of H*(L(CP", CP"; 1)) = Z,., by theorem 8.
Thus L*(E, E) is homotopy equivalent to the fibre of the map L(CP", CP 1) -
K(Z, 2) induced by w*(a), where E — CP" is induced by a.
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