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F IBRATIONS WITH COMPACT FIBRES.

By AnpREW CassoN and DaNiEL HENRY GOTTLIEB.

§1. Introduction. Let F1—> ELB be a Hurewicz Fibration. Let f: ESE
be a fibre preserving map inducing the identity, 15, on B. Let g: F—F be the
restriction to F of f. We shall let A, denote the Lefschetz number of g.
(Ag=2(—1) (trace (g's)) where g's:H,(F; Q)—>H(F; Q)). We shall let
d:QB—F denote the transgression map which arises in the Puppe sequence. In
the case where the fibre F is homotopy equivalent to a compact CW complex,
we obtain the following five theorems with the above notation holding
throughout. ‘

TraNSFER TuEoREM. Let (B,A) be a CW complex pair.

a) There exists homorphisms 1/: H*(E,E,)—H*(B,A) and 7o Hy(B,A)—
H(E,E,) for any group of coefficiants, such that py o= A, and Tf°p*=Ag
(where A, denotes multiplication by A,)

b) If (B,A) is homotopy equivalent to a compact CW-pair, then there is
an S-map 7¢:B/A—E/ E, which induces 7; and .

Here 7~ }(A)=E,. We shall call 7/ and 7, transfer homomorphisms and 7
a transfer map.

TraNSGRESSION THEOREM. A, d*:H'(F)—>H'(QXB), i>0, is the zero ho-
momorphism for any coefficients. '

FIBRE INCLUSION THEOREM. Let F be a Poincare space and let B be a
locally compact CW complex. Let w,(B) act trivially on [F]1€ HF(F; Z)=Z.

Then there exists an element A€ HY(E; Z) such that i*(A)=A [F].
We denote dim X by X where no confusion results. Also [F]€ H.(F; Z)

and _[F_ 1€ HY(F; Z) denotes the fundamental classes when F is a Poincare
space. .
These three theorems are extensions to Hurewicz fibrations of analogous
theorems for fibre bundles, [1], [2], [9]. In the case of the transfer map 7 the

construction was made only for fibre bundles with structural group a compact
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Lie group acting smoothly on F, a compact manifold with or without boundary,
and f=1,.

The extension of the transfer and transgression theorems to fibrations from
fibre bundles follows from the next two theorems which show that Hurewicz
fibrations with compact fibres are essentially smooth fibre bundles.

OrEn FisrE SmooTHING THEOREM. Let B be finite dimensional. F—>E—
B is fibre homotopy equivalent to V—E’'—B where V is a smooth oriented
manifold homotopy equivalent to F and E’'— B is a fibre bundle with structural
group Diff (V).

CLoseD Fiere SMOOTHING THEOREM. Let B be finite dimensional. Let T"

) ix1 7 X (Proj.)
be a product of n circles. For n=dim B we have FXT" - EXT" —

is fibre homotopy equivalent to a fibre bundle W X T"—E’—B where W is a
compact, oriented, smooth manifold with boundary, homotopy equivalent to F.
The structural group is Diff (W X T™).

The open fibre smoothing theorem is used to prove the closed fibre
smoothing theorem, which in turn is used to establish the transgression and
transfer theorems. It was already known that every fibration is homotopy
equivalent to a fibre bundle, [7], but the fibre turned out to be a function space.
The advantage of the above fibre smoothing theorems is that the techniques of
differential topology may be used on Hurewicz fibrations with compact fibres.
That is exactly what happens in this paper.

The Transgreésion, Transfer, and Fibre Inclusion Formulas must give rise
to numerous applications since they are such simple formulas relating well
known invariants to information about fibrations, which occur in numerous
branches of mathematics. We give applications in §2. Many of our applications
are extensions of theorems in [2] from homeomorphisms and manifolds to
homotopy equivalences and finite complexes. The most important is theorem 1
which states that A, d,=0:7, ,(B)—>m(F) for i< (twice the connectivity of
F).

The Transfer and Fibre Inclusion Formulas can be used to decide whether
a map X->Y has a compact fibre. For example even dimensional projective
spaces can never map to a compact space with a compact fibre, and maps of
suspensions to compact Y do not have compact fibres if the map represents a
torsion element in [2X, Y] unless H4(Y; Q)=0.

For transformation groups, we obtain the following results. (1) If Z, acts
freely on a finite dimensional space X homotopy equivalent to a compact CW
complex and if f is equivariant, then n divides Ay.

(2) If G is a compact Lie group acting on an X which is homotopy
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equivalent to a compact connected CW complex, then w, :H «(Gs Z)—>H (X;
Z) is trivial if x(X)#0 and w: G—X is the orbit map for some point.

The transfer theorem is useful in studying the following question. Given a
compact CW complex X, when does 7,(X) have finite type? When x(X)+0,
we find some necessary conditions.

Finally we apply the transfer theorem to K (7,1)’s and thus obtain results
about group theory. The transfer for fibrations gives a transfer in the homology
and cohomology of groups. This in turn allows us to discover elementary facts
about groups. For example; if G is a group with the free group of rank 2 as a
normal subgroup and if H is the factor group, then H made abelian is a direct
summand of G made abelian.

In §3 we state survey results about umkehr maps which we shall need in
defining the transfer. In §4 we prove the Fibre Inclusion Theorem. The
construction of the transfer is made in §5 and the transfer theorem is proved in
§6 modulo the Fibre Smoothing Theorems. In §7 the Transgression Theorem is
proved modulo the Fibre Smoothing Theorems. Finally in §8 the Fibre Smooth-
ing Theorems are proved.

Remark. Another construction of the transfer map for fibrations using

/Spanier—Whitehead Duality will appear in a paper by J. C. Becker and D. H.

Gottlieb. In this paper a proof of the transgression theorem is given using the
transfer theorem, and thus the transgression theorem holds for all cohomology
and homology theories.

§2. Applications. In this section we shall give diverse applications re-
sulting from the transgression, transfer and fibre inclusion theorems. The
extension of these theorems to Hurewicz fibrations permits many of the results
of [2] to be extended to fibrations and spaces of homotopy equivalences. In
addition, some completely new applications are presented involving group
theory, transformation groups and fiberings of suspensions.

1). LetF % E% B be a fibration as in the introduction.

Tureorem 1. Let F be k-connected. Then
0=Ag-d:7r,.+1(B)—>w,.(F) for i<2k.

Proof. The proof is an obvious extension of the proof of theorem 6 of [2].

CoroLLarY. a) X(F)ws:m(FF; 1)—m,(F) is trivial for i <2k for com-
pact CW complexes F.
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b)  Ajwy:m(G)—>m(F) is trivial when i <2k for a group G acting on F
such that f:F—F is equivarient.

2). The fibering question. The fibering question is the following: Given
a space E, is there a (nontrivial) fibre bundle such that E is the total space of a
fibre bundle? Such questions have been studied by several people, among them
A, Borel for E a Euclidean space and W. Browder [3] for E a sphere. In [2] the
fibering question was studied for RP" and CP™ and QP". The extension of the
transfer and related theorems to fibrations will allow us to improve the results
of [2] as well as add some new ones. In fact, we will consider a more general
question, which we shall call the fibration question.

~ Question. Given a compact space E, can we find a Hurewicz fibration
FS5E' LBwithBa compact CW complex, with E’ homotopy equivalent to E
and F homotopy equivalent to a compact CW complex, which is nontrivial
(neither i or p is a homotopy equivalence)? To put it more succinctly, can we
find a map (not the constant or a homotopy equivalence) from E to a compact
B with compact fibre?

In addition to the theorems in the introduction, we shall find the following
facts useful. We suppose F—E L B is a fibration with F. , E, and B homotopy
equivalent to compact CW complexes.

(1) x(E)=x(B)"x(F).

(2) If f:E—E covers 1 as usual, then A;=x(B)-A, if F is connected.

(3) Quinn [13]. F and B are Poincare spaces if and only if E is a Poincare
space.

TueoreM 2. There are no (nontrivial) maps from RP*", CP?* QP*" and
Cay P? to a compact CW complex with compact fibre. There are such maps for
RP2n+1 and CP2n+1.

Proof. The proof is similar to theorem 7 of [2].

Tueorem 3. Suppose a:ZX—Y has a compact homotopy theoretic fibre
and suppose Y is a compact CW complex. If [a] E[ZX, Y] has finite order, then
H,(Y; Q)=0.

Proof. In fact we shall show that if [a] has order d® then every element in
H,(Y,Z) has order dividing d. Let d also denote the map ZX—2X correspond-
ing to multiplication by d. Then a od is homotopic to a constant map. Hence
every element in the image of a, has order dividing d. In addition, a~a -
(d+1). So (d+1): ZX—ZX is, up to homotopy, a fibre preserving map over the
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identity on the base Y. We compute the Lefschetz number of d+1 and we
have Ay, =(d+ )(x(EX)-1)+1=(d+ 1)(x(EX))—d. Thus A, ,#0 since d
#0. Then Ay, =x(Y)A, 70, where F is a fibre of « and g is the restriction of
d+1:3X—->ZX to F. Thus Ag#(). Hence there is a transfer such that a,o7=
A,. Hence every element of H,(Y: Z) has order dividing d A, %0 and so H,(Y;
Q)=0. ~

To see that every element of H,(Y; Z) has order dividing d® we observe
that H,(Y; Q)=0 implies that x(Y)=1. Thus every element x€ H,(Y; Z)
satisfies dA;,,x=0. Now (2d+1):2X—>3X satisfies a o (2d+1)~a and pro-
ceeding as above we see that dA,;, ;x=0 in the same way. Then 0=d%.

Remark. It is natural to ask if Y must be contractible in the above
theorem? It need not be, for let £X=Y=Moore space M(Z,,m). Then
1:2X—2X has finite order and has fibre a point. Also note that the Hopf
fibration S'—>$5—52 shows that the condition that [a] is torsion is necessary.

As another example of the technique used in theorem 3, we have the
following corollary of the proof.

CoROLLARY. Suppose that p: E— B is homotopic to the constant map and
B and the homotopy theoretic fibre F are compact, then B is contractible.

Proof. Since p~pe°c where ¢c:E—»E 'is constant, we can find a fibre
preserving map f: E— E which is homotopic to the constant map. Then arguing
as above, we find that H,(B; Z)=0. Now to show that B is contractible we
consider the universal covering B of B. We note that p: E ¥, BB where p’is
homotopic to a constant map and p’ has as fibre a path component of F. Thus
H,(B; Z)=0 and so B is contractible. Hence B is a K (7, 1) and = is finite since
F is compact. But since B is compact, 7 is trivial. Hence B is contractible.

3). Transformation groups. By a finite dimensional space X we shall
mean that X is paracompact and Hausdorff with finite covering dimension.
Then H*(X; Z) is finite dimensional. If @'is a finite group acting on a finite
dimensional space X, then X/ Xafs finite dimensional.

Tueorem 4.  Suppose Z,, acts freely on a finite dimensional space X and
suppose that g: X— X is equivariant. If X is homotopy equivalent to a compact
CW-complex, then n divides A,

Proof. Let G=2Z,. Let G—>E;—B_ be the universal bundle for G. The
projection E, X X— X is a G-map, and so it induces a map ¢ : E; X - X—X/G.
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The inverse image of any point under ¢ is the classifying space for the isotropy
sub-group of some point of X, but since Z, acts freely this subgroup is trivial,
hence the inverse image is contractible. Using the Vietoris-Begle Mapping
Theorem, we see that H*(E., X X)= H*(X/G). (This standard argument may
be found on page 371 of Glen E. Bredon, Introduction to Compact Transforma-
tion Groups, Academic Press (1972)).

Now consider the fibre bundle

X—E X X5 B,.

The equivariant map g gives rise to a map f: E; X ( X—E¢ X o X which covers
the identity on B and restricts to g on some fibre X. Applying the transfer
theorem we have 770 p* = A, on singular cohomology. Now E; X X is homo-
topy equivalent to a CW complex since it is the total space of a fibration where
the fibre and base are homotopy equivalent to CW complex. Thus

H*(EoX X )=H*(EcX o X)=H*X/G)

Now X /G is finite dimensional, so H*(E, X ;X)=0 for large i. Also H(B.)=
Z, for all odd i >0. Thus for large odd i, p* =0 and so 0=A, = rfop*.7 7.
This can only occur if n divides A,.

THEOREM 5. Suppose a torus T acts as group of transformations on a
finite dimensional space X homotopy equivalent to a compact CW complex. Let
f: X=X be equivarient. If A;70, then T must have a fixed point.

CororLLarRY. Let G be a compact Lie group acting on a finite dimen-
sional X which is homotopy equivalent to a compact connected CW complex.
Let w:G—X be the evaluation at the base point of X. Then 0=w*:ﬁ*(G;
Z)—>H.(X; Z).

Proof. Essentially the same as the proofs of theorem 5 and its following
proposition in [2].

4). Finite type of 7,(X).

TaeEOREM 6. Suppose that X is homotopy equivalent to a compact CW
complex, and suppose that m=m,(X) has a compact K(m,1), and that m.(X)
has finite type ( finitely generated in each dimension). Then x(m) divides x(X)
and there exists homomorphisms 7:Hy(m)—H(X) and 7: Hy(X)—>H*(7) such
that fyor=xX/ and 7o fr=xX/  where f:X—K (w,1) is the map given
by the condition that f:m(X)—m is the identity.




FIBRATIONS WITH COMPACT FIBRES. 165

Proof. Let X be the universal covering for X. Then we obtain a Hurewicz

fibration X—X —f> K (m,1) where the fibre inclusion is the homotopy type of the
covering projection. Since 7,(X)==,(X) for i>1, we see that 7,(X) is of finite
type, hence H «(X) is of finite type since 7,(X)=0. But X is finite dimensional
since X is, hence H,(X) is finitely generated. Hence X must be homotopy
equivalent to a compact CW complex. Thus x(X )=x(X)-x(7) and the transfer
theorem yields the result.

COROLLARY. Suppose X is a compact CW complex.

a) Suppose 7, (X) is a free group of rank r. If r—1 does not divide x(X),
then 74(X) is not of finite type.

b) Suppose m,(X) is a free abelian group. If x(X)#0, then 7.(X) is not of
finite type.

c) Suppose that m,(X) is isomorphic to the direct sum of n fundamental
groups of orientable surfaces (not S?). If x(X)#0 and H,,(X;Q)=0, then
7«(X) does not have finite type.

d) If 74(X) has finite type and x(X)#0 and =,(X) has a nontrivial center,
then K (m,(X),1) is not homotopic to a compact space.

Proof of d).  Let w=m,(X). If K(7,1) is compact, then x(m)=0 if 7 has a
nontrivial center; Corollary IV.3 [8]. But 04 x(X)=x(X) x(7).

5). Group theory. Group theory is imbedded in topology by a functor
from the category of groups and homorphisms to the category of spaces and
maps. A group 7 corresponds to the Eilenberg-MacLane space K(7,1). A
homomorphism h:G—H gives rise to a map K(h):K(G,1)>K(H,1). The
homomorphisms from G to H are in one to one correspondance the homotopy
classes of maps from K (G, 1) to K (H,1) which leave a base point fixed. Since
7(K(G,1))=G and h=K(h)y: 7 (K(G,1)—>m(K(H,1)), the Eilenberg-
MacLane functor K composed with the fundamental group functor , is the
identity on the category of groups and homorphisms. '

Thus no information is lost by considering K (7, 1)’s instead of groups. Of
course it is certain that the topological viewpoint cannot recover the elemen-
tary facts of group theory very easily, if at all. On the other hand, topology is
rich in constructions and concepts which may be applied to K (7, 1)’s, hopefully
to yield theorems of a purely group theoretical nature which are not obvious, or
even obtainable, by purely group theoretic means. The transfer theorem affords
us a means to discover such group theoretic results.

Consider the topological concept of compactness, we may consider the
class of groups G whose K (G, 1)’s are homotopy equivalent to a compact CW
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complex. We shall call any such group a compact group (hopefully not to be
confused with a compact topological group or Lie group). The class of compact
groups is a very unnatural class from the point of group theory, yet it contains a
large number of important groups. For example: the trivial group; the integers
Z; any free group of finite rank , F,; any free abelian group of rank r, T,; knot
groups; link groups; surface groups. If a group has an element of torsion, it is
not a compact group. Compact groups must be finitely presented.

Now suppose we have a homorphism h:G-—>H. This gives us a map
K(h):K(G,1)>K(H,1). We may replace K(h) by a homotopy equivalent
fibration

K (h)
F-K(G,1) - K(H,1).

This is an example of a construction in topology which makes no sense in group
theory. What is F? It is easy to see that F is a disjoint union of spaces all of
which have the same homotopy type of K (Ker (h),1). The connected compo-
nents of F are in one to one correspondence with coker (k).

Now F is homotopy equivalent to a compact CW complex if and only if
Ker (h) is a compact group and coker (h) is a finite set.

TraeoreMm 7. Given a homomorphism h:G->H such that Ker (h) is a
compact group and coker (h) is a finite set, and given an endomorphism
k:G—>G such that hk=h, there exists a homomorphism 7:H(H)—H.(G)
such that hy °7=|coker (h)|-A,. Similarly for cohomology.

Proof. Here |coker (h)| is the number of elements in coker (k), and g is
the restriction of & to Ker (h). Since H,(G)= H,(K(G,1)), this is the transfer
theorem.

Let G’ denote the commutator subgroup of G. Since H,(G)=%/.. and
X(F,)=1—r, we obtain the following.

CoroLLaRY. Let F, be a normal subgroup of G. Let H= /. Then ¥/,
is a direct summand of ¢/ ...

Remark. This fact is false for any free group of rank different than 2.
Consider F,—»F, et Z,_, where p maps one generator of F, to the generator of
Z,_, and the other generator to the identity. The kernel of p is F, by Schrier’s
theorem.

Let Z be a normal subgroup of G and let H=%/,. Suppose that k:G—G
is an endomorphism such that hk=h where h:G—H is the quotient. Then
k(Z)cZ. Let d=h(1) for Y€ Z. (Here Z is the group of the integers).




FIBRATIONS WITH COMPACT FIBRES. 167

CoroLLarY . There is a homomorphism t:%/,-C¢/. such that

Hy 56/ SHY L s multiplication by (1—d). If d=0 or 2 then /.=
(*/ ) BP.

Proof. Use the transfer theorem. Note A,=1—d. If A,= =1, then 7 is
injective, hence ¢/ . splits.

§3. The Umkehr Map. In this section we record some facts about
Umkehr maps. Our reference will be Dold, [6] chapter VIII, especially section
§10 entitled “Transfers”. Note: Dold calls his Umkehr maps “transfers.”

Let M be a closed smooth oriented manifold. Consider A C B C M where A
and B are compact subspaces which have neighborhood deformation retracts.
Let A* and B* be compact deformation retracts of M-A and M-B respectively,
so A*D B*. Then we have the Poincare duality isomorphism D,,: H(B,A) >
Hy_ (A%, BY).

Let f:M'—M be a map between closed oriented manifolds. Let A'=
f7!(A) and B’=f"(B). We define the Umkehr homorphisms #, and ' by

Dy
(1) fl:H'(B',A")—> Hy_, (A'*,B'¥)

\¥2 Dyt
Hy._; (A*,B¥) T) H(M_M/)H(B’A)

Dyt 1
) f:H; (B, A)%HM '(A*,B*)—> HY~(A¥,B¥)

= \|/DM
Hpy_my+:(B'A)

Now f, and f' are independent of the choice of (A*, B*). The Umkehr maps
satisfy the following formulas,

@) (id)'=1id, (id),= id

(fo)'=r%g" (fg)= guﬁ
(4) ﬁ(xﬂ€ f*(x )Nfi)
5) ff*(x)Uy)=xUf{(y),xE H*B,A),y € H*(f "'B,f 'A).

(6) fxly ﬂﬁ(ﬁ)) =(=D*(f'(y)n§) where d=(M—|¢|)(M— M.

Here x € H*(B,A), £ H.(M,M — B) for (4) and (6). (We may form a cap
product N :H*(B,A)X H,(M,M— B)—>H*(A* B*) by using the usual cap
product and inclusion and excisions, [6], p. 239; 12.6. This cap product gives

e 10 Du) od 293 ;407.¢)
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(7) 1f i:(K,L)—(K,L)C M is an inclusion
H*(f~1(K).f7' (L)) —> H*(K,L)
b b
f!
H*(f~(K).f~Y(L)) > H*(K,L)

) * Digok Dy 1.9 2,
commutes. Similarly for f,. Dolds Doox Proe i

(8) Consider ACBCN"CM"** where B is compact and N and M are
oriented manifolds. Define isomorphisms

D!

T:H (M—A,M—B)—>H""""9(B,A)—>H, (N-AN-B)

A

Dy Dy
T:H9*(N-A,N-B)—>H,,,_,(B,A) —>H'(M—A,M-B).

We let T stand for both the homology and cohomology isomorphisms. If M is
the double of the total space of a k-plane disk bundle over N, then T agrees
with the Thom isomorphism times (— 1)k®+k~4),

Now let a and B be k-vector bundles over manifolds N and M. Let N* and
M# denote their respective Thom spaces. Suppose there is a bundle map a—f8
which covers f: N—>M. This induces a map f: N*—>M?#. Suppose a and 8 are
orientable. :

9) fr=(—19T T, fe=(— l)dT]Z,|< T ~ ™. This holds in the relative case as
well. Here d=k(M—N).
Suppose s:N"—M™ is an embedding and M C L' Assume N,M,L are

orientable and let » be the normal bundle of s(N) in L and g be the normal
bundle of M in L. Then let §:M*—>N" denote the collapsing map. In the

relative case, let s:(B,A)—(B,A). We denote §:(B,A)*=2"/;:.%/,.,=(B,A).
Then,

(10) s'=T"%*T,s,=T5, T~

We may see this in the absolute cohomology case by considering the
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commutative diagram for closed M and N.

Dy Dt ~
T:H'(N) 2 Hy_;(N) —> H*V* (LL-N)—>H!VH(N7)

=

I sl b s

Dy Dy * =
T:HM=N* (M) —> Hy_, (M) —> HY "N+ (L,L— M) —>HY "V (M*)

The homology and relative cases follow similarly.

(11) We can improve (10) as follows. Let s:N—M be a map which is
homotopic to an imbedding j: N— L which lies within a tubular neighborhood
of M in L. Then s'=T ~%*T, s,=T5,T %

Now suppose we have a commutative diagram

f
N® —_— Mn+k
N N

_ f _
NmeMm+k

where N=f (M) and N,N,M, and M are oriented manifolds.

(12) (—D¥'=f":H'(B',A")>H'**(B,A) where d=(m—n)k.
(—1)%,=f,: H,(B,A)—»H,, (B,A")

for ACBCM and (B',A")=(f""(B).f "YA)). This is seen to be true by
first showing = f'=f' for N,M and open sets of N, M. Then the diagram

DN_1 Dg _ _
T:H,(N—A',N-B’) —~) H*(B’,A’) ?H*(N—A',N—-B’)

£l 22 N
Dyt Dy
T:H,(M—A,M~-B)—> H*(B,A)—>H,(M—A,M-B)

commutes up to sign around the outside by (9). Hence + f'=f".




170 ANDREW CASSON AND DANIEL HENRY GOTTLIEB.

§4. The Fibre Inclusion Theorem. In this section we prove the fibre
inclusion theorem. The following pullback diagram and notation will be used

throughout this paper.
FXF : —> P >E
(1 A (\LPI) § A(\\LP’) s J
F —>E ~——B

Here P={(¢,¢')EE X E|n(e)=m(e')} and p(e,e’)=e. Let Ale)=(e,e) and let
s(e)=(e,f(e)) (since = (f(e )'— m(e) we have s(e)EP). Thus A and s are
cross-sections to p.

Now assume that B is a closed oriented manifold. We shall first prove the
fibre inclusion theorem in this case. By Quinn’s theorem, both E and P are
oriented Poincare spaces since m,(B) acts trivially on H*(F). Now pick a
contractible neighbourhood U about some point x € B. Then let V=o7"YU)C
E. We may assume that V= U X F. Consider

H; ((&U)xp)j)HE (E,E— V)€—H (E)

where U is the closure of U and U is the boundary of U. We regard (U,U) as
homeomorphic to (D%,S87!). Then it is easy to see by spectral sequence
arguments that

[(G.U)]x [F]=[(U.U)xF]<—[(B.E- V)] <[ E]
under the above inclusion maps. Consider

Sx

H*(l7><F)?H*((&U)XF)%H*((IT,U)XFXF)(—H* (UXFXF)

Lo

H*(E)———>HJEE-V) —>H/(P.P-p~(V)) <~
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where a is cap product with [(U U)] [F] and b is cap product with [(E, E-V)]
and c is cap with [U, U]X[FXF] and d is cap with [P,P—p "} V)].
This diagram commutes. Now the top horizontal line is essentially

F]
§':H*(F )”_[f Hy(F) = H,(F X F) _f H*(FXF)

times (— 1)®¥ where § equals s restricted to F C E. This is so because

l><x—>(l><x)m([l~]—,U] X[F])=(_1)x~3[(—j,U:| X (xn[F])

=~ (U U]X8(xn [F])= (- )" [T U]x(5'(x)n [F X F])

= (=12 (1x 5 2)n ([ U, U] x [FxF)).
The commuting diagram then establishes the following formula.

Lemma 1. (— 1)BF*g' =g+,

Now we need the following lemma:

o 3 —
Lemma 2. A*§*(1)=A,[F].
<\
Proof. We shall show this by showing that (A*§*(1),[F D=A,

Be53(1), [FTy=((pl) A5, [F]>
=(B'(B5(1) py ([ F1)> = B'(B*s'(1)), [F X F]>
= () UB, [FXF).

Now this last expression is equal to A, by a computation similar to that of
Robert F. Brown ([4], Theorem 2.2). In the special case that F is a manifold, the
last expression is the intersection number of A(F) and §(F) in F X F which is
equal to the algebraic sum of the fixed point indicies which is Ag, (see p. 337
(13.5) of [6]).

Thus we have the following Lemma.

LEMMa 3. i*(A*s'(l))=(—1)B‘FA [F].

Proof. i*(A*s'(1)) = A*i*s(1) = A*§i*(1) = A*5'(1) = (- 1)PFA[F] using
Lemmas 1 and 2.

Now setting A=(—1)P"A*s'(1), we see that i*(A)=Ag[F_] when B is a
closed oriented manifold.
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Now suppose that B is a compact oriented manifold with boundary. Let
D (B) be the double of B. Then we have the fibre square

F —>

D(E)SE

"y

N~

i’

ol

D(B)=B

-,

N~

—,

where r and 7’ are retractions and § and j’ are inclusions. Since D (B) is a closed )

* oriented manifold and since 7,(D (B)) operates trivially on H F(F;Z), we have a

AN €HF(D(E)) such that i*(A’)=A[F]. Define AEH(E) by A=j"*(A).
Then i*(A)=i*(j*(A)=i*(A)=A,[F], and the fibre inclusion formula is
established in this case.

Now suppose B is a finite CW complex. Then we can imbed B in some
Euclidean space and find a closed regular neighbourhood N of B. Let r: N—B
be the retraction. Then we have

1
F—F

7
*E—>E
s
T
N—B.
Since r is a homotopy equivalence, 7 is a homotopy equivalence. Define
A =(7)"YA") where i"*(A’)=A,[F]. Then

*(A)=(Fi')*(A) = *7(7) T (A)=A[ F ).

Finally, suppose that B is a locally compact CW complex. Let B” be the n
skeleton of B and let n>>dim F. Then HY(E)=H¥ (7 Y(B")) under the
inclusion map. Now the A€ H¥ (7~ }(B")) will give rise to the A€ HF(E)
under this isomorphism. This proves the Fibre Inclusion Theorem.
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Remark. (1) The fibre inclusion formula is true for Z, coefficients where
F is a closed unoriented manifold and there is no condition on =,(B).

(2) The action of 7,(B) on [F] must be trivial in order to insure that E and
P are oriented Poincare complexes.

'§5. The Construction of the Transfer Map. We shall construct the
transfer for a special case in this section. Let F and B be closed, smooth,
oriented, connected, manifolds and we shall let F—>E % B be a fibre bundle
with structural group acting smoothly on F and preserving the orientation of F
(that is, 7,(B) acts trivially on HF (F)).

Then E and P (from the pullback diagram (1)) are closed, smooth, oriented,
connected manifolds. We may assume that the cross-sections s, A:E—P are
smooth since any cross-section can be approximated by a smooth cross-section.

Let E-> R¥ be an embedding. We define an embedding j: E—B X R" by
i(e)=(p(e),j’(e)). Let » be the normal bundle of this embedding. Let « be the
bundle of tangents along the fibre for E > B.

Lemma 5. v@a =N, the trivial bundle on E of dimension N.

Proof. {* (tangent bundle of B X RY)=7*(15)® N, also j* (tangent bun-
dle of BXRY)=v® 1, =rDa®7*(15). Thus v a= N.

Lemma 6. Let B be the bundle of tangents along the fibre for PLE.
Then B=p*a. Hence B|A(E)=a and p® B=N,, the trivial N bundle on P,
where p=p*(v).

Now define #: "B * =(B X RN)°>E” to be the collapsing map, from the
suspension of B union a point, to the tubular neighborhood of E in B X R,
Here (BX RN)°=B*5"/_ . the one point compactification of BX RY. Let
§:E”—P* be the inclusion map induced by the inclusion » = p|s(E)—p.

Define A: P*—EHAE) 1o be the collapsing map. Now

p/A(E)=r® (normal bundle of A(E) in P)
=v@a=N;.

So A is in fact a map P*>3VE *.

Definition of the Transfer.

T

#:SMB) S E S pr S SNE,
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Note that we may define a tubular neighborhood, L, of E in BXR" so
that if AC B, then LN (E, X R") is the total space of »|E,. Thus for A C B, we
may define 7;: SVA* —>ZVE," by restricting 7, to SYA*. If ACX CB and X are
closed, we may define 7¢: ZV(*/ )>ZN (% /).

The theorem we aim to prove states the existence of the transfer in
situations more general than our definitions here. Also many choices are made,
especially that of the ambient fibre bundle E—B. So the main import of the
above paragraph is that we can define some transfers which are natural with
respect to one another in the particular situation we are studying.

§6. Proof of the Transfer Theorem. Consider the following commuta-
tive diagram.

k
N
b2 B

where 7 and 7’ are Hurewicz fibrations and rj=1, and sk=1. and tI=1.
Here 7, s, t are retracts and j, k, [ are inclusions. We say that #’ is a retract of 7
if either of the following two conditions holds:

(i) t and ! are identity maps and F=F’ and E is a pullback of E’ by r;

(i) B=B’ and r and j are identity maps. The reason that care is taken by
introducing conditions (i) or (ii) is the following property which we shall
need:If f:E‘—E’ is a fibre preserving map covering 1y, then there exists a
fibre preserving map h: E—E covering 1, such that shk=7.

Let C consist of the set of fibrations F—E > B for which the following
property holds: For every map f: E—E and subcomplex A C B, there exists a
transfer map 7;:%/, -/ satisfying the transfer theorem (b).

RerracTioN LEMMA. Any fibration belongs to C if it is a retract of a
fibration belonging to C.

Proof. We define 7:%/,—F/, for any map f:E'>E’ by letting # =
s7,i where h: E—E satisfies shk= f and 7, is the transfer from 2/ =" k)
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Note that A=A, and that lgt=h|F. Now 7; induces the appropriate formulas
in homology and cohomology. For example,

Ta(Fg)e =T x($3Tufx) = PaTaTufa = Dig (o) = B

We now prove the transfer theorem by proving it for a special type of
fibration (the initial lemma), and then showing that every fibration for which
the theorem is true is a retract of one of the initial fibrations.

Inrrian LEMma.  Suppose F LEZBisa fibre bundle with B and F
closed connected oriented smooth manifolds, and with structural group the
group of diffeomorphisms of F which preserves orientation. Then it belongs to
C. 2
Proof. Let Tf=2(1°f)*2_1 and 7/ =2‘1(7"'f)*2 where Z is N-fold suspen-
sion and 7 is defined in the previous section. We must show that 7,7,= A, and
Thr*= A, in homology and cohomology respectively.

1= 3() 2 = Z(A5#), 27}
=3A, T 75, T~ '1%, 37!

(=1)°8° (=1)’sx o (= 1)°m

(_1)a+b+0A|3*7T!
where a=N(E+N—gq), b=NF~F? ¢=N(B+ N— q), hence

'rf=(— l)FA,s*'n'!

Now
1(%) =(— 1) Dysam () = (~ 1) ps o Au(10 (A4, ()))
= (=) p((= ) A(D) N 5.4, (x)
=(= 1) py(si(s*A (1) N ()))
— ( _ 1)F+(P—x)FS*A1<1) A (x)
So

w'*Tf(x) =(- 1)F+(P_x)Fw*(s*Al(l) N (x))
=(—1)F+HP=DF (1 )(B=aF (7's*A' (1)) N x

(—1)F(ws*A'())nx=Ay1nx=Ax

ot
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Here w'(s*A'(l))=(—1)FAg~1 by lemma 3 and the fact that (— 1)Bf#'i* = j*#!
for 7 : F—x*, which is true by an argument similar to lemma 3.
For cohomology we have for x € H*(B,A)

f(x) = ZT1HFE(x) = ST M* A% (x)
=3+ IT 5+ TT 1A*3(x)

=(—1)fz's*Al(x)
=(-1)" '*(A A*p*)(x))
=(=1)'ms*(p*(x)uA (D)

since A'(A*(x))=xU A!(l) (by §3, (5))
= (~ 1) (s*p*(x) U s*a(1))
=(— l)le(xU s*A (1))
As in the previous paragraph, w'(s*A'(l')) =(—1F A,. Hence rla* =A,
Now that we have shown that F LEZS B is in C, where F, B are smooth
closed connected orientable manifolds and the bundle is orientable in the

appropriate way, we must show that all fibrations are retracts of such a fibre
bundle. Then the retraction lemma will give us the theorem.

Lemma a). Suppose F —>E—>B as above, except that F is a compact
manifold with boundary. Then F LeEZSBec

i _m Di D
Proof. F— E—> B is a retract of DF — DE — B where DE and DF are
doubles.

Lemma b).  Suppose F LEZBisasin previous lemma (a) except that B
is a compact manifold with boundary. Then F>E—B €C.

Proof. F—DE D—ZTDB has F—E->B as a retract.

Hence by (a) and retraction lemmas F—E—B € C.

LemMa ). Suppose F L EZ B as in lemma (b), except that B is a finite
complex. Then F>E—B &C.

Proof. We can embed B into a closed regular neighborhood by B € N C
RY. Then F—»E—B is a retract of F—>r*E— N where r: N— B is a deformation
retract.
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Lemma d). F—E-—B as in (¢) except that F is not orientable. Let FAF
be the oriented double covering of F and let Z be the mapping cylinder of p.
Then Z is an orientable manifold and the structural group of F—E—B acts on
Z in an orientation preserving way. Thus we may find a fibre bundle Z—->E—>B
which retracts to F—E—B. (See Lemma 3 of [9]). Hence F>E—B€&€C.

LemMma €). F—E—B has properties of lemma (c) except that F is
orientable but the structural group does not preserve orientation. Then it is a
retract of F X RP*>E X RP2—B which satisfies lemma (d).

Lemma f). If F SELBisa fibration with connected fibre, homotopy
equivalent to a finite CW complex and finite dimensional base. Then it is a
retract of WXT—E'—»B where T is a torus and W is a manifold with
boundary which is a regular neighbourhood of F. This is the closed fibre
smoothing theorem which will be proved later.

Lemma g). Now assume F—E—B is a fibration with F possibly a
disconnected fibre. Let F,, be a path component of F.

Then we have the following diagram. Suppose that F is the union of k
copies of F,, (k must be finite since F is compact)

F,—>F

Vol

E—E

\LW \LW

B—B
p

According to Kahn and Priddy [11], or others, there exists an S-map
2B/ 4—2/ ; which induces the transfer for covering spaces where B — B is a
covering of index k. g

Note that f induces the identity on B and hence a deck transformation on
B. If the deck transformation is the identity then A =kA, where g'=g|F,

Define #;:%/ , 38 /i 2 /5, This transfer must satisfy the correct formula. If
the deck transformation is not the identity, on the other hand, then Ag =0 and
we may define 7, to be trivial. This proves transfer theorem (b).

In the case of transfer theorem (a), the transfers 7, and f are defined for
arbitrary base B. From theorem [2], we already know that ¢ and 77 can be
defined for fibre bundles over an arbitrary base. The closed fibre smoothing
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theorem and the retraction lemma allow us to extend 7, and 7/ to the case of
fibrations when B is finite dimensional. We define 7, and 7/ for arbitrary bases
by letting 7,= 1| B*N: Hy (B)— Hy/(E) for all N, where B?" is the 2N skeleton of
B. Similarly for cohomology. This proves part (a) of the transfer theorem.

Remark. 'We do not really need to consider the disconnected fibre case at
the end of the proof of part (b), that is lemma (f). We could have included the
disconnected case in the initial lemma by observing that the construction of the
covering transfer map can be accomplished as in §4 with the same ideas.

§7. Proof of the Transgression Theorem. Let C be the class of fibrations
for which A, d* =0 for every map f: E—>E covering the identity on B. We shall
prove the transgression theorem in the same manner as the transfer theorem, by
first proving a retraction lemma and an initial lemma, and then showing that all
the relevant fibrations are retracts of the fibrations in the initial lemma.

RetracTION LEmma. Let F' 5 E' 5B’ be a retract of F LELB. If
7€C, then ' €C.

Proof. The commutative diagram

gives rise to the homotopy commutative diagram,

Qr
QB2QB

li Lo
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Thus d’~teodo(8jf). Let f:E’—>E’ cover lp and g=f|F. Then A (d')*=
(Qr)* o (Agd*) o t* = (Q1)* o (A gy d*) o t* = (R1)* o (0) o t*=0.

Inrmiar LEMMA.  Suppose F—ES5B is a fibre bundle which has a
compact, closed, oriented, connected, topological manifold as fibre F. Suppose
that B is an arbitrary CW complex with m,(B) acting trivially on HF (F;Z).
Then 7€ C.

Proof. There exists a A€ HF(E; Z) such that i*(A) =Ag[F_], by theorem 1
of [2]. (This looks like the Fibre Inclusion Formula, except that the base need
not be locally compact. On the other hand we are restricted to fibre bundles
with F a manifold).

Now the argument is essentially the same as in [2], but we shall reproduce
it here. We have a homotopy commutative diagram arising from standard
considerations as follows:

A

d
QBXF—>F

Lixt i

PXF —E

V2

1B
B — B

Here P is the space of paths on B and d|(QB x*)=d and d|(* XF)=1.

So cf*(i*(A))=Ag(1X[f ). Now assume QB is connected for simplicity.
(B disconnected follows immediately from the connected case). 0=d*(xU
i*(A))=(d*(x) X 1+terms of different dimensions) U (AgX[F—])=(Agd*(x))><
[P_‘ ]+ terms of~ different dimensions. Hence 0= A d*(x)X [F_ ]. Hence A d*(x)=
0 for all x€ H*(F).

Now we proceed as in §5, showing that every fibre bundle with compact
connected manifold F is a retract of a fibre bundle as in the Initial Lemma. We
use the Closed Fibre Smoothing Theorem to show that fibrations with F fibre
homotopy equivalent to connected compact CW complexes are retracts of
Initial Lemma fibre bundles, provided that B is finite dimensional.

Now we assume that B is infinite dimensional. If B is infinite dimensional,
let BY be the N-skeleton of B where N> (homological dimension of F). Since
j:BNCB is N-1 connected, we see that Qj:QBY—QB is N-2 connected.
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Consider the homotopy commutative diagram:
QBY—>QB
Yav d
1
F—F

Vol

7 Y(BYN)—>E
yod
BN—7)B

Then 0= A, d¥=(2})*(A,d*). Since (2j)* is an isomorphism up to dimen-
sions exceeding the dimension of F, we have Agd* =0Q.

Finally, we consider the case when F is disconnected. Let F, be a
connected componant of F and consider the homotopy commutative diagram.

QB—>OB

i |4

F,—>F

Vol

E—E

Vol

B—B

sz
Here B is the appropriate covering of B, so QB —f) B is a homotopy
equivalence on path-components; as is the inclusion j: Fy—F. Thus d* is the
direct sum of copies of d* and the theorem follows immediately.
The Transgression Formula gives rise to Corollaries about evaluation maps.
Let w: M—F be the evaluation map based on a base point * €F, where M is a
space of self maps of F. That is, w(f)=f(*).

CoroLLARY . Let FT be the identity componant of F¥ where F is
homotopy equivalent to a compact connected CW complex. Then x(F)w*=
0: H*(F)— H*(FY). '

Proof. If we consider the universal fibration for F, denoted by F—>E _—




FIBRATIONS WITH COMPACT FIBRES. 181

B, we obtain the commutative diagram

h
QB —> FF
\L‘d \Lw
F ‘i) F

where h is an H-space homotopy equivalence.

CoroLLaRY. Let G be d space of homeomorphisms of F, and let f:F—F
be G-equivarient. Let F be homotopy equivalent to a compact connected CW
complex.

Then A;w* =0: H*(F)—H*(G).

Proof. Consider the fibre bundle F— E; X o F— Bg. Define f:E; X ;F—
Eo X oF by f(Ke,x))={e,f(x)). Then f covers the identity on B and restricts
to f: F—F on some fibre. Hence A;d*=0 by the transgression Formula. Thus
Apw*=0 by the commutative diagram

h
QB;—> G
da o
F -i)F

where h is a homotopy equivalence.

Remark. The first Corollary extends theorem A of [9] from compact
manifolds and homeomorphisms to compact CW complexes and homotopy
equivalences, thus answering a question of the second author. The second
Corollary extends a theorem in §3.2 of [2] from compact manifolds to compact
CW complexes.

§8. Proof of the Fibre Smoothing Theorems. Theorem A below is a
slightly sharper version of the open fibre smoothing theorem. Theorems A and
B together imply the closed fibre smoothing theorem as stated in the introduc-
tion.

TueoREM A. Let F be a finite CW complex of dimension k, and let V be
an open regular neighbourhood of F in R"™ (with n>5). If B is a CW complex
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of dimension at most n— 2k, then any Hurewicz fibration over B with fibre F is
fibre homotopy equivalent to a bundle with fibre V and group Diff (V).

Proof. Diff (V) is the group of diffeomorphisms of V with the C*
topology. We also use the C* topology for the spaces Emb (V, V), Imm (V, V)
of C* embeddings and immersions of V in V. Let H(V) be the space of
homotopy equivalences from V to V with the C° topology, and put Emby(V, V)
=Emb (V,V)N H(V) and Immy(V,V)=Imm (V, V)N H(V). Let Repy(7y,Ty)
be the space of vector bundle maps from 7y, to Ty covering homotopy equiva-
lences from V to V, with the C° topology.

Let f:Diff (V)>Emb,(V,V) and e:Emby,(V,V)->Imm,(V,V) be the
inclusion maps. Let d:Immy(V, V)—>Repy(7y,Ty) be the derivative map, and
let p:Repy(7y,7y)>H (V) be the projection. Observe that p, d, e, f are all
homomorphisms of associative H-spaces, so they induce maps of classifying
spaces.

The composite g= pdef:Diff(V)—»H(V) is just the inclusion, and it is
required to show that (Bg), : [ B, BDiff(V)]—[B, BH (V)] is surjective. Since T, is
trivial, p: Repy (Ty,Ty)—>H (V) has a cross-section which is a homomorphism of
H-spaces, so (Bp)«:[B, BRepy(7y,Ty)]—[B,BH (V)] is surjective.

Since V is open, d:Immy(V, V)—Repy(7y,Ty) is a homotopy equivalence.
This follows from the Smale-Hirsch theory of immersions:see [10] for a more
recent exposition. :

Let X={hE€Immy(V,V):h|F is an embedding}. General position theo-
rems imply that the pair (Immy(V, V), X) is (n —2k — 1)-connected. Since V is a
regular neighborhood of F, and any immersion in X embeds some neighborhood
of F, X deformation retracts onto Emb,(V, V). It follows that ¢: Emb,(V,V)—
Immg(V, V) is (n —2k~ 1) connected, so

(Be)s: [ B,BEmby(V,V)|—[ B, BImmy (V,V)]

is surjective.

Let W be a compact regular neighbourhood of F in V, so V— W=dW X
[0, 00). The restriction map p:Diff(V)->Emb,(W,V) has the covering homo-
topy property, by results of Thom and Palais [12]. To see that p is surjective, let
hEEmby(W,V) and put U=V —h(W). The restrictions on n and k ensure
that n—k>3, so U has the proper homotopy type of dU X[0,00). By the
Stallings engulfing theorem [14], U is diffeomorphic to U X[0,), so h
extends to a diffeomorphism of V. The fibre of p is the group Diff(V/ W)= {h
€Diff(V):h|W=1}. By an elementary “combing” argument, Diff(V/ W) is
contractible, so p is a homotopy equivalence. A similar argument shows that the
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restriction map Embg(V,V)—-Emb,(W,V) is a homotopy equivalence; it
follows that f: Diff( V)—Emb,(V, V) is a homotopy equivalence.

Together, these results on p,d,e,f show that (Bg).:[B,BDiff(V)]—
[B,BH (V)] is surjective, as required.

If W is a compact smooth manifold then diffeomorphisms of W are simple
homotopy equivalences, so 7 (Diff( W))—mo(H (W)) is not in general surjec-
tive. This shows that Hurewicz fibrations over S' with fibre W are not in
general equivalent to bundles with fibre W and group Diff(W).

Taeorem B. Let W be a compact C* manifold and let V=Int W. If
p:E—B is a fibre bundle with fibre V and group Diff(V), and B is an
n-dimensional CW complex, then pp,:E X T"—B is isomorphic to a bundle
with group Ditf(W X T™).

Proof. Let M be the boundary of W. It is more convenient to regard V as
the union of W and an open collar M X[0, o0). Let

Diff(V,W)={hE€DIiff(V):h(W)= W},

and put
K(W)=Diff(V)/Diff(V,W).

Here Ditf(V, W) acts on Diff(V) on the right, so h,,h, EDIff(V) represent the
same element of K (W) if and only if h(W)= hy(W). It is easily proved that
the projection Diff(V)— K (W) is locally trivial, with fibre Diff(V, W).

Let s:K(W)—K (W X S') be induced by the map Diff(V)—Diff(V X S')
sending h to A X 1.

Lemma 1. s:K(W)—=K (W X S is null-homotopic.

Proof of Theorem B Assuming Lemma 1. It is enough to reduce the group
of the bundle pp,:E X T"—B to Diff(V X T", W X T"). Suppose the group of
pp.| p~Y(B7) X T™—B" has been reduced to Diff(V X T", W X T") (this is clearly
possible if r=0). The obstruction to extending this reduction over B"*! is an
element of H™*YB™*LB"m K(WXT"), say a. By Lemma 1, s.(a)E
H™YB™1,B"; 7, K(W X T™"1)) vanishes; it follows that the group of the bun-
dle pp,|p "B 1) X T™*'»B"*! can be reduced to Diff (VX T™"1, W X T"*1),
By induction, Theorem 2 is proved assuming Lemma 1.

Proof of Lemma 1. Since M is invariant under Diff (V, W), we can put

Diff (V,W)={h €Diff(V,W): h(x,u) = (hx,u)(x EM,u €[ 0,»)) }.
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Let Diff (V) be the space (not group) of diffeomorphisms k: V—V such that;

h(MX(u+2))CMX(u+1,00)forallue[0,4], (1)
h(M X (3,00))D M x4. @)

Put K'(W)=Diff(V)/Diff (V,W), and let i:K'(W)—K (W) be induced by
inclusion maps.

Lemma 2. There is a map j: K(W)—=K'(W) such that ij=1:K(W)—
K(W).

Proof. Let K”(W)=Diff(V)/Diff (V,W), and let i':K'(W)->K"(W),
i":K”"(W)—K(W) be the inclusion and projection maps. By a theorem of
Palais [12], the restriction map Diff(V, W)—Diff(M X [0, c0)) is a fibre map.
The map Diff(M X [0, c0))—Diff(M X [0, 0)/M X0) sending g to g((g|M)X
1)~ " is the projection of a (trivial) fibre bundle. By composing these two fibre
maps, we obtain a fibration Diff(V, W)—»Diff(M X [0, 00)/M X0) with fibre
Diff (V,W). It follows that i”:K"(W)—>K(W) is a fibre map with fibre
Diff(M X [0, c0) /M X 0). Since Diff(M X[0,00)/M X0) is contractible [5] p.
337, i” is a homotopy equivalence. It will suffice to construct a map §: K" (W)
—K’(W) such that #'j’=1.

Define continuous maps «, 8,y : Diff(V)—[4, o) by

a(h)=inf{a €[4, 00):h(M X (a—1))C M X (3,0)},
B(h)=inf{bE[4,00):h(M X (a(h)+1,00))DM X (b-1)},
y(h)=inf{c €[4, 00):A(M X (c—1))C M X (B (h)+1,00)}.
Then y(h) > a(h)+2 and h(M X a(h)) C M X (3, o),
h(M X (a(h)+1,00))D> M X B (h), h(M X y(h))CM X (B (h))+1, ).

Choose a fixed homotopy 8:[4, c0) X I->Diff[0, c0) such that, for all be
[4,00), 8(b)=1, 8,(b)|[0,3]=1, 8,(b)(4)=Db and 8,(b)(5=b+1. Let P be the
space

{(a,c):a,ce[4,oo),c> a+2},

and choose a fixed homotopy ¢:P X I—>Diff[0, c0) such that, for all (a,c)€
P, ¢o(a,c)=1, ¢,(a,c)|[0,1]=1,

¢1(a.c)(@)=a, ¢,(a.c)(3)=a+1
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and
¢, (a,c)(4)=c.

Define homotopies 8, ¢: Diff(V) X I->Diff(V) by

6,(n)|W=1, 8,(h)(xu)=(x8,(B (1)),
o (MW=L, ¢,(h)(x,u)=(x.d(a(h),¥(R)(u)).
Define homotopy H: Diff(V) X I-Diff( V) by

-1

H,(h)=(0,(h)) "h(&:(h)).
Then Hy(h)=h,
H, (h)(MX2)CM X (3,00), H,(h)(MX(3,00))DM X4
and H,(h)(M X4) C M X (5, ). These conditions imply that
H, (h)(M X (u+2)) C M X (u+1, )

for all u€[0,4], so H,(h)EDiff'(V).
Since «,fB,y are invariant under Diff(V, W), H induces a homotopy
H':K"(W)XI-K"(W). Define

i:K"(W)—>K'(W) by j'(h)=H, (h):then i'j’ =1 as required.

To complete the proof of Lemma 1, it is enough to show that si:
K'(W)—K (W x §") is null-homotopic.

We shall form VxS! from Vx[0,4] by glueing VX0 to VX4. Put
Z=M X[0,1]u M X[2,0) and define

G:Diff (V)>Emb (Z X [0,4], Vx[0,4])
by
G (h)(x,u,a)=(x,u+a,a) (0<u<l)

and

G (h)(x,u,a)=(h(x,u+a),a) (u>2),
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where
hEDIff(V), xEM, u€[0,00), a€[0,4].

G (h) is an embedding since M X[a,a+ 1] and h(M X [a+2, o)) are disjoint for
all a €[0,4].

Let %(V X[0,4]) be the space of C* vector fields on V X[0,4]. There is a
map

£:Diff (V)->F(Vx[0,4]) such that:

(1) dp(E()= L., where p: V x[0,4]>[0,4] is the projection.
(2) &(h) agrees with dG (h)(0X %) over G (h)(Z X[0,4]).

By integrating £(h) for each h €Diff'(V), we obtain a map H:Diff'(V)—
Diff(V X [0,4]) such that H(h)|VX0=1 and dH (h)(0X %)=§(h). It follows
that

pH (h)=p:V x[0,4]-[0,4]

and

Let ¢:R—[0,4] be a fixed C* function such that ¢(u)=4 if © <0 and
¢(u)=0 if u > 1. Define ay, o, : Diff'(V) X V—[0,4] by

oo (h,x,u)=¢(u) (u>0),
o) =4 (435 [0,c0),
ar(h,h(x,u))=¢(u—-2) (u>2),
oy (h,h(y))=4 (y&MX[2,00)).

Put o, =(1—t)ay+ ta; for all tE1.
Define e:V X[0,4]—>V x §* by e(y,a)=(y,e™?). Define homotopy

E’:Diff (V)X I-Emb (M X [0,0), VX [0,00))
by
E’(h)(x,u)=H (h)(x,u,a,(h,x,u)) forxeM, uE[O,oo).
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E’ induces a homotopy E : Diff (V) X I-Emb(M X §!,V x §1) by
E,(h)(e(x,u))=eE/(h)(x,u) (xEM,u€[0,4]);
this is well-defined since _
H (h)(x,0,0,(h,x,0))=(x,4,4) and H(h)(x,4,a,(h,x,4))=(x,4,0).
A similar computation shows that E,(h) is a C* embedding. Put
N, (h)=E,(h)(MXS')Cc VXS e (N, (h))C V' [0,4]

is shown schematically in Fig. 1.
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% |
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N Y
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e — - — _.|._. — - —_
%
%
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e ! (N, (W) | %,
I //+/0
| &
[
|
|
M x[0,00)%0 M X[0,00)X¢ M x[0,00)x1
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Define isotopy L :I—-Emb(M X S*, VX §?) by

L,(e(x,u))=e(x,4(1— t)+ t(u+d(u)), (1 - t)(4—u) + tp(u))
(xEM, tel,uc[0,4]).
L, is a C*® embedding for all ¢, and Ly(M X S')=M X S*. It is easily checked
that L, = Eyh) for all h€Diff (V). '
Therefore E,(h) is isotopic to L, for all h,t. By the isotopy extension
theorem, there is a diffeomorphism g of VX S* such that g(M X S$*)=N,(h). If

also g’(M X S")=N,(h), then g(W)=g/(W) implying that g, g’ represent the
same element of K (W % S§'). In this way E induces a homotopy

Diff (V)X I->K (W X S).

If f eDiff (V, W) then N,(hf)= N,(h) (for if (x,u) EM X[1, 00)— h(M X(2, 0))
then

a,(h,x,u) = a,(hf,x,u) = 4f).

So E induces a homotopy E:K'(W)XI->K (W X SY). Since

eE{ (h)(M X [0,00)— h(MX 2,0)))
=e(Mx[4,00)—h(M 0)),4)
=e¢(Mx[4,00)—h(M )),0)

,=eEl’(h)(M><[4,oo) h(M><( %)),

we have

If xeM, uc(2,6] then
E{ (k) (h (x,u)) = H (h)( (x, ), (u—2)
=(h(x,u+¢(u—2)),6(u—2))
=(hX1)E{ (1)(x,u),
so Ny(h)=(h X1)N,(1).
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There is an isotopy L' :I-Emb(M X S,V x S1) such that L; is the inclu-
sion and L'(M X §1H)=Ny(1). By the isotopy extension theorem, there are
isotopies L,L’: I>Diff(V x S?) such that Ly=Lj=1 and L,=L,|M X S%, L/=

L]|M x S*. Now L,E,(h X 1)L’ combine to give a homotopy

J:K'(W)XI->K(WXS') with J (h)=MXxS!

and J;(h)=(h X 1)(M X S'). So J is a homotopy from a constant map to si, as
required.
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