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Abstract

We introduce a new definition of intersection number by means of umkehr maps. This

definition agrees with an obvious definition up to sign. It allows us to extend the concept

parametrically to fibre bundles. For fibre bundles we can then define intersection number

transfers. Fibre bundles arise naturally in equivariant situations, so the trace of the action

divides intersection numbers. We apply this to equivariant projective varieties and other

examples. Also we study actions of non-connected groups and their traces.
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1. Introduction

When two manifolds with complementary dimensions inside a third manifold intersect

transversally, their intersection number is defined. This classical topological invariant has

played an important role in topology and its applications. In this paper we introduce a

new definition of intersection number.

The definition naturally extends to the case of parametrized manifolds over a base B;

that is to fibre bundles over B . Then we can define transfers for the fibre bundles related

to the intersection number. This is our main objective , and it is done in Theorem 6.

The method of producing transfers depends upon the Key Lemma which we prove here.

Special cases of this lemma played similar roles in the establishment of the Euler–Poincare

transfer, the Lefschetz number transfer, and the Nakaoka transfer.

Two other features of our definition are: 1) We replace the idea of submanifolds with

the idea of maps from manifolds, and in effect we are defining the intersection numbers

of the maps; 2) We are not restricted to only two maps, we can define the intersection

number for several maps, or submanifolds.

We can apply Theorem 6 to equivariant topology. When the maps involved are equi-

variant, or even if they are only homotopy equivariant, the intersection number is an

equivariant invariant. This is seen by using the Borel construction to get the fibre bundle

situation for which theorem 6 provides transfers. Transfers tell us much about equivariant

topology. Much of this information can be concentrated in a single integer called the trace

of the action.

The trace of an action is an integer which is defined by looking at all the possible

transfers arising from the Borel construction. It was defined in [G2] and is very closely

related to the exponent of an action as defined by W. Browder in [B]. In fact the trace

equals the exponent for orientation preserving actions on manifolds. However the trace, in

contrast to the exponent, is always defined in any equivariant setting. When the equivariant

situation allows intersection numbers, the trace must divide the intersection number. This

result is our main application of transfers to group actions and is found in Theorem 7 and

is a consequence of Theorem 6.
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In addition to showing that the trace divides intersection numbers, we examine how

the trace behaves when the acting group is disconnected. In particular, we show that the

trace of an action of a finite group G on a space X must be the product of the traces of

the Sylow p-subgroups acting on X . This latter part is contained in the thesis of Murad

Özaydin at Purdue University [O].

Finally, we give some examples of trace in action. In the case of nonsingular projective

varieties, the degree of the variety is an intersection number. Thus in suitable equivariant

situations the trace divides the degree of the variety. We obtain generalizations of a theorem

of W. Browder and N. Katz [B-K] . Also we look at examples of elementary p–groups acting

on products of spheres. In these situations we find that appropriate G–submanifolds imply

that the trace divides associated determinants, permanents, and Pfaffians.

We would like to thank L. Avramov for helpful discussions.

2. Multiple functional intersection number

DEFINITION 1. Let fi : Ai →M be a finite set of maps between closed oriented manifolds

Ai and M . We suppose the sum of the co-dimensions of Ai equals the dimension of

M . That means, assuming there are k maps fi, that
k∑
i=1

(dimM − dimAi) = dimM , or

k∑
i=1

dimAi = (k − 1) dimM .

Next define F : A1 × · · · × Ak → M × · · · ×M by F = f1 × · · · × fk. Define the

multiple intersection number, denoted f1 • f2 • · · · • fk, as the integer

[∆∗F !(1)] ∩ [M ] ∈ H0(M ;Z) ∼= Z.

Here ∆ : M → M × · · · × M is the diagonal map, F ! denotes the Umkehr map on

cohomology and 1 ∈ H0(A1×· · ·×Ak). We denote by [M ] the orientation class of M . We

require M to be connected, so that H0(M ;Z) ∼= Z, but the Ai need not be connected. So

the 1 ∈ H0(A1 × · · · ×Ak) is the sum of the generators

1 ∈ H0 (connected components of A1×· · ·×An) ∼= Z, and each of those generators is equal

to a product 1A × 1B × . . . , where the A,B, . . . are connected components of A1, A2, . . .

respectively. The Umkehr map F ! is defined as the composition D−1
M×FDA× where DM

denotes the Poincare duality map H∗(M ;Z)
∼=−→ H∗(M ;Z) given by DM (x) = x ∩ [M ].

Here M× = M × · · · ×M where the product is taken k-times and A× = A1 × · · · ×Ak.
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Obviously the multiple intersection number depends on the choices of orientation on

A× and on M . For the case of two connected closed oriented submanifolds A and B of

complimentary dimensions in M , the usual intersection number A • B agrees with f • g

(up to sign) where f and g are the inclusion maps. That is because the usual intersection

number ends up being given by the cup product of the Poincare duals of the fundamental

classes [A] and [B] in H∗(M ;Z). Using the concept of the Umkehr map, this is just

f !(1A) ∪ g!(1B) which the following lemma implies is equal to ±(f • g)[M ].

REMARK: The reader may ask why the multiple functional intersection number f1 • f2 •
· · · • fk is defined using Umkehr maps instead of the obvious definition as the cup product

of the Poincare duals of the homology classes fi∗[Ai] capped with [M ]? As one can see

from Lemma 3, the obvious definition differs from our definition by a complicated sign.

The reason we need Umkehr maps is to construct the transfer in Theorem 6. Note that

the Key Lemma cannot be stated without Umkehr maps. In general, if one can express an

invariant in terms of Umkehr maps, then there is a good chance transfers can be defined.

This is especially true since the Key Lemma holds. The sign difference in Lemma 3 is not

important; it is just there.

Lemma 2. ∆∗(f × g)!(1A × 1B) = (−1)nqf !(1A) ∪ g!(1B) where q = n − dimB and

n = dimM .

Proof:
∆∗(f × g)!(1A × 1B)

= ∆∗D−1
M×M (f∗([A])× g∗([B]))

= ∆∗D−1
M×M ((f !(1A) ∩ [M ])× (g!(1B) ∩ [M ])))

= (−1)nq∆∗D−1
M×M ((f !(1A)× g!(1B)) ∩ ([M ]× [M ]))

= (−1)nq∆∗(f !(1)× g!(1)) = (−1)nqf !(1) ∪ g!(1).

In fact, we have in general

Lemma 3. ∆∗F !(1) = (−1)af !
i(1A1

) ∪ · · · ∪ f !
k(1Ak) where

a = n[(k − 1)qk + (k − 2)qk−1 + · · ·+ q2] and qi = n− dimAi, the codimension of Ai.

Proof: The same as Lemma 2, only the notation is much more involved. Counting the sign
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change is the only complication.

Next we extend the definition of multiple intersection number to the case where M is

a connected oriented manifold with boundary ∂M and the fi : Ai →M are maps of pairs

(Ai, ∂Ai)
fi−→ (M, ∂M). We assume that at least one of the Ai has an empty boundary.

Also the Ai are all oriented and the sum of the codimension (n − dimAi) is equal to n

as before. We let DM denote the double of M . It is a closed oriented manifold. We let

Dfi : DAi → DM be the double of the map fi : (Ai, ∂Ai) → (M, ∂M) in the case where

Ai has a boundary, and if ∂Ai = φ we let Dfi : Ai
fi−→M

j−→ DM be the composition of

fi with the standard inclusion j of M into its double.

DEFINITION 4. We define the multiple intersection number f1 • f2 • · · · • fk to be the

intersection number Df1 •Df2 • · · · •Dfk .

REMARKS: a) We required at least one of the Ai to have an empty boundary. We

can define the intersection number as above in the case when all the Ai have non-empty

boundaries, but in this case it will always be zero.

b) The intersection number is obviously preserved under homotopy of the fi.

c) If f1 • · · · • fk 6= 0, then the intersection of the images of the fi is not empty, that

is
k
∩
i=1
fi(Ai) 6= φ.

d) A geometric interpretation of multiple intersection number for the case when the

Ai are submanifolds of M should go as follows: choose orientations of the normal bundles

νi consistent with the choices of orientation of M and Ai. Assuming the Ai are mutually

transversal at the points xj ∈
k
∩
i=1
Ai, assign to the point xj the number +1 if the orien-

tations at xj combine to give the orientation of M at xj , and assign xj the number −1

otherwise. The sum of these local multiple intersection numbers is the global intersection

number.

e) Let νk be a k bundle over the closed oriented manifold Mn. If n = kr, the self-

intersection number of the zero section s is defined to be s • · · · • s . Let χ(ν) denote the

Euler class of a bundle ν. Then

χ(ν ⊕ · · · ⊕ ν) = [χ(ν)]r = ±(s • · · · • s)[M ] ∈ Hn(M ;Z)

An application of the idea of intersection number can be used in a dual situation to
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calculate the degree of a map. Suppose that M is a closed smooth oriented connected

manifold and suppose that we have a family of k smooth maps fi : M → Ai where the Ai

are connected smooth closed oriented manifolds the sum of whose dimensions equals the

dimension of M . The relevant invariant, a “co-intersection number”, is the degree of the

composition

G : M
∆−→M × · · · ×M f1×···×fk−→ A1 × · · · ×Ak.

Corollary 5. With the notation of the preceding paragraph, ±degG = i1 • · · · • ik
where ij : f−1

j (aj)→M and aj is a regular value of fj in Aj. Thus the degree of G is the

intersection number of the fibres of the fi.

Proof: For any smooth map f : M → N between closed oriented manifolds and fibre

F = f−1(b) where b is a regular point, we have i∗[F ] = f∗([N ]) ∩ [M ] where i : F →M is

the inclusion, [G1]. So, in other words, i!(1F ) = f∗([N ]). Now (degG)[M ] = G∗([A1] ×
· · · × [Ak]) = f∗1 ([A1]) ∪ · · · ∪ f∗k ([Ak]) = i!1(1F1

) ∪ · · · ∪ i!k(1Fk) = ±(i1 • · · · • ik)[M ].

3. Transfers and intersection numbers

Consider the following commutative diagram

F
f−−−−→ F1

i

y i1

y
E

f−−−−→ E1

p

y p1

y
B −−−−→

1B
B

Here p and p1 are fibre bundle projections and i and i1 are inclusion of a fibre. The map

f is a fibre preserving map which restricts to f on the fibre. In addition every space is a

closed oriented manifold

Key Lemma. f !i∗ = (−1)B(F1−F )i∗1f
!

where (−1)X means (−1)dimX .

Proof: Let U be a small ball in B centered on the base point ∗ where p−1(∗) = F . Then

V = p−1(U) and V1 = p−1
1 (U) are open sets of E and E1 respectively.
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The following diagram commutes except for the top rectangle. The undecorated arrows

are induced by inclusions.
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H∗(F ) f !

H∗(F )x x
H∗(U × F )

∩[U,U̇]×[F ]−−−−−−−→
∼=

H∗((U, U̇)× F )
(1×f)∗−−−−→ H∗((U, U̇)× F1)

∩[U,U̇]×[F1]←−−−−−−−−
∼=

H∗(U × F1)xi∗ ∼=
yex ∼=

yex xi∗1
H∗(E)

∩[E,E−V ]−−−−−−→ H∗(E,E − V )
f∗−−−−→ H∗(E1, E1 − V1)

∩[E1,E−V1]←−−−−−−−− H∗(E1)

∼=
x1E

x x ∼=
x1E1

f
!
: H∗(E)

∩[E]−−−−→
∼=

H∗(E)
f∗−−−−→ H∗(E1)

∩[E1]←−−−−
∼=

H∗(E1)
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Now the top rectangle commutes up to (−1)B(F1−F ), since the second row gives the

following

1× x 7→ (1× x) ∩ [U, U̇ ]× [F ] = (−1)xB[U, U̇ ]× (x ∩ [F ])

7→ (−1)xB [U, U̇ ]× f∗(x ∩ [F ]) = (−1)xB[U, U̇ ]× (f !(x) ∩ [F1])

= (−1)xB+(x+B(F1−F ))B(1× f !(x)) ∩ ([U, U̇ ]× [F1])

7→ (−1)B(F1−F )1× f !(x)

This proves the lemma.

Suppose we have the following k fibre bundle squares.

Ai
fi−−−−→ Myii yi

Ei
f̃i−−−−→ Eypi yp

B −−−−→
1B

B

i = 1, . . . , k

where each space is a closed oriented manifold,M andB are connected and the codimension

of the Ai sum to the dimension of M . More generally we may assume that M and B and

hence E have non-empty boundaries and that some of the Ei have non-empty boundaries

and in those cases f̃i : (Ei, ∂Ei)→ (E, ∂E). Of course all spaces are compact.

Theorem 6. There is a transfer associated to the fibre bundle p with trace (f1•· · ·•fk).
That is, there is a homomorphism τ∗ : H∗(B,G)→ H∗(E;G) so that p∗◦τ∗ is multiplication

by (f1 • · · · • fk). Similarly there is a homomorphism τ∗ : H∗(E,G) → H∗(B,G) so that

τ∗ ◦ p∗ is multiplication by (f1 • · · · • fk).

Proof: Let E1 ◦ · · · ◦Ek denote the multiple fibre product of the fibre bundles pi : Ei → B.

That is,

E1 ◦ · · · ◦Ek = {(e1, . . . , ek) ∈ E1 × · · · × Ek|p1(e1) = · · · = pk(ek)}

Now the map p : E1 ◦ · · · ◦ Ek → B defined by p(e1, . . . , ek) = p(e1) ∈ B is a fibre

bundle projection with fibre A1 × · · · × Ak. Also we have the multiple fibre product
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E ◦ · · · ◦ E → B with fibre M × · · · × M . Define F̃ : E1 ◦ · · · ◦ Ek → E ◦ · · · ◦ E
by F̃ (e1, . . . , ek) = (f̃1(e1), . . . , f̃k(ek)). The diagonal ∆̃ : E → E ◦ · · · ◦ E given by

∆̃(e) = (e, . . . , e). All this fits into a commutative diagram

A1 × · · · ×Ak
F−−−−→ M × · · · ×M ∆←−−−− Myk yj yi

E1 ◦ · · · ◦ Ek
F̃−−−−→ E ◦ · · · ◦ E ∆̃←−−−− Ey y yp

B
1B−−−−→ B

1B←−−−− B

Now we can define the class ∆̃∗F̃ !(1) ∈ Hn(E;G) in the case of closed E. Then i∗(∆̃∗F̃ !(1)) =

∆∗j∗F̃ !(1) = ±∆∗F !k∗(1) = ±∆∗F !(1) = ±(f1 • · · · • fk)[M ]. The equalities are true by

commutativity and the key lemma and the last equality is the definition. The transfer

maps are defined as usual: τ∗(x) = p!(x ∪ ∆̃∗F̃ !(1)) and τ∗(x) = p!(∆̃
∗F̃ !(1) ∩ x).

In the case that M has a non-empty boundary, and B is closed, taking the doubles

Df̃i : DEi → DE and Df̃j : Eji → E → DE gives a transfer for DM → DE → B. Since

M → E → B is a fibrewise retraction DM → DE → B, the transfer defined for the latter

restricts to the former with the same trace, f1 • · · · • fk . In the remaining case where

B has non-empty boundary, we consider the pullback of M → E
p−→ B by the retraction

map r : DB → B. Suppose this pullback is denoted M → DE
Dp−→ DB. Then Dp admits

a transfer with associated number f1 • · · · • fk , and so p, which is a fibrewise retract of

Dp, admits a transfer with associated number f1 • · · · • fk.

4. The trace of an action

Suppose G is a group acting on spaces Ai and M and suppose fi : Ai → M are

homotopy G-maps. Let us say that i : W → V is a homotopy G-map if there is a fibre

bundle square
W −−−−→

i
Vy y

E −−−−→
f

VGy y
BG

1−−−−→ BG
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which extends i to a map f over 1BG . Here VG is the Borel construction EG×GV

In [G2] and [O] we introduced the integer tr(p), read the trace the fibration p. Let

deg(p) be the smallest positive integer N so that there is a homomorphism τ so that

p∗ ◦ τ = multiplication by N . If no such integer exists then set deg(p) equal to zero. In

fact, deg(p) is the greatest common divisor of these numbers. Next the trace of p, denoted

tr(p), is the least upper bound of all the positive deg(pf ) where the pf are the pullbacks of

p by arbitrary maps f : X → B. If the least upper bound does not exist set tr(p) equal to

zero. In fact the tr(p) is the least common multiple of these numbers. Then we define the

trace of an action, denoted tr(G,M), by tr(G,M) = tr(pG) where pG : EG×GM → BG is

the Borel construction of the universal G-principal bundle G→ EG → BG with M .

Theorem 7. Suppose G is a group so that the classifying space BG has finite type

and suppose that M is an oriented compact G-manifold and fi : Ai →M are homotopy G-

maps from oriented compact manifolds Ai which preserve boundaries. Then tr(G,M)|(f1•
· · · • fn).

Proof: Let B be a regular neighborhood of the (DimM + 2)- skeleton embedded in some

Euclidean space. So B is an oriented manifold with boundary. Let M → E
p−→ B be

the pullback of M → MG → BG onto B where the map B → BG, which induces the

pullback, is homotopic to the inclusion of the (DimM + 2)-skeleton. By Proposition (6.6)

of [G2] we have tr(G,M) = deg(p). By theorem 6 and the definition of deg p , we see

that f1 • · · · • fk| deg(p) = tr(p) = tr(G,M).

Theorem 7 allows us to add multiple intersection numbers to the list of topological and

group theoretical properties divided by the trace of an action. Most of this list so far may

be found in Theorem (1.1) of [G2].

REMARK: By Theorem (1.5) of [G2], if G acts orientably on a closed manifold Mn the

trace tr(G,M) is the order of quotient group of the top dimensional integer cohomology

group divided by the image of fibre inclusion of the cohomology of Hn(EG×GM), if this

is finite, and zero otherwise. This is just what Browder’s exponent is in [B]. In this special

case the trace appears more tractible than in the general definition. But the general

definition works for any action and therefore appears in theorems which are not restricted
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to closed manifolds and orientation preserving actions. The list of properties of the general

trace is quite substantial and they work together well, so that despite its strange looking

definition it is actually quite easy to use the concept. This is exemplified by the arguments

in the next section which do not use the exponent definition above and so result in facts

which are true in more generality and which yield even more additions to the list of

properties of the trace.

5. Traces and subgroups

Let G be a group, X a G-space and let H be a subgroup of G. By ([G2], Theorem

6.2a), tr(H,X) divides tr(G,X). We will now show that the quotient divides tr(G,G/H)

where G/H is the G space consisting of a single orbit of isotropy type H.

Proposition 8. Let H be a subgroup of G, and let X be a G-space. Then

tr(H,X)
∣∣ tr(G,X)

∣∣ tr(G,G/H) tr(H,X).

Proof: We already know the left division by [G2], Theorem 6.2a. For the second, given

any map f : Y → BG , let Ỹ be the pullback fitting into the diagram:

G/H G/Hy y
Ỹ

f̃−−−−→ (G/H)G = BHyq y
Y

f−−−−→ BG.

From the definition of tr(G,G/H) as the l.c.m. of the degrees of the projection maps

over all pullbacks of the Borel construction, it follows that deg(Ỹ → Y ) divides tr(G,G/H).

Hence there is a transfer τ : H∗(Y ;Z)→ H∗(Ỹ ;Z) so that q∗ ◦ τ = tr(G,G/H).

From the diagram
X Xy y

G/H −−−−→ XH −−−−→ XG∥∥∥ y y
G/H −−−−→ BH −−−−→ BG
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we get the pullback diagram (via f and f̃)

X Xy y
G/H −−−−→ f̃∗(XH)

q̃−−−−→ f∗(XG)∥∥∥ yp̃ yp
G/H −−−−→ Ỹ

q−−−−→ Y

If σ is a transfer realizing deg(p̃) then ρ = q̃∗ ◦ σ ◦ τ satisfies p∗ρ = p∗ ◦ q̃∗ ◦ σ ◦ τ =

q∗ ◦ p̃∗ ◦ σ ◦ τ = tr(G,G/H) deg(p̃). Hence deg(p)
∣∣ tr(G,G/H) deg(p̃). Now taking the

lowest common multiple over all f : Y → BG, and noting that tr(H,X) is defined as

the l.c.m. of degrees over a set containing all f̃ : Y → BH , we get tr(G,X) divides

tr(G,G/H) tr(H,X). �

The G space G/H consisting of a single orbit is perhaps the simplest case we should

consider, also important in view of the proposition above. In general, with some finiteness

assumptions, we have tr(G,G/H) dividing the Euler characteristic χ(G/H) ([G2], Propo-

sition 6.7b). When G/H is finite we have tr(G,G/H) equalling χ(G/H) = [G : H], but

tr(G,G/H) does not equal χ(G/H) in general.

Lemma 9. Let H be a subgroup of G such that G/H is finite and discrete. Then

tr(G,G/H) = [G : H].

Proof: We have tr(G,G/H)|χ(G/H) = [G : H]. Hence it will suffice to find a pullback of

the Borel construction G/H → BH = (G/H)G → BG whose projection has degree [G : H].

Let σ1, . . . , σn be loops representing classes in π1(BG) mapping onto π0(G/H) = G/H in

the homotopy exact sequence

1→ π1(BH)→ π1(BG)→ G/H → ∗.

Let r : M →
i
∨S1 be a retraction of a closed, connected, oriented manifold on a bouquet

of n circles. Let f be given by

f : M
r−→

i
∨S1 ∨σ−→ BG.
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Then f∗(BH) is a closed, connected, oriented manifold, covering M with fiber G/H. Thus

the projection ρ : f∗(BH)→M has degree exactly [G : H]. �

Combining Propositions 8 and 9 we obtain the following.

Corollary 10. If G/H is finite then

tr(H,X)
∣∣ tr(G,X)

∣∣[G : H] tr(H,X)

Theorem 11. Let G be a finite group and let X be a G space. Then

tr(G,X) = Π tr(Gp, X)

where Gp is a Sylow p-subgroup of G and the product is over all primes dividing the order

of G.

Proof: Since tr(Gp, X)
∣∣ |Gp| and |Gp| is relatively prime to [G : Gp] we see that the

divisions

tr(Gp, X)
∣∣ tr(G,X)

∣∣[G : Gp] tr(Gp, X)

implies that the p-primary factor of tr(G,X) is given by tr(Gp, X).

In the proof above, the relevant fact about a collection Gp was that their orders are

relatively prime to each other and the order of G is the products of the orders of the Gp.

Hence if {Hi} is a collection of subgroups satisfying this condition, we have

tr(G,X) =
∏
i

tr(Hi, X)

Now we consider the consequences of Proposition 8 for a compact Lie group G. We

will denote the connected component of the identity by G0, a maximal torus of G0 by T ,

the normalizer of T in G0 by N(T ), and the Weyl group N(T )/T by W .

Lemma 12. Let X be a G-space (G compact Lie). Then tr(G,X) divides

[G : G0] tr(N(T ), X). In particular if G is connected then tr(G,X) equals tr(N(T ), X).

Proof: Note that tr(G0, G0/N(T ))
∣∣χ(G0/N(T )) by ([G2], 6.7b). But it is known that

χ(G0/N(T )) = 1, hence tr(G0/N(T )) = 1 thus Proposition 8 tells us that

tr(N(T ), X)
∣∣ tr(G0, X)

∣∣ tr(N(T ), X)
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Hence tr(N(T ), X) = tr(G0, X). Now Corollary 10 gives us tr(G,X)
∣∣[G : G0] tr(G0, X) =

[G : G0] tr(N(T ), X).

Now Lemma 12 gives us tr(N(T ), X)
∣∣|W | tr(T,X). When X is a compact manifold

M , we know from ([G2], 6.11) that tr(T,M) = 1, if the action has a stationary point; or

tr(T,M) = 0, if the action does not have a stationary point. Thus we obtain

Corollary 13. Let G be a compact Lie group acting on a compact manifold M .

Then tr(G,M) is either zero, or it divides [G,G0]|W | where W is the Weyl group of G0.

Theorem 14. Let G be a compact Lie Group acting on a compact manifold M . Let

Wp be the Sylow p-subgroups of the Weyl group W , and let Ŵp is the pre-image in N(T )

of Wp in W = N(T )/T . Then

tr(G,M) =
∏
p

tr(Ŵp,M)

where the product is taken over all the p dividing |W |.

Proof: We may assume that tr(Ŵp,M) 6= 0 because otherwise tr(T,M) = 0, which im-

plies tr(G,M) = 0; then both sides of the equation would be zero, proving the theorem.

So since tr(Ŵp,M) 6= 0, we have tr(T,M) = 1, so from Proposition 8, tr(Ŵp,M)
∣∣ |Ŵp|.

Now tr(Ŵp,M)
∣∣ tr(N(T ),M)

∣∣[W : Wp] tr(Ŵp,M) by ([G2], 6.2.b) for the first division

and by Corollary 10 for the second division. Hence tr(Ŵp,M) is a common divisor of

|Wp| and tr(G,M) = tr(N(T ),M), and in fact is the greatest common divisor since

tr(G,M)/ tr(Ŵp,M) is not a multiple of p. Since tr(G,M) divides |W | =
∏
p
Wp, the

theorem follows.

REMARKS: a) Theorem 14 can be generalized for a family {Hi} of subgroups of W such

that Π|Hi| = |W | and the |Hi| are pairwise relatively prime.

b) The following example shows that tr(G,G/H) does not always equal χ(G/H), in

fact it shows that tr(G,G/T ) 6= χ(G/T ) = |W |.

(c) In fact tr(S3,M) is always zero or 1 as M is a compact manifold. This follows from

the following example where tr(S3, S3/S1) = 1. Hence tr(S3,M) = tr(S1,M)

EXAMPLE. Let G = S3 and H = S1. Then tr(S3, S3/S1) = 1 but χ(S3/S1) = 2.
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Proof: This can be seen by considering the fibration S2 i−→ BS1
p−→ BS3 . This is a

fibration which arises from the action of S3 on S2 = S3/S1 by the Borel construction.

Now Hi(BS3) ∼= 0 for 0 < i < 4, so i∗ is an isomorphism i∗ : H2(BS2) → H2(S2). Thus

the generator of H2(S2) is in the image of i∗. Hence by theorem 1.5 of [G2] we see that

tr(S3, S3/S1) = 1.

6. Applications of the trace theorems

An application of Theorem 11 gives an extension of a result of Browder and Katz [B-K]

to the nonfree case. Recall that a nonsingular complex projective variety V of dimension

k is a closed, complex analytic submanifold of a complex projective space Pn, given as

the zero set of a set of homogeneous polynomials (in n+ 1 variables). The Chern class of

the canonical line bundle c(ξ) generates the cohomology of Pn. The hyperplane section

α in H2(V ;Z) is the image of c(ξ) under the map induced by inclusion i∗ : H2(Pn;Z)→
H2(V ;Z). We also have αk = deg(V ) [V ] where [V ] is the fundamental class in cohomology.

The degree of the variety V, deg(V ) (not to be confused with the degree of a map), depends

on the particular embedding of V in the projective space, since the hyperplane section α

depends on the embedding.

Proposition 15. Let G be a finite group acting on a nonsingular complex projective

variety V . Assume H1(V ) = 0 and the hyperplane section α in H2(V ) is left invariant by

G. Then

tr(G, V )2
∣∣ |G| (deg V )2.

If all Sylow subgroups of G are cyclic, then tr(G, V ) divides deg V .

Proof: The p-primary part of tr(G, V ) is exactly tr(Gp, V ) for the Sylow p-subgroup Gp.

Hence we may assume thatG is a p-group. The action ofG is orientation preserving because

α and thus αk = (deg V )[V ] is invariant (k = dimension of V ). In the cohomology Serre

spectral sequence of the Borel construction V → VG → BG we have E0,2
2
∼= H2(V )G and

E∗2
∼= H∗(G). These survive to E3 since H1(V ) is zero. Let dαεH3(G) be the image of α

under

d : E0,2
3
∼= H2(V )G → H3(G) ∼= E3,0

3 .
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Now there is a subgroup K of G such that [G : K]2 divides |G| and d α maps to 0

under the restriction map H3(G) → H3(K) ([B-K], 2.1). Restricting the action to K,

from the functoriality of the Serre spectral sequence we deduce that α survives to E∞ (for

V → VK → BK). Hence α and αk = deg V [V ] are in the image of H2k(VK) and thus

tr(K, V ) divides deg V . Then tr(G, V )
∣∣[G : K] tr(K, V )|[G : K] deg V , and squaring the

first and last terms, tr(G, V )2
∣∣[G : K]2(deg V )2

∣∣ |G|(deg V )2. When G is cyclic, H3(G) is

zero so dα is zero. We don’t have to restrict to K, and we conclude tr(G, V )
∣∣deg V . �

When G acts freely, tr(G, V ) = |G| and we have |G| divides (deg V )2 as in [B-K].

Now the degree of V is just the self intersection number of W with itself where W =

V ∩ P k−1. So if G is acting on V such that W is left invariant, then by Theorem 7 we

have tr(G, V )
∣∣deg(V ). In fact we can relax the condition that the inclusion i : W → V is

a G-map. Recall that i : W → V is a homotopy G-map if there is a fibre bundle square

W −−−−→
i

Vy y
E −−−−→

f
VGy y

BG
1−−−−→ BG

which extends i to a map f over 1BG . Then we have shown the following.

Proposition 16. Let G be compact Lie group acting on a non-singular projective

variety V so that the hyperplane section inclusion i : W → V is a homotopy G-map. Then

tr(G, V )
∣∣ deg(V ).

Browder and Katz have an example ([B-K]) where G acts freely on V and satisfies the

hypothesis of Proposition 15, so |G|
∣∣ (deg V )2. But |G| does not divide deg(V ). Hence

we can conclude that in that example the inclusion of the hyperplane section is not a

homotopy G-map.

EXAMPLE: Suppose that M = S2n×· · ·×S2n is a product of k spheres each of dimension

2n. Suppose G acts on M leaving a 2n(k− 1)-dimensional submanifold W invariant. The

Poincare dual of W is a class α ∈ H2n(M) and so α = a1α1 + · · ·+ akαk where the ai are
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integers and αi generateH2n(S2n) of the i-th sphere in the productM . Now α2
i = 0 for all i

and αiαj = αjαi since the αi are even dimensional. Hence αk = k!(a1 . . . ak)α1∪· · ·∪αn =

k!(a1 . . . ak)[M ]. Thus tr(G,M) divides k!(a1 . . . ak). More generally, if we have k G–

invariant submanifolds Wi (repetitions allowed), each having co-dimension 2n, then their

Poincare duals are of the form Σaijαj. Their intersection number is the permanent of

(aij), and it is divisible by tr(G,M).

As a particular example, suppose G is an elementary abelian p-group. By ([G2], 7.4)

we have tr(G,M) = (the number of points in the smallest orbit). Thus (the number of

points in the smallest orbit) divides k!(a1 . . . ak).

In the odd dimensional situation, where M = S2n+1 × · · · × S2n+1 is a product of k

odd dimensional spheres each of dimension 2n + 1, suppose we have a set {Wi} of k G-

invariant submanifolds of co–dimension 2n+ 1. Then the Poincare dual of each manifold

is given by βi = Σaijαj ∈ H2n+1(M) where the aij are integers and each αj generates

H2n+1(S2n+1). Now αj ∪ αk = −αk ∪ αj . Hence W1 • · · · •Wk = det(aij). So if G is an

elementary abelian p-group we see that (the number of points in the smallest orbit) divides

det(aij). In addition, suppose that k = 2l and W is an invariant oriented closed manifold

of codimension 2(2n+1). Suppose the Poincare dual of W is given by β = Σaijαiαj . Now

βl = l! Pf(aij)α1 . . . αk. Thus tr(G,M) divides l! Pf(aij). Here Pf(aij) is the Pfaffian.

Theorem 7.4 of [G2] is greatly generalized by theorem 1.1 of [B]. In particular, Brow-

der’s result implies that the trace of an action of an elementary abelian p–group on a

G–CW complex is equal to the number of points in the smallest orbit.
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