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Applications of the Evaluation Map
and Transfer Map Theorems

J. C. Becker and D. H. Gottlieb

§ 1. Introduction

Let M- E-2 B be a fibre bundle furnished with a fibre preserving map
f : E= E which covers the identity. Let f|M =g. The first goal of this
paper is to establish a Lefschetz number transfer for the bundle. By this
we mean a homomorphism 7,: H*(E)— H*(B) such that 1,op*=4,,
where A, denotes the Lefschetz number of g and its appearance in the
equation is to be interpreted as the homomorphism H*(B)— H*(B)
given by multiplying by 4,. We can show such a transfer exists when M
is a compact manifold, possibly with boundary.

This Lefschetz number transfer generalizes the “Euler-Poincaré
transfer” of [13]. Its existence heavily depends on the arguments found
in [13]. We prove formulas involving A, and the fibre inclusion i: M— E
and the evaluation map w: 2B— M. For w we have A,0* =0, where 4,
again represents multiplication by A, and w*: H*(M)— H*(Q2B).

We will give some diverse applications of these formulas.

We show that the orbit map of an action of G on M induces the
trivial homomorphism on integral homology and to some extent on
homotopy groups when M satisfies certain conditions [for example
x(M)#£0]. ,

We study the question: when does a closed manifold M admit a sub-
mersion s : M — B onto a closed manifold B? We find that RP* and CP"
admits a submersion if and only if n is odd.

We shall show that G,(BO,,), the first evaluation subgroup, is
trivial.

Finally, we show that various spaces of equivariant maps to free
S'-actions must split as a cartesian product of simpler factors.

We shall always let M denote a compact topological manifold with
or without boundary dM. Given a space X of homeomorphism $ of M,
we shall always denote the action by @&:X x M— M. Given a base
point #, we shall write w(x) = &(x, ). We always assume that the topology
chosen on X is such that & is continuous, we shall call @ the action of X
on M. We shall call w the evaluation map at e M.

We shall always let M- E-2 B denote a fibre bundle over a CW
complex B. By fibre bundle, we mean there is a covering of B by open sets
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{U} such that p~!(U) is homeomorphic to U x M. We shall let ECEbe
the subspace consisting of all points of E contained in the boundary of
some fibre.

By H,(X) we mean singular homology with any coefficients, unless
it is clear from the context we are using specific coefficients.

§ 2. The Lefschetz Number Transfer

Let M- E-2 B be a fibre bundle with fibre a compact manifold M
with or without boundary. Let f:E—E be a fiber preserving map
covering the identity and let g : M — M denote the induced map. Let L
be a subcomplex of B.

Theorem 1. a) There exists a transfer homomorphismt . : H*(E,p™ '(L))
— H*(B, L) such that ;o p* = A, for all coefficients.

b) There exists a transfer homomorphism < : H(B, L)~ H (E, p~ (L))
such that pyot,=A,.

The proof of Theorem 1 follows closely the proofs of Theorems B
and C of [13]. The first step is to prove the Lefschetz number version of
Theorem D of {13]. Let f and g be as above.

Theorem 2. Let M be oriented and let n (B) operate trivially on
H"(M",0M; Z)x= Z. Then there exists an element Ae HYE,E; Z) such
that i*(A)=A,pe H'(M",0M; Z).

Here p is a generator of H'(M", 0M; Z)= Z.

We shall outline the proofs of Theorems { and 2 below. First we need
the following lemma which is a special case of Theorem 2.

Lemma. Let M5 E-2 B be a fibre bundle with M a closed connected
oriented manifold. Suppose m,(B) operates trivially on H"(M"; Z). Then
there exists a A€ HYE; Z) such that i*(A)= A, p.

Proof. Consider the pullback D of p originating from the diagram

D——F

|

E—2 B

There is a canonical cross-section A:E— D, which we shall call the
diagonal. This gives rise to a fibred pair (D, D — A(E))—E with fibre
(M, M — %). Thus there is a natural “Thom isomorphism”™ ¢ : H(E; Z)
=~ H**(D, D — 4(D)): Z) for all i. Define U = ¢(1) € H*(D, D — A(D)). Let
j:D—(D,D— A(D)). We define A=¢~ Y(Uv f*j*(U)) e HY(E; Z).

We make the same constructions for the trivial bundle M x M — M.
We denote the similar cohomology classes with a bar. Thus
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A=¢"Y(Uug*j*(U) e H(M; Z). By the naturality of ¢ we sec that
*(A)=A.

Now we must show that A=A, u. This follows by a computation
similar to that of Brown ([ 6], Theorem 2.2). Also see Spanier ([16], p. 348).

Proof of Theorem 2. Let M- E-B B be the fibre bundle. Let D(M)
be the double of M. The “double” D(E) of E can also be defined and this
leads to a fibre bundle B

D(M)- D(E)-B B

which retracts onto the fibre bundie M- E— B.
In fact, we have the diagram

M—% D(M)—L>M

foE ]

E—2 > DE)—2—E (%)

P

B—— B L > B

where « and o’ are the canonical inclusions and ¢ and ¢’ are the canonical
retractions.

Now we define a map f=a fg:D(E)— D(E).

Now f clearly induces the identity on B. Also f restricts on a fibre
D(M), to g=a'gg’. We have H (D(M))= H (M)® H,(D(M), M) and g,
is the homomorphism

9, ®0: H(M)® H,(D(M), M)~ H (M)® H,(D(M), M) .

Thus Az=A,.
The lemma now tells us that there is an element A'e HY{D(E)' such
that i*(A)=A,ji where jte H'(D(M)) is the generator. Now
* = *@* : H¥(E)® H*(D(E), E)—» H*(M)® H*(D(M), M)

and = (0, i), for 4’ a generator of H*(D(M), M). So there is an element
A’ such that i*(A)= A, . Now the diagram

[3 i

(D(E), E) «— (E,E)

where the horizontal inclusions are excisions establishes the lemma.
Proof of Theorem 1. This is strictly analogous to the proof of Theo-

rem B of [13], given Theorem D of {13]. The transfer 7 : H*(E)— H*(B)

is given by t(0)=p, (@A) for M-5E-B B as in Theorem 1. Then we
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extend the theorem step by step, first to the case of an unoriented fibre,
then to the case of an oriented fibre and unoriented fibre bundle, and then
to the“case of disconnected fibres. In each case the trick is the same as
in [13], with the added complication that an appropriate map f on the
total space must be constructed. In each case, there is no difficulty in
constructing f.

The proof of the relative case and the homology case follow exactly
as in [ 13] with modifications similar to those above.

Remarks. 1) Theorem 2 is also true for Z, coefficients and no
orientability conditions on M of the fibre bundle. The proof is the same.

2) In the case when f = 1, the identity, then g =1, and A, = y(M).
Thus Theorems { and 2 imply Theorems B—-D of [13], and the Euler-
Poincaré transfer is a special case of the Lefschetz transfer.

3) If G is a topological group acting as a groupon M,and ifg: M > M
is G-equivariant, then every fibre bundle with fibre M and group G will
admit a map f on the total space which restricts to g on M and induces
the identity on B. Thus Theorems 1 and 2 apply. In this case we have the
following formula: A,w* =0, where w*: H *(M)—>I-I *G). If g=1,,, we
have y(M)w* =0. This is Theorem A of [13]. The proof that A,«w*=0
follows from Theorem 2 exactly in the same manner as Theorem A
follows from Theorem D in [13].

4) If there exists an f: E—E as above such that g, is trivial on
H, (M), then A,=1 and we have a “homology cross-section” 7, : H,(B)
- H,(E). Compare this to the fact: If f is a constant map on every fibre,
then there is a cross-section.

5) Theorem { can be proved without using the full force of Theorem 2.
In fact we need only the lemma. Then we prove Theorem 1 in the case of
“oriented fibre bundles” and connected oriented M without boundary.
Then we extend to the case with boundary by using diagram (*) and
defining the transfer 1 =7o* where T is the transfer defined for the
middle fibre bundle. We may prove an analogue of Theorem { under
restrictive conditions, based on Pontryagin numbers. Suppose M is a
smooth, oriented, connected, closed, manifold and G is the structural
group of a fibre bundle M- E-& B acting smoothly on M and preserving
orientation of M.

Theorem 3. Let N be a Pontryagin number of M. Then Ny e H*(M; Z)
is in the image of i* : HE; Z)— H"(M: Z).

Proof. Let T(M) be the total space of the tangent bundle of M. Then
G acts on T(M) by letting g € G act as the differential dg. Let G»E—~B
be the principal bundle associated with M- E-B B. It is also associated
with T(M)- E x ; T(M)— B. Now E x ; T(M)— E is an n-vector bundle,
called the bundle of tangents along the fibre and we have a map of n-
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vector bundles B
T(M)———E x ¢ T(M)

M-—— E
Thus the Pontryagin classes T(M)—M are in the image of i*. This fact

and approach may be found in [3], p- 480.
This leads to the following.

Theorem 4. (3) Nw*=0: H*(M)— H*(G). (b) There exists a homo-
morphism t©: H*(E)— H*(B) such that ©- p* = multiplication by N.

§ 3. Transformation Groups

In this section G will be a compact transformation group acting as a
group on a space X. The evaluation map w:G—->X i_s the OFbit map
evaluated at the base point. The induced homomorphism w, 1 clearly
useful in considering the following basic question: Given a subspace 4
of X, when is A an orbit of an action of G on X? We shall first obtain
some results about w,, for integral homology and for homotopy.

3.1 A
Theorem 5. Let G be a Lie group acting on a compact connected CW
complex X with nonzero Euler Poincare number. Then o induces the
trivial homomorphism on homology with integer coefficients.

Proof. By a well known fact, a torus acting on X has a fixed point.
Let T be the maximal torus of G and let xe M be a fixed point of the
action of T on X. Then the isotropy subgroup of G, must contain 7.
Thus ,:G-%G/T—G/G,CX is the orbit map. Now by a theorem of
Bott and Borel [4], H*(G/T; Z) has no torsion. By a theorem of Hopf
and Samelson [141, x(G/T)#0. Now, with rational cgefﬁcients? Theo-
rem A of [13] states that ¥(G/T)o* : HX(G/T; Q)— H*(G; Q) is zero,
hence o, is trivial for rational coefficients. Since H*(G/T;Z) has no
torsion, g, is zero on integral homology. Hence w, is zero.

Remarks. 1) It is reasonable to conjecture that w, =0 on integral
homology for a much wider class of groups than Lie groups. It can be
shown that w, =0 on rational homology for G the space of homotopy
equivalences of X, [11]. This tends to support the conjecture as does
Theorem 4.1 of [9].

2) Integral homology is essential. For example, o, : H (SO(n); Z,)
—H,(5"""; Z,) is not trivial, [18].

3) Under the appropriate conditions, the same theorem holdg for
Pontryagin numbers. To see this, first note thata torus acting differentiably
on a smooth closed manifold with a nonzero Pontryagin number must
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have a fixed point ([7], Corollary 43.8). Then the same argument as
in Theorem 5 establishes the remark.

4) A similar theorem holds for the Lefschetz number.

In fact we have

Proposition. Suppose that a compact Lie group G acts on a compact
manifold M and suppose g: M— M is an equivariant map. If A, :i:O then
0, :HA(G: Z)>H(M; Z) is the zero homomorphism.

Proof. As before, we must show that for some x, the isotropy sub-
group contains a maximal torus. Thus we must show that any torus
in G must leave a point fixed.

If H=S" has no fixed point, then (H*(M/H); Q)= H*(Ey x z M Q),
{2] or [S, p. 374]. Here S' - E4;—K(Z, 2) is the universal fibration. The
fact that g is equivariant gives rise to a fibre preserving map f: Ey xg M
—Ey xygM as in Theorem {. Now H*(M/H; Q) is finite dimensional.
The transfer makes H*(Ey x y M; Q) infinite dimensional. Thus S must
have a fixed point. It can easily be seen, now, by standard techniques that
the maximal torus must have a fixed point. Thus the Proposition is
proved.

3.2. In this section we investigate the induced homomorphism of the
orbit map on homotopy groups. To do this we need the main result of [ 1]
Let ML E-® B be a fibre bundle with M a smooth manifold and B a
finite complex and with structural group G where G is a Lie group
acting smoothly on M. Then we have the following Proposition.

Proposition [ 1] There is an S-map 7 : B— E which induces the Euler-
Poincaré transfer on reduced singular homology and cohomology.

Remark. In fact, what is shown in [1] is that there exists an S-map
t:B* —E* (where X* denotes the disjoint union of X and a base point)
which induces the Euler-Poincaré transfer. However, it is an easy
matter to see that this implies the above proposition.

The advantage of realizing transfers by S-maps is great. We know,
for example, that £ induces transfers in generalized homology theories.
The next result follows from the realizability by S-maps in a different way.

Theorem 6. Let G be a Lie group acting smoothly on a smooth compact
manifold M. Suppose M is k-connected. Then y(M)w, =0:n,(G)— n,(M)
Jor i£2k.

Lemma. Let M—E-BS" be a fibre bundle with group G acting
smoothly on M. Let M be k-connected. Then there is an « € n,(E) such that
P ()= xy(M)u where pen(S") is a generator and r L2k + 1.

Proof of Lemma: If r > k+ 1, the homotopy exact sequence implies
that E must be k-connected. The proposition [1] states that there is an
S-map %:S8"—E. Thus we have :X'S">X'E representing an element
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Fen, . (EE). Since r < 2k + 1, the suspension homomorphism §': 7,(E)
—m,.(Z'E) is surjective, therefore there exists an o e 7n,(E) such that
SY(a)=a. This « has the property that p,(x)= x(M)p. To see this, first
note that X'S"-53!'E-L2,3'S" induces multiplication by y(M) on
integral homology. Thus (Z'p), @) = x(M)XZ' 1 as can be seen by using
the Hurewicz homomorphism. Now p,(«)=rp, hence (Z!p), (5'a))
=r(S'p), so r=x(M).

If r<k+1, the lemma is obvious.

Proof of Theorem. Consider the universal fibre bundle M — Bg — B.
Let x € n{Bg). Then « gives rise to a diagram

' M——M

L

E——Bg,

|

S'—2— B
which implies, with the aid of the lemma, that 0= y(M)d:7,(Bg)—n;_ ((M).
But d can be regarded as the composition d:w,(Bg)—=-1; _ (G)—5 m; - (M),
Hence y(M)w, =0 for i £ 2k.

Corollary. If M— E— B is a fibre bundle with structural group G as
above acting smoothly on M, then i, : m;(M)—w(E) has a kernel consisting
of elements of order y(M) for i< 2k.

Remark. We would like to thank Stephen Weingram for pointing out the lemma to us.

Corollary. Suppose M is a closed differentiable manifold and G is a
compact Lie group acting on M such that for some point x € M, the isotropy
subgroup G, is trivial. Then if y(M)+0:

a) Every cycle in G is homologous to zero in M.

b) Every map S — G is homotopic to a constant in M for r <2k,
where k is the connectivity of M.

Proof. Theorems 5 and 6.

3.3. Another example of the use of results about orbit maps in trans-
formation groups is the answer to the following question. There is a
canonical embedding of $2=CP! into CP*". Now SO(3) acts on S? in
the usual way. Is there an action of SO(3) on CP*" which restricts to the
action of SO(3) on CP'? The answer is no.

Proof. Assume such an action exists. Then we obtain the commutative

diagram SO(3)
S2 i CPZn
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Now i*: HX(CP?*"; Z,)— H*(S%; Z,) is an isomorphism, w* : H*(S*; Z,)
— H?*(SO(3); Z,) is nonzero [18], and by Theorem A, 0= y(CP*")w*
=(2n+ \)o* =w*: HX(CP*"; Z,)—> H*(SO(3); Z,). This is a contradic-
tion.

§ 4. Fibre Bundles

We shall use our techniques to investigate certain questions arising
in the theory of fibre bundles. First we shall show how transfer theorems
may be used to decide if projective spaces admit submersions onto other
manifolds. Then we shall show how the evaluation map can be used to
compute the homology of certain total spaces. Next we shall show how
the Lefschetz transfer implies that G,(BO,) is trivial if and only if n is
even. We shall conclude with some results on spaces of equivariant maps.

4.1. A smooth map f: M— N between smooth manifolds is a sub-
mersion if it is onto and if its Jacobian has maximal rank at every point
of M. If M is compact, then it is well known that f: M—> N is a fibre
bundle with fibre a closed submanifold, {8]. The question we ask here
is; are there any manifolds which admit no submersion aside from the
trivial ones (i.e. M — point and identity: M— M)?

Let K P" stand for either real projective space R P", complex projective
space CP" or quaternionic projective space Q P".

Theorem 7. If KP" admits a nontrivial submersion then n is odd.

We need the following well known consequence of the Serre spectral
sequence.

Lemma. Suppose we have a fibration F-% E-2 B such that F, E, and B
are homotopy equivalent to finite complexes. Then y(E)= x(B) - x(F).

Proof of Theorem 7. Consider R P*". Suppose there exists a submer-
sion p: RP?"— B. Then there is a fibre bundle

M—RP*"5B

with M and B closed manifolds. Now { = y(R P*")= 3(M)- x(B). Hence
x(M)=+1. Thus M must be connected. By the transfer theorem,
p*: H(B; Z)— H'(RP?"; Z) is a monomorphism. Since H'(RP?"; Z) is
either 0 or Z,, B must be an unoriented manifold. From this and the
homotopy exact sequence of the fibration, we see that rn,;(B)=Z,.
Consider the pullback of the fibre bundle over the universal cover B.
We have M M
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Now p* is a monomorphism by the transfer theorem. Hence H*(B)=0
or B has dimension 2. In the first case we have B a point which yields a
trivial submersion; in the second case M is O-dimensional and is con-
nected, so M is a point and we have a trivial submersion.

For the case of CP2", assume we have a submersion p which is a
fibre bundle M- CP*"-2 B. First note that M must be positive dimen-
sional: If not, then C P?>" is a covering space of B and the deck transforma-
tions are fixed point free maps on C P2". Since H*(C P?"; Z) is a truncated
polynomial algebra of height 2n+ 1 generated by o € H*(CP*", Z), we
see by the Lefschetz fixed point theorem that CP?* admits no fixed
point free map. So if M is 0-dimensional it must be a point, which would
yield a trivial submersion.

Now 2n+ 1 = y(CP*")= x(B) - x(M). So y(M) is odd. By the transfer
theorem, p*: H*(B; Z,)— H*(CP*"; Z,) is a monomorphism. We may
assume that M is connected by covering spaces arguments. Then by
Theorem 2, there is a y € HY(CP?"; Z,) such that i*(y) = j. Here k is the
dimension of M and pe H¥(M; Z,) is the generator. Thus y =a®? and
this implies that i* is a monomorphism. Since r,(B) =0, the Serre exact
sequence ---— H'(B)-£» H(CP?>")-s H(M)—5--- holds for i<s+t
where H(B; Z,)=0 for 0<j<s and H/(M;Z,)=0 for 0<j<t. The
fact that both p* and i* are monomorphisms implies by an inductive
argument that H**2(B; Z,)+0, where k is the dimension of M, and
H(B)=0 for 0 <i<k+2. Thus there is a e H***(B) such that p*(f)
=a®2*1 In addition i* must be an isomorphism. Thus (M) = (k/2)+ 1.
The set {1, B, B2, ...} consists of 2n+ 1)/(k/2 + 1) = x(C P?")/x(M) = x(B)
elements. Thus there can be no other elements in H*(B; Z,), so H*(B; Z,)
is a truncated polynomial ring generated by an element 8 of dimension
2x(M)=2-(odd number) and of height greater than {. This is impossible
since truncated polynomial rings of height greater than 1 are realized
only when they are generated by elements of dimension 1, 2, 4, or 8.

A similar argument proves that Q P>" admits no submersion. Also
the Cayley plane admits no submersion.

For the odd dimensional real and complex projective spaces there
are the well known submersions RP?>"*!— CP" and CP?"*'-»QP"
We do not know whether Q P2"*! admits a nontrivial submersion.

4.2. We shall demonstrate how the evaluation map may be used to
compute the homology of total spaces for some fibre bundles. The

" connected classical groups are SO(n), U(n), Sp(n), Spin(n).

As an example, we shall consider fibre bundles with fibre CP?".

Theorem 8. Let CP?*"-LE-BB be a fibre bundle with structural
group G a classical connected Lie group. Then the spectral sequence
collapses and H*(E; Z)~ H*(B; Z)® H*(CP*"; Z) as groups.
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Proof. Since G is a classical group, H,(G: Z) has only two torsion and
a free part. Since y(CP?")=2n+ 1, we see that w*=(2n+ )w*=0.
Now consider a« € H*(CP*"; Z), the generator of the cohomology ring.
We shall prove that « is in the image of i*. Hence H*(CP2"; Z) is in the
image of i*. Hence C P*" is totally non-homologous to zero and the result
follows.

To show that « is in the image of i*, we consider the Serre exact
sequence H2(E; Z)5 H*(CP*"; Z)-% H3(B: Z). Now Theorem 4 of [12]
states that t must factor through w* in the lowest non trivial dimension.
But w* =0. Hence 1 =0. Hence i* is onto.

Remarks. 1) For a U(n) bundle with CP" as a fibre, the spectral
sequence must collapse regardless of whether r is even or odd. This follows
since H*(U(n); Z) has no torsion so w* =0 for all r, etc. This is a well
known and important fact.

2) ‘This type of an argument may be used when the cohomology of
the fibre is generated by its second cohomology group. For example,
it M=CP2*x CP?*". :

4.3. In this section we shall use the Lefschetz transfer to study
Gl(B(O(")))'

Recall that the first evaluation subgroup G,(X) is the image of
0, (X¥*; 1y)> (X, %). In [10], Corollary 7.6, it is shown that
G(BO@2n+1))=n,(BO2n+1))~Z,. Now we shall show that
G,(BOQ2n)) = 1.

Theorem 9. G(BO(2n)) = 1.

Proof. Consider the fibre bundle

§2"~1.5LBO(2n— 1)-5BO(2n).
Let aen,(BO(2n))= Z, be the generator. Then « corresponds to the
map on the fibre r: §2"~ 1§27~ ! given by reflection about some axis.
If we assume that « € G,(BO(2n)), that implies that there is a “cyclic”
homotopy
h.: BO(2n)— BO(2n) ,

such that hy = h, = identity and the trace t— h,(+) represents o. By the
covering homotopy property, we have a homotopy %, :BO(2n—1)
—BO(2n— 1) such that h, = identity and h;, maps each fibre into itself
by a map homotopic to the reflection r: §27 71— §27~ 1,

Now A,=1+(—1)*""'degr=2. Thus by the “Lefschetz number
transfer theorem”,

p*: H*(BO(2n): Q) H*(BO(2n — 1); )
is a monomorphism. But it is well known that this is not the case.

Corollary. G,(BG,,)=1 where G,, is the space of self-homotopy
equivalences of S*" 1.
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Proof. If G,(BG,,)=n,(BG,,)=Z,, then there would be a fibre
preserving map f : E,— E,, on the total space of the universal fibration
§**~l - E_-2BG,, which induces the identity on the base space and
restricts to a fibre S2"” ! as a map of degree — 1. Thus every fibration
with fibre S~ ! must admit such an f. But by the proof of Theorem 9
52"~ ' 5 BO(2n— 1)-» BO(2n) cannot admit such a map.

Corollary. O(n) is a normal subgroup of a connected topological group
if and only if n is odd.

Proof. a) Let n be odd. Consider the group S x SO(n).

Then {1, —1}x50(n) is a normal subgroup of S!xSO(n) and
S'x SO(n) is clearly connected. Since n is odd, {1, —1}x SO(n) is iso-
morphic to O(n) by the isomorphism given by (+ 1, A)— + 4. Note that
if n is even, this homomorphism is not an isomorphism since —I € SO(n).

b) Assume n is even. Assume that O(n) is a normal subgroup of a
connected group G. Then the exact sequence O(n)—G— G/O(n) gives
rise to a fibration BO(n)-»>BG-2 B(G/O(n)). Since G is connected, we
have ,(Bg)= 1. Now we have the exact sequence

75(B(G/O@))-5 1, (BO(m) 1 .
é
Z,
Since d factors through w, we have G,(BO(n))=~ Z,. This contradicts
Theorem 9.

Remark. Note that a) proves that G,(BOQ2n—1))x Z,.

4.4. Suppose $* — E— B is a principal bundle. Suppose G is a space
of homotopy equivalences of B acting continuously on B. Let G* denote
the space of principal bundle maps (or equivalently the space of S*-
equivariant maps E— E) which induce on B maps in G. What is the
homotopy type of G*?

In [12] we have an answer. If ke H%(B;Z) is the element which
classifies the principal bundle, then G* is determined by @*(k) where
@ : G x B— B is the action. In particular, if H(B; Z) =0, then G* has the
homotopy type of the total space of the S'-bundle over G classified by
w*(k)e H*(B; Z).

In view of Theorem A of [13], we may make specific computations.
For example:

a) Let O(rn+ 1) act on R P” in the obvious way (or in any way for that
matter). Since y(RP*")=1, we see that w*=0. Thus OQ2n+ 1)* is
homotopy equivalent to O(2n+ 1) x S* for all principal S$*-bundles.

b) Let U(n) act on any compact manifold M such that =, (M) is
finite. Then U(n)* is homotopy equivalent to U(n) x $* for all principal
S'-bundles over M.



288

J. C. Becker and D. H. Gottlieb

If G is a compact simply connected Lie group acting on B, then

G* ~ G x St. In addition, there is a cross-section to the obvious map
@ :G*— G which is a homomorphism of groups. This is proved by
Stewart in [17], (also see [15]). In [12], we have a necessary and sufficient
condition for the existence of a cross-section to ¢ :G*—G; namely
@®*(k}=0. But we say nothing about whether the cross-section is a
homomorphism.

Note added in Proof : R. Schultz can show that QP?"** does not admit a non-trivial

submersion for n > 1.
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