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Topology and the Robot Arm
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Abstract. A robot arm is in effect a smooth function from the space of positions of the arm to the
space of positions of a coordinate frame attached to the end of the arm. For the most common robots
built today, this means a map f: T" — R3 X §0;. We describe the singularities of this map. The set of
rotational singularities is the set of arm positions where the axes of the links are parailel to a plane.
Thus, it is always two-dimensional. Also, we show that f is homotopic to a map which factors through
a circle, and represents the generator of 7{(SO;). The engineering implication of these statements ate
discussed.
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1. Introduction

Every rotation in three-space can be described by specifying an axis and an angle
of rotation about that axis. A very natural map R: §' X §' X §' = T3— SO, arises
as follows. For any three angles (0, 8., 65) € T>, we perform a rotation about the
x-axis of angle 6, and then a rotation about the y-axis of angle 6, and then,
finally, a rotation about the z-axis of angle 8. The resultant rotation is defined to
be R(6,, 0, 05). .

This is a smooth mapping. We shall determine S, the set of singularities of R,
that is the set S of points 8 € T so that the Jacobian of R at 6 does not have
maximal rank. S consists of points of T2 so that x, y’ and z” lie in the same plane;
where y' is the image of the y-axis under the first rotation and z” is the image of
the z axis under the first two rotations.

We shall also show that R is homotopic to a map T35 $'5 SO; where pis
multiplication in the circle group and « represents the generator of (SO;) =
Z,.

In fact we shall consider maps R: T"— SO, given by specifying n axes of
rotation xi, ..., x, in R® and letting R(#,, ..., 6,) be the resulting rotation given
by composing n rotations where the ith rotation is given by rotating an angle 6
about the axis x;.

We can build a physical representation of such a map. Consider a sequence of
rigid rods, or links, /;. Connect ; to ., by a point so that /., can rotate about an
axis y;+1 fixed on the link /. Thus, the axis y, is a fixed line and y, can be rotated
about y;, and y; can be rotated about y,. The connected set of links form an
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arm. On the end of the arm we fix a coordinate frame. It will be convenient to let
the x-axis of this frame be parallel to y,, the axis about which I, is joined to [,_;.

The map R: T"— R?>X SO;— SOs is given by taking a point in the torus
(6y,...,6,), rotating each link / about the axis y; through the angle 6; and
considering the frame on the end of the arm. Its origin is given by a point in R?
and its orientation is a point in SOs;. Then we forget about the origin and
consider only the orientation. We neglect, of course, possible collisions of the
links with themselves.

The relationship of the axes x,,...,x, and y;,..., y, given by these two
representations of R is a follows: y,;=x;, y, =image of x, under the first
rotation, y; = image of x; under the composition of the first i — 1 rotations.

2. Topological Theorems and Engineering Remarks

"THEOREM 1. A point 6 T" is a singular point for R if and only if the axes
Vi, - .-, Yo are all parallel to a plane.

Proof. To rotate a frame A into a nearby frame A’ we would move the x axis of
A into the x' axis of A’ while letting the y, z plane rotate at a speed so that when
x becomes x” we also have y becoming y" and z becoming z’. There is no trouble
rotating the y, z plane about the moving axis x. But it may be impossible to
instantaneousely move the x axis in the direction of the x’ axis. Now note that the
axes y; and y,, the last axis, lie in a plane. The rotation about y; imparts an
instantaneous velocity to y, perpendicular to the plane. If we simultaneously
rotate about all the y; we impart to y, a velocity which is the vector sum of all the
velocities of y, coming from the different rotations about the y;. If all the y; lie in
a plane, the last axis y, can only move perpendicular to that plane. On the other
hand, if the axes do not lie in a plane, any instantaneous velocity vector can be
created for y, since the normals to the planes define by y; and y, span three
space.

REMARKS. (a) Half this theorem appears in [5]. That is, if the axes are parallel
to a plane, then the arm is in a singular position.

(b) Singular positions are bad for robot arms. They may lead to infinite
accelerations to produce a desired slight change in the orientation of the end
effector (i.e., frame). They are always there no matter how many links are used.
The problem is to avoid them. They can be avoided by keeping the axes of the
arm from becoming parallel to a plane. This simple observation is not widely
known and does not seem to be in the literature. It should be noted by everyone
who wants to study robot arms.

COROLLARY. The set of singularities S = T" is two-dimensional.

Proof. Assume y;,..., vy, are parallel to a plane. Rotation about y, rotates the
remaining axes and keeps them in a plane. Rotating the last link about y, does
not affect any axis, so they remain in a plane. Thus we see that any 6€ S is
actually contained in a two-dimensional torus contained in S. If we rotate about
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any interior axis y;, we leave y, fixed and rotate y;+; out of the plane defined by
y: and y;. So combinations of the interior axes can only be parallel to the plane
defined by the first and last axes in discrete positions.

REMARKS. (a) For n =3, avoiding a singular point may be difficult. For some
arms there are certain orientations of the end effector for which every position of
the arm giving that orientation is a singular position. For n >3, the singularity
sets can be avoided. This can be seen since the codimension n—2 is at least 2
and so the set S cannot cut T" into two pieces locally.

(b) In [2] we show that any smooth map f: TN — SO; must have singularities
by using a more sophisticated topological argument, but we do not know what
the singularities look like in this more general case.

THEOREM 2. A robot arm map R: T" — SOs is homotopic to the composition
T*5 $'5 SO, where p is the group multiplication of S' and « represents the
generator of m(SOs) = Z,.

Proof. A robot arm map is determined by the angles ¢; between the succeeding
axes yi+1 and y;. We can construct a homotopy of robot arms R, by letting each
angle ¢; become smaller and smaller until we end up with a robot arm R, whose
axes are all parallel. No engineer would build such an arm, but it is seen that the x
axis of the end effector is fixed and the y and z axes rotate about x through an
angle which is the sum of the angle of rotation about each axis y;. Thus
R;: T"5 8'5 SO; since the ‘sum’ means we use the group structure of S!, and
the fact that end effector for R, is specified only by the angle the y axis has
rotated gives the S'. Now we must show that a represents a generator of
m(80s). For this we consider the map w: SO; — S$? which takes a frame in R to
its x axis. (By a frame we mean an orthogonal set of unit vectors denoted x, y
and z and called axes by abuse of language.) Then we have a fibre fundle
§'—S0; 5 S% Now weo R, is a constant map whose image is x in $%. Thus, «
maps S' diffeomorphically onto the fibre. The homotopy exact sequence of this
fibration is

(S m(SOs)— m(SH) or - - Z—s Z,—>0.

So the generator of Z maps under ax to the generator of Z,. This proves the
result.

COROLLARY A. we R: T"— §? is homotopic to a constant.

COROLLARY B. There is no continuous cross-section to R or to we R.
Proof. A cross-section is a continuous map s so that Res = identity map. If
there were a cross-section to R, then

identity = (R° $)x = Rxo° sx.

But since m(T") has no torsion and 7(SOs) = Z, this is impossible. (w° R) has
no cross-section since otherwise S* would be contractible by Corollary A.
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REMARKS. (a) The inverse kinematic problem of the engineers cannot be
solved. That is, given an orientation of the end effector, calculate a configuration
of the robot arm which yields that coanfiguration. Since nearby orientations should

‘be given by nearby configurations, we see that the inverse kinematic ‘problem is

equivalent to finding a continuous cross-section. This cannot be done.
{b) Corollary B was also known to Daniel Baker.

3. Avoiding Singularities and Inverse Kinematics

It was proposed on p. 770 of [1] to put functional restrictions on the joint angles
to stay away from the singularities. That means find some map f: D— T — S so
that Ro f has no singularities.

That procedure will not work if the domain D is a closed manifold. The map
R o f must have singularities. This can be seen as follows.

Proof. we Ref: D—> §? is homotopic to a constant by Corollary A. If Re f has
no singularities, neither will we R f since w is a fibre bundle projection. So by
Ehresmann’s theorem we Ref: D—> §? is a fibre bundle. But this is impossible
since the fibre F' must be a finite-dimensional manifold and also F is homotopy
equivalent to D x 5% since we R f is contractible. Since Q52, the loop space of
$?, has infinite-dimensional homology we have a contradiction.

We propose an approach here to avoid the singularities and solve the inverse
kinematics problem at the same time. For every position of the arm @ and small
change of end effector orientation AR(8), find a AP so that R(O+A6)=
R(6) +AR(6). (The plus signs are poetic license). That is, find a function
depending on & and AR(8) which gives A# so that the new arm position 6 +A8
gives the new end effector position R(8)+ AR(9).

We will convert this question to one of finding a cross-section to a function
which represents these little changes. There is no topological difficulty finding the_
cross-section. This approach with more details is in [2].

Consider the commutative diagram

R«: D > R*E > E

T—S—T>T—S —?)503

where E-5 SO; is the tangent bundie of SO;, R*E is the pullback to T — S by
the map R restricted to T— S and D> T — § is the tangent bundie of T — S. All
bundles are trivial bundies, although we will not use that fact here.

Now « is an onto bundle map and so D =(ker a)@® R*E. Hence, there is a
cross-section s to «. )
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We may think of D as a space of pairs (9, A9) where A8 represents a very small
change in the robot arm and R*E as a space of pairs (0, AR(6)) where AR(6)
represents a very small shift in the orientation of R(0). Then « takes (6, A8) onto
(8, AR(0)) where A@ results in the change in orientation AR(6). The cross-
section s takes (0, AR®) into (0, f(6, ARO)) where f(6, ARO) is a change in the
arm which results in the change AR(9) of orientation.

One attempt using this approach is in [4].

REMARKS. Note that removing $ not only removes the singularity of motion,
but also permits the inverse kinematics problem to be solved in the above sense.
With singular points we couldn’t find a cross-section from the pullback R*E to
the tangent bundie of T".
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