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Let V be a vector field on R™. Suppose that M™ is a smooth manifold
of dimension n, and suppose that f : M — R” is a smooth map. We ask the
question: Is there a vector field V* on M which lifts V? That means that
f«(V*(m)) = V(f(m)) for every m € M. By f. we mean the differential
map of f induced between the tangent bundles T'M — TR™.

Such a lifting vector field need not exist. Its existence is related to the
index of a pullback vector field f*V. This vector field is dual to a pullback
by f of the one—form on R™ dual to V. Stated another way, we define
f*V by using the following equation where ( , ) represents some choice of
Riemannian imnerproduct. '

(fV(m),vm) = (V(f(m)), fu(vm))

If a lifting V'* for the vector field V exists, then its index must be equal
to the index of f*(V'). We can calculate the index of f*(V') locally in R™ for
the case when f has no singularities on the boundary of M. We need some
notation to express the theorem. We suppose that V has isolated zeroes
denoted by x;. Then z; has a local index v; and a winding number w;. The
winding number w; is defined as follows. Draw a ray from z; to infinity. At
each intersection of the ray with the image under f of the boundary oM
there is a local inside and outside. If the ray passes from the inside to the
outside add a +1, if the ray passes from the outside to the inside, add a —1.
The sum of these £1 equals the winding number w;. Next we define the
normal degree deg N. For each m € M, there is a unit outward pointing
normal N based at f(m). Then the map N : dM — S*~! is defined by
parallel translating each of these vectors to the origin. This is the famous
Gauss map, or normal map. Then 'degN is simply its degree where the
orientation of M and S™~1! are chosen consistent with the orientation of R™
and the notion of outward pointing normals.



THEOREM. Let M be a compact smooth manifold with orientable bound-
ary. Suppose f is a smooth map from M™ to R™ so that the singular set
does not intersect the boundary and so that no zero of the vector field V
lies on the image of the boundary. Then if n > 1,

Ind (f*V) = Zwivi + (x(M) — deg N).

Remarks. 1) There is no need for M to be orientable. Also, it can
happen that a zero z; is not in the image of f. Thus the term Xw;v; is not
the degree of the composition of f and V at 0.

2) The boundary of M must be orientable, hence it is stablely paral-
lelizable. This follows since f is a codimension 1 immersion of OM into
R™.

3) For n odd, the dimension of M is even. Hence, by a theorem of
[Hopf], the normal degree of the immersion must equal half of the Euler
characteristic x(8M). It follows that (x(M) — deg N) = 0. Thus for odd
dimensions the theorem becomes

Ind f*(V) = Zwivi

4) The condition that V has isolated zeroes is not necessary. If z;
denotes a connected component of the zeroes of V', the integer v; still will
denote the index of the set z; and w; will denote its winding number. These
still remain well-defined integers.

The zeroes of f*(V) are of two types. There are the ordinary zeroes,
which occur at nonsingular points and the latent zeroes which occur on the
singular set of f. The image of an ordinary zero is always a zero of the
vector field V. The image of a latent zero need not be zero. In fact a latent
zero occurs at m precisely when the vector V(f(m)) is orthogonal to the
image of the tangent space at m under the derivative map f,. If we assume
that V has isolated zeroes z; and that f*(V') has latent zeroes which indices
r; we get the following formula. Here n; denotes the number of nonsingular
points in f~1(z;).

Ind f*(V) = Znivi -+ Z r;
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Now suppose that V has no zeroes. Then

Ind f*(V) = er = x(M) — deg N

For odd dimensional M, we see that Ind f*(V) = Zr; =0.
If f*(V) has no zeroes then

Ind f*(V)=0= Y ww; + (x(M) — deg N)

In the case when both f*(V') and V have no zeroes we see that deg N =
x(M). This occurs when a nonzero V has a lifting V*. As a corollary
we obtain the theorem of [Haefliger] that the normal degree of the bound-
ary equals the Euler characteristic of the manifold when the map f is an
immersion.

In general when V has no zeroes on the image of the singular set, a
necessary condition for the existence of a lifting V* is

wai + (x(M) — deg N) = Z n;v;

For odd dimensional M we have Yw;v; = Xn;v;.

Let A denote f(X), the image of the singular set under f. If V is a
vector field which is zero on A, then there is an automatic lifting V*. If
A has a tubular neighborhood T so that f~1(T) is a tubular neighborhood
of f~1(A), then we can calculate ¥r; when the vectors of V are outward
pointing normal to 7. It is simply equal to x(f~1(A)). Such a vector
field can always be constructed in the case when A N f(OM) is empty, so
we obtain the following result.

THEOREM. Suppose that AN f(OM) is empty and there are tubular
neighborhood as above. Then

X(F7HA) =) wix(Ai) + (1) D (w; — nj)x(D;) + x(M) — deg N

where A; are the components of A and the D; are the bounded components
of R" — A. For each D; we select a point not in f(OM) and using this point
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we calculate w; and n;. The numbers w; and n; vary as we vary the chosen
point, but their difference is constant.

These theorems follow from the following index formula. Let M be a

compact manifold with or without boundary. Let V be a tangent vector
field on M which has no zeroes on OM. Then

Ind V + Ind 8.V = x(M)

where the vector field d_V is defined as follows. Let _M be the open
set on the boundary where V is pointing inward. Then we first consider
V restricted to 0_M and then we project each V(m) onto its component
0_V(m) tangent to 8_M.

Remarks. 1) the set of points .M may very well be empty. In that
case the index of 8_V is zero. Then for closed M or for vector fields pointing
out of the boundary we have the familiar fact that the index is equal to the
Euler Characteristic.

2) The formula is certainly not well known. Since Marston Morse dis-

covered it sixty years ago it has been rediscovered at least three times:
[Morse], [Pugh], [Koschorke], [Gottlieb 1] and [Gottlieb 2].

3) The formula is virtually an inductive definition of index. If we assume
that the index of a zero dimensional point is one, the equation will tell
us how to compute the index for vector fields on one dimensional spaces.
Then the one dimensional index gives the two dimensional index and so on.
The only technical difficulty is that _M is not a compact manifold. But
despite this, every fact about the index of vector fields should follow from
this equation.

Now the proof of the first theorem proceeds as follows. The fact that f
is an immersion on OM and that there are no zeroes of V on f(0M) allows
us to define a “Gauss map” V : &M — S"~1. The coincidence number of
the Gauss maps N and V is equal to T nd(0(f*V)) up to a sign. But the
coincidence number in this situation is the sum of degrees and so one gets
Ind (O(f*V)) = deg N — deg V. The degree of V can be calculated using
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winding numbers and indices of zeroes since each component of OM is an
oriented manifold which bounds. Then we insert the value of Ind (9_f*V)
into the index formula above.
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