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Spaces of Local Vector Fields

J. C. BECKER AND D. H. GOTTLIEB

This paper is dedicated to James Stasheff.

Abstract. Vector fields defined only over a part of a manifold give rise to
indexes and to transfers. These local vector fields form a topological space
whose relation to configuration spaces was studied by Dusa McDuff, and
whose higher dimensional homotopy and homology promise invariants of
parametrized families of local vector fields. We show that the assignment
of the transfer to the vector field gives a map from the space of local vector
fields of M into Q(M+) which stablizes into a homotopy equivalence.

1. Introduction

A local vector field on a smooth manifold M consists of an open subset U

of M − Ṁ and a tangent vector field ~u on U which has compact zero set. For

technical reasons we include as part of the definition the condition that for all

K ≥ 0, {xεU | |~u(x)| ≤ K} is compact.

The homotopy definition of the Hopf index of a local vector field (U, ~u) is based

on an embedding M ⊂ Rs and realizes the index as the degree of a self map of the

sphere Ss. This map has a factorization of the form Ss
τ(U,~u)−→ Ss ∧M+ ε−→ Ss,

where ε collapses M to a point and τ(U, ~u) is the transfer associated to (U, ~u).

It is the fixed point transfer of Dold [6] as modified for vector fields [2].

Our main purpose here is to make more precise the relation between local

vector fields and transfers. Let V(M) denote the set of local vector fields on M ,

let τ(M) denote the fiberwise one point compactification of the tangent bundle

τ(M) of M , and let Sec(M, Ṁ, τ(M)) denote the space of sections to τ(M)

whose restriction to the boundary Ṁ is the∞–section. Compactification defines

a bijection V(M) −→ Sec(M, Ṁ, τ(M)) and V(M) is given the induced topology.

Then assigning to a local vector field its transfer defines a map λ:V(M) −→
Map(Ss;Ss ∧M+) −→ Q(M+). The method of [3] gives
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Theorem 1.1. Let dim(M) = n. Then λ:V(M) −→ Q(M+) is an (n − 1)–

equivalence.

A stable result can be formulated by considering the space of local vector

fields on Rk ×M , denoted by Vk(M) and letting V∞(M) =
⇀

lim Vk(M). The

transfer construction leads to a map λ∞:V∞(M) −→ Q(M+) and we have

Corollary 1.2. λ∞:V∞(M) −→ Q(M+) is a weak homotopy equivalence.

These results have an equivariant as well as a fiberwise generalization which

are discussed in sections 3 and 4. In section 5 we give a splitting of the space

VG(M) of G–local vector fields an a G–manifold M . We then show that in

most cases G–local vector fields are classified by their transfer, as in the non

equivariant case.

If V is a G–module with unit disk D(V ) and unit sphere S(V ), then VG(D(V ))

is homeomorphic to ΩV S
V and VG(S(V )) is homeomorphic to the space ofG–self

maps of S(V ), which we denote by FG(S(V )). This provides a point of contact

with well known results and methods. For example, the splitting of VG(M) given

in section 4, generalizes the splitting of FG(S(V )) due to Petrie and tom Dieck

[5] and Hauschild [9], and is based upon essentially the same geometric ideas.

2. Transfer construction

Recall that an ex–space E over B consists of a map p:E −→ B together with

a preferred section ∆:B −→ E [7]. If E and E′ are ex–spaces over B and

A ⊂ B, let MapB(E,E ↓ A;E′) denote the space of ex–maps f :E −→ E′ such

that f(ea) = ∆E′(a) for every point ea in the fiber over aεA. If E is a fiber

bundle over B let E denote its fiberwise one point compactification regarded as

an ex–space with the section at infinity as preferred section. If Y is a pointed

space we will often abbreviate the product ex–space B × Y to Y . If Ê ⊂ E

are spaces over B then E/BÊ denotes the ex–space obtained by identifying each

fiber of Ê to a point.

Given an ex–space E over B and map B → B′ we may regard B ⊂ E as

spaces over B′ by composition. We will then write TB′(E) for E/B′B. It is an

ex–space over B′.

Now let M be a compact smooth manifold and fix an embedding M ⊂ Rs.

Let ν be the normal bundle and c:Ss −→ T (ν)/T (ν ↓ Ṁ) the Pontryagin–Thom

map. Let A be an open subset of M and let V(A) be the set of local vector fields

(U, ~u) such that U ⊂ A, topologized by means of the bijection

V(A) −→ Sec(M, Ṁ ∪ (M −A); τ(M)).

Define

(2.1) λ:V(A) −→ Q(A+)
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by

(2.2) V(A) −→ Sec(M, Ṁ ∪ (M −A); τ(M)) = MapM (S0 ×M,S0 × (Ṁ ∪ (M −A)); τ(M))
σ−→ MapM (ν, ν ↓ Ṁ ∪ (M −A); τ(M)⊕ ν) = MapM (ν, ν ↓ Ṁ ∪ (M −A);Ss ×M)

T−→ Map(T (ν)/T (ν ↓ Ṁ ∪ (M −A)); Ss ∧A+)
Map(c)−→ Map(Ss; Ss ∧A+) −→ Q(A+),

where σ is fiberwise suspension. Recall from [2] that the transfer of the local

vector field (U, ~u) is the map

Ss
c−→ T (ν)/T (ν ↓ Ṁ ∪ (M −A))

ε−→ T (τ(M)⊕ ν(M) ↓ A) = Ss ∧A+

where ε(vx) =
→
u(x) ⊕ vx, x ∈ U , and ε(vx) =∞, x 6∈ U . Thus we see that the

map λ simply assigns to a local vector field on A its transfer.

Theorem 2.3. Let n = dim(M). Let A be such that M − A is a finite

subcomplex of M . Then λ:V(A) −→ Q(A+) is an (n− 1)–equivalence.

Proof. Let µ denote the duality map

Ss
c−→ T (ν)/T (ν ↓ Ṁ ∪ (M − A))

δ−→ T (ν)/T (ν ↓ Ṁ ∪ (M −A)) ∧A+

where δ(ya) = ya ∧ a. It defines

Dµ: Map(T (ν)/T (ν ↓ Ṁ∪(M−A)); Ss) −→ Map(Ss; Ss∧A+) : Dµ(f) = µ(f∧1)

Let

α: MapM (ν, ν ↓ Ṁ ∪ (M −A); Ss×M) −→ Map(T (ν), T (ν ↓ Ṁ ∪ (M −A)); Ss)

denote the homeomorphism which sends f to T (πf), π the projection Ss×M −→
Ss. In (2.2), Map(c)T is homotopic to Dµα. Since Dµ is an (n− 1)–equivalence

for large s, the theorem follows. �
Let Vk(M) denote the set of local vector fields on Rk ×M and for A open in

M let Vk(A) denote the set of local vector fields (U, ~u) for which U ⊂ Rk × A.

Compactification gives a bijection

Vk(A) −→ MapM (Sk ×M, Sk × (Ṁ ∪ (M −A)); Rk ⊕ τ(M))

and Vk(A) is given the induced topology. Let D = Ṁ ∪ (M − A) and define

λk:Vk(A) −→ Q(A+) by

(2.4) Vk(A) −→ MapM (Sk ×M,Sk ×D; Rk ⊕ τ(M))
σ−→

MapM ((Sk ×M) ∧M ν, (Sk ×M) ∧M ν ↓ D;Rk ⊕ τ(M)⊕ ν)
T−→

Map(Sk ∧ T (ν)/Sk ∧ T (ν ↓ D);Sk+s ∧A+)
Map(c∧1)−→ Map(Sk+s; Sk+s ∧A+) −→ Q(A+).

Essentially the same argument as in the proof of (2.3) shows that λk is an

(n+ k − 1)–equivalence.

Embed Rk × M into Rk+1 ×M by (y1, . . . , yk, x) −→ (0, y1, . . . , yk, x) and

define Vk(A) −→ Vk+1(A) by (U, ~u) −→ (R × U,~n× ~u) where ~n is the “outward”
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vector field on R defined by ~n(t) = t. Let V∞(A) =
⇀

lim Vk(A). Then the λk

define λ∞:V∞(A) −→ Q(A+).

Corollary 2.5. λ∞:V∞(A) −→ Q(A+) is a weak homotopy equivalence.

We close this section with a few simple observations about the space of local

vector fields. For a disk Dn the canonical trivialization of the tangent bundle

of Dn gives a homeomorphism V(Dn) = Ωn(Sn). So by considering disks of

different dimension we see that V(M) is not a homotopy invariant of M . On the

other hand it follows from (2.3) that ifM andM ′ are homotopy equivalent, V(M)

and V(M ′) have the same (n− 2)–type where n = min{dim(M), dim(M ′)}.
Consider now the different path components of V(M) when M is connected

and dim(M) > 0. They are indexed by the integers and, as Dusa McDuff [10]

has shown, if M has non empty boundary the different path components are

homotopy equivalent. Adding a collar and a local vector field on the collar of a

prescribed index leads to homotopy equivalences between path components.

However if M is closed the different path components need not be homo-

topy equivalent. Consider the sphere Sn, n 6= 1, 3, 7. As we have noted,

V(Sn) = F (Sn), the space of self maps of Sn. Consider the fibration (ΩnSn)k −→
Fk(Sn)

ω−→ Sn where ω is evaluation and Fk(Sn) and (ΩnSn)k are the compo-

nents of degree k maps. We have that ω∗:πn(F0(Sn)) −→ πn(Sn) is onto since

there is a section, while ω∗:πn(F1(Sn)) −→ πn(Sn) is not onto since Sn is not

an H–space if n 6= 1, 3, 7. Now from the exact sequence of the fibration, we

see that πn−1(F0(Sn)) 6= πn−1(F1(Sn)). Note however that by (2.3), the path

components of V(M) have the same (n− 2)–type where n = dim(M).

3. Equivariant and vertical vector fields

Suppose now that G is a compact Lie group, M is a compact smooth G–

manifold, and A is an open G–invariant subset of M such that M −A is a finite

G–subcomplex. Then G acts on V(A) by g(U, ~u) = (gU, g~ug−1), gεG. There is

the space Q(A+, G) =
⇀

lim
V

Map(SV , SV ∧A+) the limit taken over the category

of G–modules and G–monomorphisms. Fix an equivariant embedding of M into

a G–module W and let λ:V(A) −→ Q(A+, G) denote the map of the previous

section after replacing Rs by W . For H ≤ G let n(H) be the minimum of the

integers dim(AK) and dim(AJ ) − dim(AK), J < K ≤ H , and K an isotropy

subgroup of A. This defines a function n on subgroups of G.

Theorem 3.1. λ:V(A) −→ Q(A+, G) is an (n − 1)–equivalence. (That is,

λH :V(A)H → Q(A+, G)H is an (n(H)− 1)–equivalence for each H ≤ G.)

The proof involves a straightforward generalization of the G–suspension the-

orem to a fiberwise version. Otherwise it is essentially the same as in the non

equivariant case so we will omit the details.

Let VW (A) denote the space of local vector fields on W ×A, W a G–module.

We have λW :VW (A) −→ Q(A+, G) defined by making the obvious changes in
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the definition of λk in (2.4). If φ:W −→ W̃ is a G–monomorphism we have

ϕ:VW (A) −→ VW̃ (A) by crossing with the outward vector field on W̃⊥. Let

V∞(A,G) =
⇀

limVW (A) and λ∞ =
⇀

limλW .

Corollary 3.2. λ∞:V∞(A,G) −→ Q(A+, G) is a weak G–homotopy equiva-

lence.

In particular λ∞ restricts to a weak homotopy equivalence of fixed point sets.

Denote V∞(A,G)G by VG(A) and Q(A+, G)G by QG(A+).

Corollary 3.3. λ∞:V∞G (A) −→ QG(A+) is a weak homotopy equivalence.

We point out now how equivariant self maps of representation spheres, as stud-

ied in [3], fit into this general framework. Let V be a G–module and let FG(S(V ))

denote the space of G–self maps of the unit sphere S(V ) of V with the identity as

base point. Representing τ(S(V )) as the set of pairs [x, x′]εS(V )×V such that x·
x′ = 0, we have a base point preserving homeomorphism FG(S(V )) −→ VG(S(V ))

by f −→ (U, ~u) where U = {x|f(x) 6= x} and ~u(x) = [x, (1/(1− x · f(x)))(f(x) −
(x · f(x))x)]. If G is finite and acts freely on V then VG(S(V )) is homeomor-

phic to V(S(V )/G) by (U, ~u) −→ (U/G, ~u/G). Thus we have a homeomorphism

F (S(V )) = V(S(V )/G). The (n−2)–equivalence FG(S(V )) −→ Q(S(V )/G+) de-

fined in [3] corresponds under this homeomorphism to λ:V(S(V )/G) −→ Q(S(V )/G+).

We will briefly describe the fiberwise generalization of the above construction,

which relates the space of transfers of a smooth fiber bundle to its space of vertical

local vector fields.

Let F be a compact smooth G–manifold and Ẽ −→ B a principal G–bundle, B

a finite CW–complex. Let E = Ẽ ×G F and let τ(E ↓ B) denote the bundle of

tangents along the fiber, τ(E ↓ B) = Ẽ×Gτ(F ). Let Ė = Ẽ×GḞ . A vertical local

vector field (U, ~u) onRk×E consists of an open set U of Rk×(E−Ė) and a section

~u:U −→ Rk ⊕ τ(E ↓ B) such that for K ≥ 0, {eεU | |~u(e)| ≤ K} is compact. Let

Vk(E ↓ B) denote the set of vertical local vector fields on Rk×E topologized by

means of the bijection Vk(E ↓ B) −→ MapE(Sk×E, Sk× Ė; τ(E ↓ B)), and let

Q(E ↓ B) =
⇀

lim MapB(Sk ×B, Sk ∧B E),

the space of transfers of the bundle E −→ B.

Fix aG–embedding F ⊂W, W aG–module, and a monomorphism Ẽ×GW −→
Rs ×B. We then have

τ(E ↓ B) = Ẽ ×G τ(F ) −→ Ẽ ×GW × F −→ Rs × Ẽ ×G F = Rs × E.

Let ν be the orthogonal complement of τ(E ↓ B) in E × Rs. The embedding

E = Ẽ ×G F −→ Ẽ ×GW −→ B ×Rs has a Pontryagin–Thom map c:Ss ×B −→
TB(ν)/BTB(ν ↓ Ė) which is an ex–map over B. Now define λk:Vk(E ↓ B) −→
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Q(E ↓ B) by

Vk(E ↓ B) −→ MapE(Sk × E, Sk × Ė; Rk ⊕ τ(E ↓ B))

σ−→ MapE(Sk ∧E ν, Sk ∧E ν ↓ Ė; Rk ⊕ τ(E ↓ B)⊕ ν)

TB−→ MapB(Sk ∧B TB(ν), Sk ∧B TB(ν ↓ Ė); Sk+s ∧B E)

MapB(1∧Bc)−→ MapB(Sk+s ×B; Sk+s ∧B E) −→ Q(E ↓ B).

If k = 0, λ = λ0 assigns to each vertical local vector field its transfer [2].

Again this transfer is Dold’s fixed point transfer for fibre bundles [6] modified

for vector fields. Let

V∞(E ↓ B) =
⇀

limVk(E ↓ B),

and λ∞ =
⇀

limλk.

Theorem 3.4. λ∞:V∞(E ↓ B) −→ Q(E ↓ B) is a weak homotopy equiva-

lence.

A fiberwise duality map µ is given by

Ss ×B c−→ TB(ν)/BTB(ν ↓ Ė)
δ−→ TB(ν)/BTB(ν ↓ Ė) ∧B E,

where δ(ye) = ye ∧ e. It induces

Dµ: MapB(TB(ν), TB(ν ↓ Ė); Ss ×B) −→ MapB(Ss ×B; Ss ∧B E)

which is a (t − 1)–equivalence if s is large relative to t [1]. The proof is now

essentially the same as the proof of (2.3).

4. Splitting of VG(M)

Suppose that M is a compact G–manifold and H is a maximal isotropy sub-

group. Let N be a G–tubular neighborhood ofM (H) = G×N(H)M
H and identify

N with the unit disk bundle of the normal bundle ν(M (H) ⊂M). Letting

p:N −→ M (H) denote the projection, we have τ(M) ↓ N = p∗(τ(M (H))) ⊕
ν(M (H) ⊂ M). Let ~n be the outward normal vector field on N , defined by

~n(vy) = (1/1− |vy|)vy.

Lemma 4.1. Let (X,A) be a finite CW pair on which G acts trivially, and

∆:N × X −→ τ(M) ↓ N a G–lifting such that ∆|N × A is given by ∆(vy , a) =

(vy,∆(y, a)⊕~n(vy)). Then ∆ is G–homotopic relative to N ×A to ∆′ such that

∆′(vy , x) = (vy ,∆(y, x))⊕ ~n(vy)).

This is an easy consequence of the G–covering homotopy extension property.

Now let p̃ = p|Int(N) and let M0 = M − Int(N). Define

(4.2) ζ:VG(M0)× VG(M (H)) −→ VG(M)

by ζ((U, ~u), (W, ~w)) = (U, ~u) t (p̃−1(W ), p̃∗(~w)⊕ ~n)
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Lemma 4.3. ζ is a weak homotopy equivalence.

Proof. Let X be a finite CW–complex on which G acts trivially. We wish

to show that

ζ#: [M0 ×X, Ṁ0 ×X ;τ(M0)]GM0
× [M (H) ×X, Ṁ (H) ×X, τ(M (H))]GM(H)

−→ [M ×X, Ṁ ×X ; τ(M)]GM

is bijective. To show that ζ# is onto let ∆:M × X −→ τ(M) be a G–map

over M . By the previous lemma we may assume that ∆|N × X is given by

∆(vy , x) = (vy ,∆(y, x) ⊕ ~n(vy)). Let f = ∆|M0 × X and f ′ = ∆|M (H) × X .

Then ∆ = ζ(f, f ′). A similar argument shows that ζ# is one–one. �
If H is an isotropy subgroup of M and N is a G–tubular neighborhood of

M(H) in M , define αH :VW (H)(M
H) −→ VG(M) by

αH(W, ~w) = (p̃−1(G×N(H) W ), p̃∗(1×N(H) ~w)⊕ ~m).

Theorem 4.4. There is a weak homotopy equivalence ψ: ×
(H)
VW (H)(MH) −→

VG(M), the product taken over the conjugacy classes of isotropy subgroups of M ,

such that for each (H), ψ|VW (H)(MH) ' αH .

Proof. If H is a maximal isotropy subgroup then VW (H)(MH) = VG(M(H))

by (W, ~w) −→ (G×N(H)W, 1×N(H) ~w) and M(H) = M (H). Replacing VG(M (H))

in (4.2) by VW (H)(MH) gives a weak homotopy equivalence

ψ′:VG(M0)× VW (H)(MH) −→ VG(M)

such that ψ′|VW (H)(MH) = αH . We may assume inductively that the theorem

holds for M0. Note that the canonical strong deformation retraction ofM−M (H)

to M0 restricts to a strong deformation retraction of MK to (M0)K , for each

isotropy subgroup K such that (K) 6= (H). It follows easily from this that

the inclusion VW (K)((M0)K) −→ VW (K)(MK) is a homotopy equivalence. This

completes the proof. �

5. Classification

It follows from theorem (2.3) that λ:π0(V(M)) −→ ω0(M+) is a bijection if

dim(M) > 1, and it is easily checked that λ is also bijective if dim(M) = 1. If M

is 0–dimensional then λ is injective. (There are two local vector fields on a point

— the empty one with index 0 and the non empty one with index 1.) In other

words, local vector fields are classified up to homotopy by their transfer. An

inductive proof of this classification is given in [8]. Similar observations based

on (3.1) give the following.

Lemma 5.1. Let M be a compact G–manifold and A an open subset of M on

which G acts freely. Then λ:π0(VG(A)) −→ ωG0 (A+) is bijective if dim(M) > 0

and injective if dim(M) = 0.
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Theorem 5.2. Let M be a G–manifold such that for each pair of isotropy

subgroups H < K, dim(MK) + 1 < dim(MH). Then λ:π0(VG(M)) −→ ωG0 (M+)

is injective.

Proof. Suppose that λ(U, ~u) = λ(V,~v). Now from the splitting of VG(M)

we may assume that (U, ~u) =
⋃

(H)

αH(U ′H , ~u
′
H) where (U ′H , ~u

′
H)εVU(H)(MH), and

similarly that (V,~v) =
⋃

(H)

αH(V ′H , ~v
′
H) where (V ′H , ~v

′
H)εVW (H)(MH). Fix an

isotropy subgroup H . If (K) 6= (H) then since the zeroes of αK(U ′K , ~u
′
K)

lie in M(K), αK(U ′K , ~u
′
K)H is a non zero vector field and is therefore W (H)–

homotopic to the empty vector field. Consequently, (U, ~u)H '
W (H)

(U ′H , ~u
′
H) and

similarly (V,~v)H '
W (H)

(V ′H , ~v
′
H). We now have, upon restricting to MH that

λ(U ′H , ~u
′
H) = λ(V ′H , ~v

′
H) in ω

W (H)
0 (MH+). By our assumption on M we see that

ω
W (H)
0 (M+

H) −→ ω
W (H)
0 (MH+) is injective. Therefore, λ(U ′H , ~u

′
H) = λ(V ′H , ~v

′
H)

in ω
W (H)
0 (M+

H) and by the lemma, (U ′H , ~u
′
H) ' (V ′H , ~v

′
H) in MH . This completes

the proof. �
Corollary 5.3. Let M be a compact G–manifold such that dim(MK) + 1 <

dim(MH) for each pair H < K of isotropy subgroups. Two G–local vector fields

(U, ~u) and (V,~v) on M are G–homotopic if and only if for each isotropy subgroup

H and component C of MH , Ind (UH , ~uH)|C = Ind (V H , ~vH)|C.

Proof. If follows from the Segal–tom Dieck splitting theorem [4] that the

map ωG0 (M+) −→
∑
(H)

ω0(MH+) obtained by restricting to fixed point sets is

injective. �
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