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1. Introduction.
Morse’s equation, which is the main tool, is equation (7). It is used to prove

several different equations, many of which are described briefly in this introduc-
tion and more fully in the body of the paper.

To motivate the concept of the pullback vector field, which is the first item in
the title and the first subject of the paper, we consider the following question. Let
V be a vector field on Rn. Suppose that Mn is a smooth manifold of dimension
n, and suppose that f : M → Rn is a smooth map. We ask the question: Is there
a vector field V ∗ on M so that f∗(V

∗(m)) = V (f(m)) for every m ∈ M? Here
f∗ : TM → TRn is the differential of f on the tangent bundles.

Such a vector field V ∗ need not exist. But there is a vector field on M which
always exists which we call the pullback vector field f∗V . It is defined in section
4. The index of f∗V equals the index of V ∗ when it exists. And in in the case
where f restricted to ∂M is an immersion and V has no zeroes on the image of
f |∂M we calculate the index in Theorem 5 which gives the following formula.

(1) Ind(f∗V ) =
∑
i

ωivi +
(
χ(M)− deg N̂

)
where V has only isolated zeroes indexed by i and vi represents the index and
ωi the winding number of the ith zero. The term χ(M) − deg N̂ is zero for the

odd dimensional case, and χ(M) is the Euler–Poincaré number of M and deg N̂

is the normal degree of the imbedding f : ∂M → Rn. In fact, N̂ represents the
Gauss map or normal map. Its degree is called the normal degree or Curvatura
Integrala of an immersion. In some sense this equation is a generalization of the
global Gauss-Bonnet Theorem.

A local way to calculate Ind f∗V yields the equation

(2) Ind(f∗V ) =
∑
i

nivi +
∑
j

rj

where ni is the number of regular points in the inverse image of the ith zero and
rj represents the index of the jth “latent” zero of f∗V . It is the existence of latent
zeros of f∗V which obstructs the existence of V ∗. These two formulas depend
only on quantities which can be calculated in Rn. They imply a generalization of
the theorem of Haefliger, [8] which states that the normal degree of the boundary
of a codimension zero immersion Mn → Rn is equal to χ(M).

In section 7 we use the index of vector fields to study fixed points for compact
manifolds in the same dimensional Euclidean space. Suppose that Mn ⊂ Rn is a
compact body in Euclidean space. If it undergoes a transformation f : M → Rn,
what points remain fixed? The index of a vector field Vf defined on M using f
gives us a means to devise a fixed point index in this case. Using this, we find
that if f : M →M has no fixed points on ∂M ,

(3) Λf + Λ−V̂f ,N̂N̂ = χ(M).
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Here Λf is the Lefschetz number for f and Λ−V̂ ,N̂ is the coincidence numbers of

two maps. N̂ is the Gauss map ∂M → Sn−1 and −V̂f is the “Gauss map” for
the vector field −Vf . Thus we have a topological description of the difference
between Λf and χ(X) for any finite complex X . No matter what the thickening
of X is, the two Gauss maps defined on the boundary always have the same
coincidence number.

We say that f : Mn → Rn is transverse if the line from m to f(m) is not
tangent to ∂M at m. Then we see that transverse maps must have a fixed
point if χ(M) 6≡ 0(mod 2). Indeed if M is even dimensional, a transverse map
has a fixed point if χ(M) 6= 0. These methods imply Dold’s generalization of
the Brouwer fixed point theorem found in [3]. If f : Dn → Rn so that either
x − f(x) never points normally inward, or else never points normally outward,
where x ∈ ∂Dn = Sn−1, then f must have a fixed point.

In section 8 we consider another type of function, the restriction to M of the
projection of Rn to a plane Πk of dimension k. Then the study of the index of
Vf results in an equation

(4) χ(M) = (−1)n−kχ(Π ∩M) +
∑
i

convexity numbers.

The convexity numbers depend on the curvature of ∂M and the position of Πk

and normal lines from ∂M to Π. They maybe related to the convexity numbers
defined in a more general context in [1].

For example, if Π0 is a point in R3, then k = 0 and n = 3. Then we have

(5) χ(M) = −χ
(
Π0 ∩M

)
+
∑
i

ci

where ci is calculated as follows in the generic case. The point Π0 lies on a set
of lines normal to ∂M so that as one moves along the line from ∂M to Π, one
enters into the body M . These lines are indexed by i. Now let us imagine that
Π moves along some normal `i. When Π = xi ∈ ∂M we let ci = +1. As Π
moves along the normal and crosses a point which is the center of curvature for
one of the principal curves of curvature for xi, then the ci should change sign.
Note that χ(Π ∩M) = 0 or 1 according to whether Π is outside or inside M .

Thus for example, if Π0 is inside a diffeomorphic 3–ball, the sum total of
principal radii of curvature it crosses as it moves toward ∂B along all exiting
normals must be even. If Π0 were outside, it must be odd.

Another example when k = 1 and n = 2. Then Π is a line in the plane. Then
(4) reduces to

(6) χ(M) = −χ(Π ∩M) + Σci.

In this case note that χ(Π ∩M) is the number of components of the line in M .
Also ci is computed as follows. Let i index those lines in the plane which are
normal to Π and to ∂M , and so that traveling from ∂M towards Π, one initially
enters into M . Then if ∂M curves towards Π at χi, let ci = +1 and ci = −1 if
∂M curves away.
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In the case of the plane (k = 2) in R3, the i indexes lines normal to Π and
∂M which enter M as one moves from ∂M to Π. Then the ci should equal the
sign of the curvature at xi.

A different relationship involving Euler-Poincaré numbers and curvature is
given in theorem 15. We give a very special consequence of it here. Suppose
a line intersects a solid torus in two segments. Then there are four points on
the boundary torus with negative curvature whose tangent planes all contain the
line.

Our methods are based on the following index formula. Let M denote a
compact manifold, with or without boundary ∂M . Let V be a tangent vector
field on M . Suppose that V has no zeroes on ∂M . There is an integer associated
to V called the index of V , denoted Ind(V ) here. This index satisfies the following
equation, [11], [12], [9], [3], [4],

(7) Ind(V ) + Ind(∂−V ) = χ(M).

Here χ(M) denotes the Euler–Poincaré number of M , and ∂−V is a vector
field defined on part of ∂M as follows. Let ∂−M be the subset of ∂M containing
all m so that V (m) is pointing into the manifold. Then ∂−V is the vector field
given by first restricting V to ∂M , and then projecting the vectors to ∂M so as
to get a vector field tangent to ∂M , and finally restricting ∂V to ∂−M .

This equation could almost serve as a definition of the index of a vector
field. All the properties of the index should be derivable from it. Yet, for the
past sixty years, it has largely been ignored. What we do here is look at various
situations in topology where a vector field can be defined, and study the different
interpretations of the least familiar term, Ind(∂−V ). In the next section, we will
show that Ind(∂−V ) equals a coincidence number under some circumstances.

2. Coincidence numbers.
We want to show that Ind(∂−V ) equals a certain coincidence number. In this

section we study the local situation.
Let α : Dn−1 → Rn be a smooth imbedding of an n− 1 dimensional disk into

n–dimensional Euclidean space. Suppose that V is a vector field on Rn which is
not zero on the image of D in Rn. That is,

V (α(m)) 6=
→
0 ∈ Tα(m)(Rn) where m ∈ D.

Let N be a vector field on α(D) of unit length normal to α(D). It will
be necessary to choose orientations of D and Rn in order to use coincidence
numbers. But since the index of a vector field does not depend upon the choice
of orientations, it is necessary to be careful. We relate the orientations of Dn−1

and Rn as follows.
Choose a basis of the tangent space at m, denoted Tm(D). Call the ba-

sis b1, . . . , bn−1 and give it the ordering which agrees with the orientation of
D. Then {α∗ (b1) , . . . , α∗ (bn−1) , N(α(m))} is a basis for Tα(m) (Rn). Then we
let the ordering {α∗ (b1) , . . . , α∗ (bn−1) , N(α(m))} represent the orientation of
Tα(m) (Rn).
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Now, using N , we want to project V |α(D) down onto a vector field V ′ which
is tangent to α(D). We define V ′ by

(8) V ′(α(m)) = V (α(m))− [V (α(m)) •N(α(m))]N(α(m)).

Or more abbreviated, V ′ = V − (V •N)N , where • represents the dot product.
Next we pullback V ′ to a vector field V ∗ using α. We define V ∗ on D by
V ∗(m) = α−1

∗ (V ′(α(m))). This is well defined since α is an imbedding.

The vector field N gives rise to a Gauss map or normal map N̂ : D → Sn−1.
This is defined by parallel translating the normal vector N(α(m)) to a vector
based at the origin of Rn. Then the tip of this vector lies on the unit sphere. We
introduce the concept of the Gauss map V̂ for any non zero vector field. Then
V̂ : D → Sn−1 is given by making V of unit length and parallel translating the
vector to the origin, and looking at its end point. Thus

m 7→ V (α(m)) 7→ V (α(m))

‖V (α(m))‖ 7→ V̂ (m)

where V̂ (m) a parallel vector of unit length based at the origin.

Now V ∗ is related to V̂ and N̂ as follows. The point m0 ∈ D is a coincidence
of V̂ and N̂ , that is N̂ (m0) = V̂ (m0), if and only if N (m0) • V (m0) > 0 and

V ∗ (m0) =
→
0 ∈ Tm0(D). Now this is obvious. What is not so obvious, and needs

a careful argument, is that for isolated coincidence points m0, the index of V ∗

at m0 is equal to the coincidence number, Coinc(N̂ , V̂ ).
We follow the excellent, and perhaps unique, account of coincidence [13], see

chapter 6. Suppose we have two oriented manifolds Mn and Nn. Suppose that
f, g : M → N are two maps with an isolated coincidence point m0. Then the
coincidence number of f and g at m0, denoted Coinc (f, g;m0), is defined as
follows. Choose two homeomorphisms of the unit disk D ⊂ Rn, denote them
by h : D → M and k : D → N . We choose h and k so that h(0) = m0 and
k(0) = f (m0) = g (m0). Also we want the image of h(D) ⊂ M under both f
and g to be contained in k(D), so that k−1fh and k−1gh are defined. Also we
choose h so that h(D) contains only one coincidence point, m0. And last, but
very important, we choose h and k so that k−1h : D → D preserves orientation.
Now define

(9) ϕ : Sn−1 = ∂D
h−→M

(f,g)−→ N ×N k−1×k−1

−−−−−−→ D ×D F−→ D −
→
0

where F (x, y) = 1
2 (y − x). In other words,

(10) ϕ(m) =
1

2

(
k−1gh(m)− k−1fh(m)

)
∈ D −

→
0 .

Then the degree of ϕ is defined to be Coinc (f, g;m0). If M1 = M2 and the
identity is orientation preserving, then Coinc (f, 1;m0) is the usual fixed point
index. This definition is independent of the choices made. Also the definition is
stable under homotopies of f and g such that no coincidence point of ft and gt,
for any t, lies on the boundary of h(D). However, if the orientation of either M
or N is reversed, then the sign of the coincidence number changes. And if the
roles of f and g are reversed, then

(11) Coinc(f, g) = (−1)n Coinc(g, f) where n = dimM.
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Lemma 1. If m0 is an isolated coincidence of N̂ and V̂ , then Ind (V ∗) =

Coinc
(
N̂ , V̂ ;m0

)
.

Proof. Without loss of generality, we can assume that the imbedding α : Dn−1 →
Rn takes the unit disk D in Rn−1 into Rn so that the coincidence point m0 =

→
0 .

Assume also that N(0) = (0, 0, . . . , 0, 1), so that V̂ (0) = N̂(0) is the “north
pole” of Sn−1 ⊂ Rn. We can assume also that α(D) is small enough so that the

images of V̂ and N̂ lie in a small neighborhood of the north pole in Sn−1. Let
π : Sn−1 → Dn−1 be the projection. It gives a homeomorphism between the
northern hemisphere and the equitorial disk. In our calculation of Coinc(N̂ , V̂ ),
the role of h will be played by the identity and the role of k by π−1. The choice of
orientations is given by choosing an orientation of Rn. This induces orientations
on the northern hemisphere and on Dn−1 and π is orientation preserving. The
outward pointing normal to Sn−1 induces the orientation on Sn−1.

Let αt : D → Rn be an isotopy of embeddings so that αt(0) is fixed. Then we
have normal fields Nt(m) for each t ∈ I, and each Nt is defined on αt(D). We
choose the isotopy αt so that Nt(0) = N(0). More precisely, Nt(m) ∈ Tαt(m)(Rn)
so that ‖Nt(m)‖ = 1 and Nt(m) is orthogonal to (αt)∗ (Tm(D)). Finally we
assume that α1 = translation of D, (so that 0 goes to N(0) in the (n − 1)–
dimensional hyperplane passing through N(0) and orthogonal to N(0)). So αt
can be thought of as a deformation of α(D) which flattens it out into the tangent
hyperplane at α(0). We assume that α1 translates D to the unit disk tangent to
the north pole.

Now we define a family of vector fields Vt, each one defined on the correspond-
ing subspace αt(D) of Rn, by letting

(12) Vt(m) = [V (α(m)) •N(m)]Nt(m) + (αt)∗ (V ∗(m)) ∈ Tα(m)(Rn).

Then we have (αt)∗(V
∗) = Vt for every t.

Now we consider N̂t and V̂t. For any t, the maps N̂t and V̂t have only one
coincidence point, at 0, since Vt = V ∗ has only one zero, at 0. That being the
case,

(13) Coinc(N̂ , V̂ ) = Coinc(N̂t, V̂t) = Coinc(N̂1, V̂1).

Recall that V̂1(m) is parallel to N(
→
0 ). Thus

(14) V1(m) = [V (α(m)) •N(m)]N1(m) + α1∗ (V ∗(m)) .

In addition we have, where v0 denotes vm translated to the origin,

(15)

N̂1(m) = north pole; V̂1(m) =(
[V (α(m)) •N(m)]N(

→
0 ) + (α1∗(V

∗(m)))0

)
(

(V (α(m)) •N(m))
2

+ ‖α1∗ (V ∗(m))‖2
) 1

2

.
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Recall that π :Northern hemisphere → D was the projection and π ◦ α1 =

identity. Then π◦N̂1 =
→
0 and π◦V̂1(m) = k(m) (α1∗(V

∗(m)))0 = k(m)(V ∗(m))0

where k(m) =
[
(V (α(m)) •N(m))2 + ‖α1∗ (V ∗(m))‖2

]− 1
2

> 0. Now by (10),

the coincidence number Coinc(N̂1, V̂1) is the degree of ϕ : ∂D → Rn−1 −
→
0 ,

where

(16)
ϕ(m) =

1

2

(
π ◦ V̂1(m)− π ◦ N̂1(m)

)
=

1

2
k(m) (α1∗(V

∗(m)))0 ∈ Rn−1

On the other hand, the index of a vector field V is given by the degree of the
map

(17) ψ : ∂D → Rn−1 − 0 where ψ(m)− (V (m))0.

Thus we have shown that

(18) Coinc(N̂ , V̂ ) = Coinc(N̂1, V̂1) = degϕ = Ind

(
k(m)

2
V ∗
)
.

Now k
2 : D → R+ is homotopic to the constant 1, and since this homotopy does

not introduce new zeroes, we see that Ind
(
k(m)

2 V ∗
)

= Ind(V ∗). This proves the

lemma.

3. Codimension one immersions.
In this section we consider the following situation. Let Cn−1 be a smooth

closed oriented manifold. Suppose that α : Cn−1 → Rn is a smooth immersion.
Let V be a vector field on Rn which is not zero on the image α(Cn−1) ⊂ Rn.
We choose an orientation of Rn. Now for each point m ∈ C, we choose a vector
N(m) ∈ Tα(m)(Rn) such that N(m) has unit length and N(m) is orthogonal to
the tangent space of α(C) at α(m). Now N induces an orientation on C exactly
as in the last section. Note that N is not a vector field on α(C) since α need not
be injective. Now for each m ∈ C, we define a vector V ′(m) ∈ Tα(m)(Rn) by

V ′(m) = −[V (α(m)) •N(m)]N(m) + V (α(m)).

Thus V ′(m) • N(m) = 0, so V ′(m) is tangent to α(C) at α(m). Again V ′

does not define a vector field on α(C) . We define a vector field V ∗ on C by the
equation

α∗(V
∗(m)) = V ′(m).

Now V ∗ is well defined since α is an immersion, so α∗ is injective, and V ′(m) is
in the image of α∗.

We denote by V ∗+, the vector field V ∗ restricted to the open subspace of C
such that V (α(m)) • N(m) < 0. Note that every zero of V ∗ is either in V ∗+ or
V ∗− since V (α(m)) is never zero. Thus

(20) IndV ∗+ + IndV ∗− = Ind(V ∗) = χ(C).
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We recall here some more coincidence theory, suppose M1 and M2 are both
closed, oriented manifolds of dimension n. Suppose f and g are maps from M1

to M2. Suppose that f and g have a finite number of coincidence points, Mi.
Then we introduce the Lefschetz trace

(21) Λf,g =
∑
j

(−1)jtr(g!f∗)j .

Here f∗ : Hj(M2) → Hj(M1) is the induced map in cohomology and g! :
Hj(M1) → Hj(M2) is the umkehr map, defined by g! = D−1g∗D where D :
Hj(M) → Hn−j(M) is the Poincaré duality map. Also tr(f∗g!)j denotes the
trace of f∗g! : Hj(M1)→ Hj(M1).

Note that g! reverses sign when the orientation of either M1 or M2 is reversed.
If M1 = M2 and the orientations are chosen so that the identity 1 preserves
orientation, then Λf,1 = Λf where Λf is the usual Lefschetz number. Now the
main result of coincidence theory is

(22) Λf,g =
∑
i

Coinc(f, g;mi).

This generalizes the result for fixed points.

Lemma 2. Suppose that Cn−1 is immersed into Rn as above, so that V ∗ has
only a finite number of zeroes. Then

IndV ∗+ = ΛN̂,V̂ = deg V̂ + (−1)n−1 deg N̂, if n− 1 > 0.

Proof. Recall that N̂ and V̂ are the Gauss maps from Cn−1 → Sn−1 given by
taking the vector associated to m, making it of unit length, and translating it to
the origin. Now

ΛN̂,V̂ =
∑
i

Coinc
(
N̂ , V̂ ;mi

)
=
∑
i

Ind
(
V ∗+;mi

)
= IndV ∗+

where mi are the isolated coincidence points of N̂ and V̂ , which correspond to
those zeroes of V ∗ that are in V ∗+. This follows by applying equation (22) and
Lemma 1. From equation (21) we see that

ΛN̂,V̂ = tr
(
V̂ !N̂∗

)
0

+ (−1)n−1tr
(
V̂ !N̂∗

)
n−1

= deg V̂ + (−1)n−1 deg N̂ .

Lemma 3. IndV ∗− = Λ−V̂ ,N̂ = − deg V̂ + deg N̂ , if n− 1 > 0.

Proof. We apply lemma 2 to the vector field −V and obtain

Ind(−V )∗+ = ΛN̂,−V̂ = deg(−V̂ ) + (−1)n−1 deg N̂ .
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Now (−V )∗+ = −(V ∗−), so Ind V ∗− = (−1)n−1 Ind(−(V ∗−)) = (−1)n−1 IndV ∗+.

Also ΛN̂,−V̂ = (−1)n−1Λ−V̂ ,N̂ . And deg(−V̂ ) = (−1)n deg V̂ since −V̂ is just

V̂ composed with the antipodal map. Substitution into the equation gives the
desired result.

Now adding the equations of Lemmas 2 and 3 and using equation (20) we
obtain

χ(C) =
(
1 + (−1)n−1

)
deg N̂ .

When C is odd dimensional we obtain nothing, but for even dimensional C we
see that

(23) deg N̂ =
1

2
χ(C) for dimC > 0 even.

This was originally discovered by H. Hopf. Hopf called deg N̂ the curvature
Integrala. Another name is normal degree. Milnor [10] and Bredon–Koscinski [2]
showed that for odd dimensional connected C the normal degree can take on any
value if and only if C is parallelizable. If C is connected and not parallelizable,
then the normal degree may take on any odd value, but no even values.

We can give a nice formula for deg V̂ . To do that we need to introduce the
concept of the winding number of α : Cn−1 → Rn about p ∈ Rn − α(C). This is
a generalization of the usual notion for closed paths in the plane.

Definition. Choose orientations of Cn−1 and Rn. Then the winding number
w(α, p) is the degree of the map Cn−1 → Rn − p ≈ Sn−1.

In the case where α is an immersion, we can give a very geometric way to
calculate the winding number. The choice of orientations will give rise to the
“vector field” N(m) of normals at α(m). Now consider a path from p out towards
infinity which crosses α(C) transversally. For each crossing, assign a +1 or a −1
according to whether the path crosses into the “side” of α(C) that N(m) points
to or not. The sum of these ±1’s is the winding number.

Now suppose that α : Cn−1 → Rn is an immersion as before and suppose that
the vector field V on Rn has isolated zeroes pi. Let ωi = W (α, pi), the winding
number about the ith zero. Let vi = Ind(V, pi), the index of V at the ith zero.
Then

Lemma 4.
deg V̂ =

∑
i

ωivi.

Proof. The fact that Cn−1 immerses in Rn implies that it bounds a Π–manifold
M . That is, M is parallelizable and ∂M = C. So we extend the immersion α
to a map f : M → Rn. We can always do this since Rn is contractible, and
we can do it so that f is smooth and so that the zeroes, pi, of V are regular

points. We think of the vector field V on Rn as a map Ṽ : Rn → Rn given by

Ṽ (p) = (V (p))0. Now consider Ṽ ◦ f : Mn → Rn. Restricted to ∂M , the map is:

Ṽ ◦ α : ∂M → Rn − 0 ⊂ Rn.
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Now Ṽ can be homotopied to Ṽ1 by Ṽt(p) = kt(p)V (p) where kt(p) > 0 is

chosen so that ‖Ṽ1(p)‖ ≤ 1 for all p ∈ Rn and ‖Ṽ1(p)‖ = 1 for p ∈ α(∂M). Then

Ṽ1 ◦ α = V̂ and Ṽt ◦ α : ∂M → Rn − 0. So Ṽ1 ◦ f can be thought of as a map
from M → D which takes ∂M into ∂D by a map of degree equal to deg V̂ . This
degree can also be calculated locally by looking at the inverse image of a small

neighborhood of 0 ∈ Rn under Ṽ1 ◦ f . The inverse image at 0 of Ṽ1 is just the
zeroes of V , namely the pi. And the inverse images of a pi are points mij ∈M .
Now each mij has a little neighborhood that maps diffeomorphically onto a small

neighborhood of pi. Thus locally, the map Ṽ1 ◦ f restricted to a neighborhood of
mij has degree ±vi depending on whether f preserves or reverses the orientation
of the neighborhood. Then

deg V̂ =
∑
i,j

±vi =
∑
i

ωivi.

Remark. For the results of this section there is no stipulation that the manifold
C is connected. However, lemmas 2 and 3 are not true for C of dimension zero
since H0(S0) = Z.

4. Codimension zero maps.
Let f : Mn → Rn be a smooth map from a compact Riemannian manifold M

into Rn. Let V be a vector field on Rn. Let 〈 , 〉R the Riemannian metric on
Rn.

Definition. the pullback vector field f∗V on M is defined by

〈f∗V (m), vm〉M = 〈V (f(m)), f∗(vm)〉R.

This f∗V can be thought of as the dual to the pullback of a 1–form. Our objective
is to prove the following precise statement of equation (1).

Theorem 5. Suppose that f is a smooth map which restricts to an ambient
immersion α on ∂M . We assume that ∂M is orientable and n > 1, and no zeroes
of V are in the image of ∂M . Then

Ind(f∗V ) =
∑
i

ωivi + χ(M)− deg N̂ .

The condition that α is an ambiant immersion on ∂M means that the singular
set of f is disjoint from ∂M . Equivalently, f is an immersion on a neighborhood
of ∂M . Here N(m) is defined as before as the unit normal to α(∂M) at α(m),
pointing in the outward direction. Then a choice of an orientation on Rn induces,
by means of N(m), an orientation of each component of ∂M . Note that this
orientation of ∂M may not be consistent with any orientation of M , indeed M
may not be orientable. But ∂M must be. With this convention, we can apply
the results of the last section.

Now since α∗ : Tm(M)→ Tα(m)(Rn) is an isomorphism, we may define vector

fields α−1
∗ N and α−1

∗ V on T (M)|∂M . We also have a vector field f∗N on ∂M .
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Lemma 6. The vector field f∗N is an outward pointing normal vector field on
∂M . The vector field α−1

∗ N points outwards.

Proof. Let vm be any vector tangent to ∂M at m. Then

〈f∗N(m), vm〉M = 〈N(m), α∗(vm)〉R = 0.

So f∗N is a normal vector field. Now

〈f∗N(m), α−1
∗ N(m)〉M = 〈N(m), α∗

(
α−1
∗ N(m)

)
〉 = 1 > 0.

We learn from this that f∗N and α−1
∗ N both point out of the same side. Since

N points outwards locally in Rn, α−1
∗ N must point outwards also in M . Given

any outward pointing vector field on ∂M , we may project any vector field on
∂M down to a vector field tangent to ∂M . Recall the definition of V ∗ as in §3.
Thus V ∗(m) = α−1

∗ V (α(m)) − kα−1
∗ (N(m)) for some number k, chosen so that

V ∗(m) is tangent to ∂M . Thus we say that V ∗ is the projection of α−1
∗ V onto

∂M by means of the outward pointing vector field α−1
∗ N . Similarly, the notation

∂(α−1
∗ V ) represents the projection of α−1

∗ V onto ∂M by means of the outward
pointing normal vector field at ∂M . Recall that is f∗N . Finally ∂f∗V is the
projection of f∗V onto ∂M by means of f∗N .

Lemma 7. IndV ∗− = Ind ∂−(α−1
∗ V ) = Ind ∂−(f∗V ).

Proof. Here the subscript minus denotes the restrictions of the vector fields to
the portion of the boundary where the original field pointed inwards. Now the
vector fields Nt = (1− t)(α−1

∗ N) + t(f∗N) always point outward for t ∈ I, since
〈Nt, f∗N〉 > 0 and f∗N is an outward pointing normal. The homotopy gives rise
to a homotopy V ∗t of vector fields tangent to ∂M induced by projecting α−1

∗ V
down to ∂M by means of Nt. If V ∗(m) = V ∗0 (m) were tangent to ∂M , it would
remain constant for all t. Thus (V ∗t )− is a vector field on the same open subspace
of ∂M for all t, and no zeroes of V ∗t will occur on the frontier of this inward
pointing region. Hence Ind(V ∗t )− is a constant and we have the first equality
from IndV ∗− = Ind(V ∗t )− = Ind ∂−(α−1

∗ V ). Next we consider the vector fields

Vt = t(α−1
∗ V ) + (1− t)(f∗V ).

This homotopy on the boundary can be extended to a homotopy V t of f∗V over
M . Now on the boundary Vt is never zero. This can be seen since

〈f∗V (m), α−1
∗ V (α(m))〉M = 〈V (α(m)), V (α(m))〉 > 0.

Thus 〈Vt, f∗V 〉M > 0. Hence the homotopy V t never has a zero on ∂M . Hence
Ind f∗V = IndV t = IndV 1. Now by equation (7),

Ind(V t) + Ind(∂−V t) = χ(M).

So Ind(∂−(f∗V )) = Ind(∂−(α−1
∗ V )), proving the second inequality.
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Proof of theorem 5.

Ind f∗V = χ(M)− Ind(∂−f
∗V )

= χ(M)− Ind(V ∗−)

= χ(M)− (− deg V̂ + deg N̂)

= χ(M) + Σωivi − deg N̂ .

Remark. Note that there is no choice of orientations in theorem 5. The outward
pointing normals are all that are needed to calculate ωi or deg N̂ . In the proof,
careful attention was paid to how the orientations were chosen. If the orientation
of Rn is reversed, our conventions assure us that the orientations of ∂M and Sn−1

are reversed. If we changed our convention so that {N, b1, . . . , bn} determines
the orientation instead of {b1, . . . , bn, N}, the consistent use of this would change
both the orientations of ∂M and Sn−1 and so we still have the correct equation.
The sign changes always cancels out.

We say that a vector field V ∗ on M lifts a vector field V on Rn if f∗(V
∗(m)) =

V (m) for all m ∈M .

Proposition 8. If V ∗ lifts V , then IndV ∗ = Ind f∗V .

Proof. Consider the homotopy of vector fields

Vt = tV ∗ + (1− t)f∗V for t ∈ I.

Note that if m is not a zero of V ∗ and f∗V , then m is not a zero of Vt. Since
both V ∗ and f∗V are never zero on ∂M , we see that Vt is never zero on ∂M .
Hence IndV0 = IndV1.

Corollary 9. If f : Mn → Rn has a lifted vector field V ∗, where V has no
zeroes, then deg N̂ = χ(M).

Proof. 0 = IndV ∗ = Ind f∗V = χ(M)− deg N̂ .
If f : Mn → Rn were an immersion, every vector field on Rn has a lifting V ∗.

Hence we have the theorem of Haefliger [8].

Corollary 10. If f : Mn → Rn is an immersion, then deg N̂ = χ(M).

5. Lifting vector fields.
In this section we shall draw some consequences of Theorem 5 and Proposition

8. First we obtain a formula for Ind(f∗V ) in terms of local conditions. Then we
compare it with theorem 5, which is a global formula.

Consider as usual a smooth map f : Mn → Rn. Suppose that V is a vector
field on Rn with isolated zeroes at xi. For each zero xi, let ni stand for the
number of noncritical points in f−1(xi). Now consider the zeroes of f∗V . They
fall into two classes. There are the regular zeroes, that is, those zeroes which
are non singular points of f ; and the latent zeroes, those zeroes which occur at
the singular points of f . The image of a regular zero is a zero of V , but the
image of a latent zero need not be a zero of V . Now if mj is a latent zero, we
will denote its local index by rj . If m is a regular zero, then the local index of
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m equals vi, the local index of xi = f(m). This is seen since f restricted to a
small neighborhood of m is a diffeomorphism, hence locally by Proposition 8,
Ind f∗V = IndV ∗ = IndV . The second equality follows from (7). It is the fact
that index is invariant under diffeomorphism.

Proposition 11. Ind f∗V = Σnivi + Σrj when the ni are finite. Then in the
case where the singular set Σ does not intersect ∂M , we combine Proposition 11
and Theorem 5 and Proposition 8, if V ∗ exists, to get the equation

(24) IndV ∗ = Ind f∗V = Σωivi + χ(M)− deg N̂ = Σnivi + Σrj

Now we draw some consequences of equation (24). We introduce the following
notation. Given f : Mn → Rn with a vector field V defined on Rn, we let
Z ⊂ Rn denote the set of zeroes of V , and Σ denote the singular points of f and
∆ = f(Σ). We call ∆ the discriminant of f . In this terminology, the conditions
for equation (24) to hold are ∂M ∩ Σ = φ and f(∂M) ∩ Z = φ and f−1(Z)− Σ
is finite.
Then applying (24) we see

(25) Ind f∗V = χ(M)− deg N̂ = Σrj if Z = φ.
(26) Ind f∗V = 0 = Σrj if Z = φ and n odd.

(27) IndV ∗ = Σωivi + χ(M)− deg N̂ = Σnivi if Z ∩∆ = φ.
(28) IndV ∗ = Σωivi = Σnivi if Z ∩∆ = φ and n odd.

The condition that the vector fields involved have isolated singularities is not
meant seriously. In fact, we can define the local index of isolated connected
components of Z, by using equation (7). So for each connected component Zi of
Z, we define the local index vi. Since Z ∩ f(∂M) = φ, we see that ωi is constant
at every point of Zi. So the first two equations of (24) are true in this sense.

The last equation of (24) makes sense if we add the conditions that f(∂M)∩
∆ = φ and that Zi ⊂ ∆ if Zi intersects ∆ and f−1(Z) consists of a finite
number of path components. Then the rj are the indices of those components of
the zeroes of f∗V , or of V ∗, which are contained in Σ. And vi is the index of the
sets Zi in Rn. The ni are constant for each point in Zi since f(∂M) ∩∆ = φ.

Remark. The reader may interpret ωi as a local degree for the map f . This
is not quite accurate. We will give an example which should eliminate some
misconceptions. Let M be the Mobius band. Hence M is not orientable! Let
f : M → R2 be a map so that Σ is the middle circle of the Mobius band. Suppose
that ∆ = f(Σ) is the unit circles in R2. Suppose that the rest of M is mapped
outside of the unit circle and that ∂M = S1 is mapped with winding number
2 about the origin. Now let V be the vector field given by an instantaneous
rotation of R2 about the origin. Then the origin is the only zero of V and it has
index v = 1. Note that this zero is not in the image of f ! Now V lifts to a vector
field V ∗ which has no zeroes. Hence applying theorem 5

0 = IndV ∗ = 2× 1 + 0− 2

which verifies that the equation is true in this situation.
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6. The Euler–Poincaré number of f−(f(Σ)).
Here we obtain a formula for χ(f−1(f(Σ)) where f : Mn → Rn is a map

satisfying mild conditions by lifting vector fields. We define a vector field V on
Rn which can be lifted, and using (24) we determine the index of the lifting V ∗

in two ways. Combining them yields the formula.

Theorem 12. Let f : Mn → Rn be a smooth map such that f(Σ) ∩ f(∂M) =
φ. Suppose there exists a compact submanifold Nn ⊂ Rn so that f(Σ) is a
deformation retract of N and f−1(f(Σ)) is a deformation retract of f−1(N).

Then

(29) χ(f−1(f(Σ)))−
∑
i

ωiχ(Σi) + (−1)n
∑
j

(ωj − nj)χ(Dj) + χ(M)− deg N̂ .

Here Σi are the connected components of f(Σ). The Dj are the bounded
components of Rn − f(Σ). For each Dj we choose a point xj ∈ Dj. Then nj is
the cardinality of f−1(xj) and ωi is the winding number about Σi.

Proof. We construct a vector field V on Rn and a lifting V ∗ as follows. First
we let V be zero on f(Σ) and V ∗ be zero on f−1(f(Σ)). Now any continuous
extension of V will automatically give a unique lifting V ∗ on M extending V ∗

on f−1(f(Σ)) since outside of Σ the map f is an immersion.
Now extend V over N so that V points outside of ∂N at every point of ∂N .

Then V ∗ will point outside of f−1(N) at the boundary f−1(∂N) = ∂f−1(N).
Now the local index for Ni, which is the component of N containing Σi, is
vi = χ(Σi). The index of V ∗ on f−1(N) is equal to χ(f−1(N)) = χ(f−1(f(Σ)).

Now extend V to all of Rn. On the unbounded components of Rn − N this
can be done without introducing a zero. On a bounded component Dj, we may
extend V so that there is only one zero at some arbitrary point xj . We choose
xj /∈ f(∂M) so that V ∗ is non zero on ∂M .

Now we apply (24) to V ∗. First we note that the local index vj about xj is
equal to (−1)nχ(Dj). The (−1)n comes in since the vector field V is pointing

inside at the boundary of Rn −
◦
N .

Then (24) gives

Σωi(Σi)+(−1)nΣωjχ(Dj)+χ(M)−deg N̂ = (−1)nΣnjχ(Dj)+χ
(
f−1(f(Σ))

)
.

Solving for χ
(
f−1(f(Σ))

)
gives the result.

For odd dimension n, equation (29) simplifies to

(30) χ
(
f−1(f(Σ))

)
= Σωiχ(Σi) + (−1)nΣ(ωj − nj)χ(Dj).

7. Fixed point theory for bodies in space.
Suppose Mn ⊂ Rn is a compact manifold. We shall call it a body. Suppose

that f : Mn → Rn is a continuous map. Then we define a vector field Vf on Mn

by

(31) Vf (m) = (m− f(m))m .



14 LEFT RUNNING HEAD

The zeroes of Vf are precisely the fixed points of f . The local index of a zero of
Vf is precisely the fixed point index for the fixed point. Now equation (7) and
Lemma 3 will combine to give us various formulas analogous to the Lefschetz
equation equating the Lefschetz number Λf and the sum of the local fixed point
indices.

First we consider the example where f(M) ⊂M , so that f can be regarded as
a self map. If f has no fixed points on ∂M , then we obtain equation (3), [1,2,3]

Λf + Λ−V̂f ,N̂ = χ(M).

Next we suppose that f : Mn → Rn is virtually transverse on ∂M . That is we
suppose the function ∂M → {−1,+1} given by

m 7→ ((m− f(m)) •N(m)) /|(m− f(m)) •N(m)|

is well defined and continuous. That is the same as saying that m− f(m) never
points both normally inside and outside on the same connected component of
∂M . If the vector m− f(m) were never tangent to ∂M . this is a map transverse
to ∂M and an example of one virtually transverse to ∂M .

If f is virtually transverse to ∂M , then

(32) Ind(∂−Vf ) = Σχ(∂Mi)

where ∂Mi are components of ∂M so that Vf does not point normally outside.
For even dimensional M , we see that Ind(∂−V ) = 0. This gives us the following
theorem.

Theorem 13. If f : Mn → Rn is virtually transverse to ∂M , then f has a fixed
point if χ(Mn)− Σχ(∂Mi) 6= 0.

Hence a) If n is even, f has a fixed point if χ(M) 6= 0.
b) If n is odd, f has a fixed point if χ(M) 6≡ 0(mod 2).

As an example we get Dold’s generalization of the Brouwer fixed point theorem,
[3]. Namely, if f : Bn → Rn is a virtually transverse map of the unit ball, then
f has fixed point. Because χ(Bn) = 1.

8. The Euler–Poincaré number and curvature.
Our third example of equation (7) applied to bodies in space relates curvature

of ∂M and the Euler–Poincaré numbers of the body M and M ∩ Πk where Πk

is a k–dimensional hyperplane. Given Πk we consider the vector field V given
by V (m) = p(m)−m where p : Rn → Πk is the orthogonal projection onto Πk.
Consider V restricted to a body M . To use equation (7) we must calculate IndV
and Ind ∂−V . First we deal with Ind ∂−V .

Let m ∈ ∂M . We define the convexity number C(m,Πk) as follows. Consider
the line normal to ∂M at m. If this line is not normal to Πk, we let C(m,Πk) = 0.
If the line is normal to Πk, we observe that the vector field ∂V must have a zero
at m. Then C(m,Πk) is defined to be equal to the index of ∂V at m. If m is not
isolated, we define it to be the index of the connected component of the zeroes
of ∂V containing m.
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With the above definition of C(m,Πk), our next theorem will be correct in
every situation. However in the non degenerate smooth situations, we can give
a very geometric interpretation of C(m,Πk) which depends on the curvature of
∂M at m. We let `m denote the ray which begins at m and leaves ∂M in a
normal direction. The ray intersects Πk orthogonally at a point, call it y. Let
Π⊥ denote the (n − k) dimensional hyperplane orthogonal to Πk and passing
through y. Now we consider the (n− k− 1) dimensional surface Π⊥ ∩∂M in the
(n−k) space Π⊥. This surface contains m and it should have (n−k−1) principal
curvatures at m. For each principal curvature there is a center of curvature which
lies on the line containing `m. Suppose that there are r centers of curvature on
`m between y and ∞. In computing r, if two centers of curvature coincide, we
count them twice. Then

(33) C(m,Πk) = (−1)r(sign(m, y))

where sign(m, y) denotes the sign of the curvature of ∂M at m calculated on
the side facing y. For even dimensional ∂M it does not matter which side of
∂M we take to compute the curvature’s sign. We are taking the curvature to be
the product of the curvatures of the n− 1 principal curves. The following figure
shows these concepts for R2.

Π1

`m •y • •m

center of

curvature ∂M

In this case C(m,Π1) = +1. If we translate Π1 parallel to itself to the other side
of ∂M then we would get C(m,Π1) = −1. Now let Π◦ = y. In the picture as
drawn C(m, y) = +1 since n = 0. As we move y along the line `m towards the
right, the sign C(m, y) changes after we pass the center of curvature and remains
negative even after we pass through m since the fact that r changes from 1 to 0
is compensated by the fact that the curvature changes sign as we change sides.

Now we can state our result.

Theorem 14. Suppose that Mn is a smooth body and Πk is a k–dimensional
hyperplane which is nowhere tangent to ∂M . Then

χ(Mn) = (−1)n−kχ
(
Mn ∩Πk

)
+
∑
m

C(m,Πk)

where the sum is taken over those m for which `m points initially inward.

Proof. We want to apply (7) to V . The set of zeroes of V is the submanifold
M ∩Πk. Unfortunately, there are zeroes on ∂M if ∂M ∩Πk 6= 0. We will change
V slightly to V ′ such that V ′ has no zeroes on ∂M and so that ∂V = ∂V ′. Since
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Πk is nowhere tangent to ∂M , there is an ε > 0 so that V (m) + ε
2N(m) is never

zero when m ∈ ∂M is of distance less than ε to Πk. We choose a small collar
neighborhood C of ∂M so that C ∩ Πk is a collar neighborhood of ∂M ∩ Πk.
We can extend ε

2N to a vector field W on M so that W is zero on M − C and
V +W is never zero on C. Let V ′ = V +W . Then V ′ has no zeroes on ∂M and
∂V ′ = ∂V .

The zeroes of ∂V ′ coming from ∂M ∩Πk are now in ∂+V
′, hence Ind ∂−V

′ =
Ind ∂−V = ΣC(m,Πk) where the sum is taken over the inward pointing rays.
What is IndV ′? Consider a small compact neighborhood of M ∩Πk of the form
(M ∩ Πk) × In−k. Now V ′ restricted to this neighborhood can be homotopied,
without changing the zeroes, to a vector field of othe form A× B, where A is a
vector field on M∩Πk which points outside on ∂M∩Πk, and B is the vector field
on In−k given by B(m) = −m. Then IndA = χ(M ∩Πk) and IndB = (−1)n−k.
Since the index of a product of two vector fields is the product of the index, we
get

(34) IndV ′ = (−1)n−kχ(M ∩Πk).

Combining (34) and (7) gives the theorem.
Note that theorem 14 gives an inductive definition of the Euler–Poincaré num-

ber in terms of sections of lower dimensions. As such it extends and illuminates
work of [7].

There is another theorem similar in spirit. Let Πn−2 be a hyperplane in Rn
and let Mn be a body. Let V be the velocity vector field of a rotation about
Πn−2. Thus in R2, V is the velocity field rotating about a point and in R3, V
is the velocity field rotating about an axis. Where are the zeroes of ∂V ? They
occur at points m ∈ ∂M where there is a tangent (n− 1)–plane which contains
Πn−2. We define d(m,Πn−2) to be the index of ∂V at m. When m is an isolated
zero in the non degenerate smooth case, then

(35) d(m,Πn−2) = sign(m)

where sign(m) = +1 if the curvature is positive when calculated on the side of
∂M to which m is moving under the velocity m. If the curvature is negative,
then sign(m) = −1 and if the curvature is zero, then sign(m) = 0.

Now to apply (7) to V we must eliminate the zeroes of V at ∂M ∩ Πn−2. If
Πn−2 is nowhere tangent to ∂M , we can find a vector field V ′ as in the proof
of theorem 14 so that ∂V = ∂V ′ and Ind ∂−V

′ = Ind ∂−V
′. This time the

homotopy of V ′ in a compact neighborhood M ∩ Πn−2 × I2 results in a vector
field A× B so that A on M ∩Πn−2 has index equal to χ(M ∩Πn−2) and B on
I2 has index equal to 1. Thus we get IndV ′ = χ(Mn) and hence from (7),

Theorem 15. χ(Mn) = χ(M ∩Πn−2) + Σdi(m)
where Πn−2 is nowhere tangent to ∂M and the sum is taken over those points
m which are being rotated into M .

As an example of the use of the above theorem we consider the case of a solid
torus in three dimensional Euclidean space. Suppose that Π1 is a line which
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intersects the torus in two segments. Then the theorem results in the equation
Σdi(m) = −2. From this we conclude that there are two points of negative
curvature on the boundary of the solid torus whose tangent planes contain the
line Π1. If we reverse the direction of rotation in the theorem we get two other
points with the same property. Thus there are four points of negative curvature
whose tangent planes contain Π1.

Now let us play with theorem 14. Suppose we are in a space ship in space and
there is a bounded medium M . By shooting out laser beams we can tell which
directions are normal to the boundary ∂M and we can determine the convexity
numbers by using the reflection at the boundary of the laser beam. Suppose the
different amounts of reflection tell us whether or not the normal beam is passing
from inside to outside. What can we tell about M?

Answer: We can determine χ(M) and whether or not we are inside M . The
sum of all the convexity numbers gives the χ(∂M) and hence χ(M) = 1

2χ(∂M).
Then using theorem 14 we subtract the sum of the inward pointing convexity
numbers from χ(M) to find χ(Π◦ ∩M). If it is one, we are inside, if it is zero,
we are outside.

We should reflect how lucky we are to live inside an odd dimensional universe.
If we were in an even dimension universe we could not use the sum of the convex-
ity numbers to determine χ(M) and hence we would not know if we were inside
or outside M . If we add the capability of measuring the distances to the normal
points, then we would know whether we were inside M , since we look at the
closest normal point and determine if the beam is exiting or entering M . Then
we would know χ(Π◦ ∩M) and we could determine χ(M) in even dimensional
universes also.

If there were no reflections of beams going from inside to outside and we did
not know if we were inside or outside M , then the sums of the convexity numbers
we could see would give us either χ(M) or χ(M) + 1.
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