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A CERTAIN SUBGROUP OF THE FUNDAMENTAL GROUP.

By D. H. GorTLIES.

Introduction.! Let X be a topological space with x, as a base point
A homotopy H: X X I—X is called a cyclic homotopy if

H(z,0) =H(z,1) ==.

In another notation, %; is a cyclic homotopy if i, =/, = 1y, where 1x denotes
the identity map of X.

If h; is a cyclic homotopy, the path given by ¢: I—=X such that
o(s) =hs(z,) will be called the trace of h;. The trace is obviously a closed
path.

The set of homotopy classes of those loops which are the trace of some
cyclic homotopy form a subgroup of the fundamental group which we shall
denote by G(X,z,). It is the purpose of this paper to study G(.X.,),
establish some elementary properties, compute it for one dimensional graphs,
two dimensional compact manifolds, lens spaces and projective spaces. In
addition its effects on the universal covering space and the mapping space X%
will be discussed.

Jaing Bo-Ju, in a recent paper [1], has also investigated this group.
He was mostly interested in the role the group played in the Nielsen-Wecken
theory of fixed point classes. Some properties of G'(X,z,) proved here were
mentioned by Jaing Bo-Ju, but they were not of the same generality except
in the cases of Theorem 1.8 and Theorem II.4.

The present paper is divided into four parts. The first part deals with
the elementary properties of G'(X,2,), and G(X,x,) is computed for many
kinds of spaces. In particular, Corollary T.13 tells us that if X is aspherical,
then (f(X,x,) is the center of =, (X, x,).

In the second section, the role of-G(.\, ) as the subgroup of the group
of deck transformations of the universial covering space is discussed, leading
to the calculation of G'(X,x,) for lens spaces and for projective spaces.
Theorem II.7 gives a condition for a homeomorphism to be in the center
of a discrete group of homeomorphisms acting freely on a contractible space.
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SUBGROUP OF FUNDAMENTAL GROUP. 841

In part ITI, the relation of G(X,z,) to the mapping space XX is dis-
cussed. If X is aspherical, it is shown that the identity component of X¥
has the homotopy groups, = (XX, 1x) = Z (7 (X, z,) ), the center of =, (X, z,),
and 7, (XX,1x) =0 for n > 1. M.-E. Hamstrom has investigated the homo-
topy groups of the space of homeomorphisms of two dimensional aspherical
manifolds. They turn out to be the same as the homotopy groups of the
space of mappings. This indicates a deeper relation between the mapping
space and the subspace of homeomorphisms of manifolds.

In part IV, Theorem IV.1 says that G (X,z,) =1 if X is compact and
the Euler Poincaré number is zero. This fact may be of some use in com-
puting Homeotopy groups; see G. S. McCarty [5]. Also we have Corollary
IV.3 which says that if x(X) 540 and X is aspherical, then Z (=, (X)) =1.
This result is applied to subcomplexes .Y of S» and yields facts about S» — X.

I. The group G(X, x,).
§1. G(X,2,).

We shall concern ourselves only with pathwise connected C. W.-complexes
in this paper. Let X be one such with z, as a base point. We begin our
investigation by inquiring ; which loops are the trace of some cyclic homotopy ?
The first theorem shows that the answer depends only on the homotopy classes
of the loops.

If o is a loop. i.e., o0: I— X such that o(0) =0 (1) ==, then [o] shall
denote the equivalence class of all loops @ homotopic to ¢ under a homotopy
h¢ such that 7,(0) =7;(1) =a,. In symbols, this will be written « == o rel @,
We shall also regard o as a map from the circle (8%,s,) to (X,2,) and [o]
will denote the set of all « such that a == ¢ rel z,.

TuvoreM I.1. If ¢ is the trace of a cyclic homotopy, and o€ [o],
then « is the lrace of a cyclic homotopy.

Proof. TLet H: X XI—X be a cyclic homotopy with ¢ as its trace
and let iy be the homotopy connecting o with a. ILet L be the subcomplex
of XX T given by (XX 0)U (X X 1)U (2, XI). Define a partial homo-
topy of H on L as follows: ks: L— X such that k(a,t) —2 if {=0 or
t=1 and k(@ ¢) = hs(t).

Now L is a sub complex of X X I, and hence has the homotopy extension
property. This means that there is a homotopy K,: X X I— X such that
Ky=H and K¢ | L=F; Then K,: X XI—>X is a cyclic homotopy on X
with trace a.
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- Definition. Let G(X,z,) be the set of all elements [o] € m (X, 2,) such
that o is the trace of a cyclic homotopy on X.

TrEOREM I.2. G(X,2,) ts a subgroup of = (X,=,).

Proof. Let [«] and [B]€ G(X,z,). Let hy and k; be the required
cyclic homotopies respectively. Define a homotopy I;: X— X such that
ly() =hx(z) for 0=¢=1% and l;(z) = ka1 (z) for =¢=1. The trace
of 1; is the loop «-B. Hence [a-B] = [a]-[B] € G(X,=,).

Also [a]*€ G(X,x,) since [a]*=[«?] and a is the trace of h;:
X->X.

The next theorem shows that G (X, z,), viewed as a subgroup of =, (X, 7,)
is independent of the choice of the base point z,. Because of this, we shall
abbreviate G (X,2,) to G(X) when no confusion occurs.

Let o: I— X be a path such that ¢(0) =z, and o(1) =z,€ X. Then
o induces an isomorphism oy : = (X, ) = (X,2,) such that o4 ([a])
= [0‘ ta 0"1] .

TuEOREM 1.3, o04: G(X,2,) =G (X,2,).
Proof. Since o, is 1-1, all we must show is that ¢,(G(X, z,)) C G(X, z,).

Let [a] € G(X,z,). Then there exists a cyclic homotopy H: X X I —> X
with trace «. By the homotopy extension property, there is homotopy
J: X X1I—-X such that J(z,0) =2 and J (2o, 1) = o ().

Define K: X X I > X by

K(z,t) —J (g, 3t), 0=t=<1
K(x,t)=H(J(cc,1),3t——1), l&été%
K(z,t) —J(2,3(1—1)), p<i=<1

Now K is a cyclic homotopy and its trace with respect to z, is o-o-o7%
So oy[a] =[o-a-act] € G(X,,).

§R. P(X,2,) And Computations.

We now establish some notation. Suppose (X,z,) and (Y,y,) are two
spaces with base points, then we will always assume that X X Y has the base
point (2o, %,). Also, X will denote X X 9, and ¥ will denote z, X ¥ and
XVY=(XXy)U (2, XT).

Bemark 1. Let o: (8%, s,) = (X,2,). Then [o] € G(X,z,) if and only
if the map f: X V §*— X such that f(2) — « whenever z € X and f(s) = o(s)
if s€ S can be extended to X X S*.
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The elements of - (X,z,) operate on =,(X,z,) as a group of auto-
morphisms in a standard way, [4].

Definition. The set of elements of =, (X,z,) which operate trivially on
all 7,(X,z,) form a subgroup which will be denoted as P (X, z,).

Remark II. [a] € = (X, ,) operates trivially on m,(X,z,) if and only
if for every map f: S*— X, there exists an extension F: 87 X S'— X such
that F | S'=«.

Now we are in position to prove the next theorem, whose corollaries
will give us G'(X) for many spaces.

Taeorem I.4. G(X,z,) CP(X, ).

Proof. Let [a] € G(z,2,). By Remark I, we haveamapH: X X S'— X
such that H | X =1, and H | S*=a. Let f: (S r,) = (X,2,) be any map
from an n-sphere to X. We shall define a map F: S» X §*— X as follows;
F(r,s) =H(f(r),s) for r€ S and s€ S*. Since F(r,s,) = H(f(r), so) = f(7),
F| Sv—f. Also F(ro,s) = H (z,s) = a(s) implies that F | ' —a. There-
fore, by Remark II, [a] € P(X,=,).

The subgroup of (X, a,) which operates trivially on =, (X,z,) itself
is precisely the center of =;(X), hereafter denoted by Z (= (X)). Thus
P(X,20) S Z(m:(x)) so we have G(X) CZ(r (X)).

CororLarY I.5. If T is any 1-dimensional polyhedron except for the
homotopy circle, then G(T) —1.

CoroLrary I.6. Let P be the projective space of dimension n. Then
G(P*) =1 for n>0.

Proof. Pt is not a 2n-simple space as is well known. That is , (P2")
does not act trivially on m,, (P?"). Since m, (P?") == Z,, this means that the
generator, «, of =, (P**) does not act trivially on 7., (P2"). Hence af P(P*n, ),
so P(X, ) is the trivial subgroup. Thus G(P?") is trivial.

CoroLrarY I.%7. If M is any closed 2-dimensional manifold with the
exception of the torus and the Klein, then G(M)=1.

Proof. It M=P?, G(M)=1 by the preceding corollary. Otherwise
w1 () has a trivial center as is well known. ‘Hence G(M)=1.

For two of the exceptional cases to Corollaries 5 and 7, the circle S*
and the torus T, we see that  (S') — G(S*) and =y (T) = G(T). This
result follows from the fact S* and T are both topological groups and the
following theorem.
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TraeoreM I1.8. If X is an H-space, then G(X) =m (X).

Proof. An H-space (X,l) has a continuous multiplication and an
element ! such that right and left multiplication are both homotopic to the
identity on X. Since we are assuming that X is a C. W. complex, X V X is
a subcomplex of X X X and so has the homotopy extension property. Hence
there exists a continuous multiplication, -, such that ! is a multiplicative
identity.

Let o: I— X be any closed path in X such that ¢(0) =0 (1) =1.

Define a cyclic homotopy as follows; hs(x) =o(¢)-z. The trace
7(t) =hi(l) =o(t) -l=0(¢). Thus every closed loop at the identity is
the trace of some cyclic homotopy, hence G (X) = (X).

§3. Properties of G(X, ).

Any map f:(X,2,) = (Y,y,) induces a homomorphism f,: = (X, 2,)
—>m(Y,y,). This important property is not enjoyed by G(X,z,). That
is f4(G(X)) is not necessarily contained in G(Y). This may be seen as
follows.

Let Y be the figure eight. Let i: (8%, 8,) = (¥, 9,) be the embedding
of the circle onto one of the loops of Y. Now let & be a generator of
w1 (8% 80). Then iy () is not equal to the identity 1, of = (Y,9,). Since
G(Y,40) =1, 1y () ?E‘ G(Y,y,). On the other hand, since G(S*) ==, (S'),
a€ G(8%s). Thus 1, (G(8*)) T G(Y).

All is not lost, for we do get the following theorems.

TuEOREM 1.9. Let r: (X,2,) = (Y,y,) be a retraction. Then
4 (G(X,20)) & G (Y, 90).

Proof. Let i: Y —>X be the inclusion map. Let y,€ Y be the base
point of ¥ and ¢(y,) be the base point of X. Let [«] € G(X,%(y,)). Then
there exists a map K: X X §*— X such that K | X =1x and K | §*=a.

Define a map H: Y X 8*—> Y by setting H(y,s) =roK(i(y),s) for
ye€Y and s€8. Now H(y,s) =roK(i(y),s) =r(i(y)) =y and
H (yo,8) =70K (1(y0),s) =r(a(s)) =roa(s). Hence [roa]€ G(T,y,).
But ry[a] = [roal, so 1 (G(X,i(y)) C G(Y, 9).

Now consider any z, such that r(2,) =y, Let ¢ be a path such that
o(0) =(y,) and o (1) =, Then ¢ induces an isomorphism oy : m (X, 2,)
= (X,1(y,)) as follows

Ty [a] = [U o 0‘1].
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Let [a] € G(X,2,). By Theorem 1.3, o4[a] € G(X,i(y,)) and so
r4(ox[@]) € G(Y,y0). But ry(oxl[a]) =ry[o-ao*]=[roo-roa-roat].
Since rog and root are closed paths in Y, we have

re(ogla]) =[rog]-[roa]-[roo'] =[rog]:[ros] - [roe]™
Since 1y (ox[a]) € G(Y,y0) S Z(m:(Y,,)), we have
re(oglal) =[roa]™ - ry(oyfa]) - [roa]
=[roa]?- ([roc]-[roa] [roc]™) [roo] =[roa].

Therefore 7. [a] € G(Y,vy,).
If f:(X,20) > (Y,y,) is a homotopy equivalence, then f induces an

isomorphism fy: G(X,z0) > G(Y,9,). This results from the following
theorem.

TaeoreM 1.10. If f: (X, z,) = (Y, 9,) is a homotopy equivalence, then
[ (G(X,20)) = G(Y,5).

Proof. That f: X— Y is a homotopy equivalence implies the existence,
by definition, of a map g: ¥ — X such that fog=1y and gof=1y. Since
Yo has the Homotopy Extension Property in ¥, we may assume that g(y,) = ..
Let J: ¥ X I— Y be a homotopy such that J(y,0) =fog(y) and J(y,1) =y.

Now let [o] € G(X,2,). Since fg: m(X,20) =m(Y,9,) is an iso-
morphism, we need merely to show that f.[¢] =[foo] € G(Y,y,). Let

he: XY — X be a cyclic homotopy such that 2,(2,) =o(¢) for all £€ 1. Define
a homotopy

K:YXI—>Y by K(y,t) = (fohiog) (y).
Then k(y,0) =fog(y) =K (y,1) and
(Yo, 1) = f(he(xo)) =F(o(t)) =Foo(t)
for all t€1.
Define T: Y X I—Y such that
(g, t) = (y,1—38t) for 0=t=}
T(y,8—1) =K (y,8t—1) for §=t=
T(y,8t—2) =J (y,31 —2) for 3=t =1.

Now 7'(%,0)=J(y,1) =y and T(y.1)=J(y.1) =y, so T is a cyclic
homotopy.
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Let @: I— Y be the path given by a(t) =J (40, t). Now «(0) = J (o, 0)
—=fog(4o) =7 () =40, and a(1l) =J (Yo, 1) =¥o, so a is a closed path.
So the trace of T at y,, 7, is given by:

(1) =T (yo, 1) = (& (foo) - @) (1).
Hence [r] =[] [foo] [«]€ G(Y,y,). Hence [foo]€ G(Y,y,) since
G(Y) &SZ(x(Y)).

Another property G shares in common with the fundamental group is

the following.

TaeoreM L.11. G(X X Y, (zo,40)) = G(X,2,) ® G(Y,9,).
Proof. Let Z=X X Y and Z,= (X,9,). There exists an isomorphism

h:wi(Z,Z0) > (X, 40) © 7 (Y, 90),
such that
h([a]) = pe([a]) @ g«([a])

where p, and ¢, are induced homomorphisms from the projections of Z onto
X and Y respectively. Now h(G(Z)) C G(X,z,) ® G(Y,y,) as may readily
be seen by noting that projections are retractions and applying Theorem I.9
to the definition of h.

On the other hand, let [«] and [B3] be elements of G (X, z,) and G (Y, y,)
respectively.

Now h*([a] ® [B])=[(jo @) (ko B)] where j and k inject X - X X ¥y,
and ¥ — @, X Y respectively.

Since [«] and [B] are in G (X, z,) and G(Y,y,) respectively, there exists
cyclic homotopies H and J having traces « and B respectively.

Let K: X XY XI—>X XY be defined as follows:

K (2,y,t) = (H(z,2t),y) for 0=t=1%
K (2,9,1) — (2,7 (3,2 —21)) for }=¢=1.

It can easily be verified that K is a cyclic homotopy on X X ¥ with trace
(joa)- (ko). Hence h([a] ® [B]) € G(Z,z), so I (G(X) ® G(Y))
C G(Z). Hence 1(G(Z)) 2 G(X) @ G(Y).

§4. Aspherical Spaces.

The fact that G(X) C P(X) leads naturally to the questions; Is there
a space X for which G(X) £ P(X), and if so, under what conditions does
equality obtain? The author has not been able to answer these questions,
but they have stimulated the next important theorem.
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For every [o] € m(X,%,), we can define f,: X V S*— X such that
fo| X=1x and f, | S*=0. Let fo™: (X V §) U (X™ X §) = X be an
extension of f;, where X is the n-skeleton of X. If fo(» exists, we say
that [o] is (n 4 1)-extensible. The set of all (n - 1)-extensible [¢] forms
a subgroup of =, (X;,2,) which we shall denote by G™(X,x,). We get a
descending sequence of groups as follows;

GO(X) D ED(X)D- - -DG(X).

On the other hand, let P™ (X, x,) stand for the subgroup of = (X,2,)
of all [o] which operate trivially on (X, z,) for k=n. Then

PO(X) DPA(X) D - - DP(X).
Turorem I.12. GO (X, 2,) =PD (X, 2,) =Z (7w (X, 7,) ).

Proof. PM(X,20) = Z(m (X, ) ) is well known. To prove GO (X, z,)
=Z(m(X,20)), we must show that f,® exists iff [o] € Z (71 (X1, 0)).
That is, we must show that f,: X VV §*— X is 2-extensible over X X §!
ift [o] € Z(m(X,2,)). This shall be shown by appealing to the following
result, which can be found in [4], p. 194.

Remark II1. Let L be a connected subcomplex of K containing v, and
f:(Lsv0) = (Y, y,) be a map into a pathwise connected space Y. Then f
and the inclusion map ¢: L C K induce the homeomorphisms

fat mi(Lyvo) = (Y, 40), 1yt w (L, v0) = i (K, v,).

Then f is 2-extensible over K iff there exists a homomorphism %: =, (K,v,)
— 7 (Y, 9,) such that f, = hi,.

For the case at hand, let L=XV §', Y =X, K =X X 8* and f=f,,.
Then o (L) === (X) #x(S"), the free product, and =, (K) ==, (X) @ =, (8).

Now let o€ 7, (X) and B€ 7, (8*). Let multiplication hetween elements
of = (A7) be expressed by (). ILet v generate =, (S*). Then iy (axB8) —a @ B
and fu(a*v) =0a-[o].

Suppose that I exists such that f,="ni,. Now f.(v) =[¢] and
(1) =1@v, 50 [o] =h(1@v). On the other hand, a—f,(a) = hi, ()
=h(a®1).

Thus h, if it exists, must satisfy the equation 1 (a @ v) —a- [¢] for all
€ (X). Now fu(axv) =a-[o] and fy(v¥a) =[] @ But hi,(a*v)
=a-[o] =hiy(v+a). Hence a-[o]=[c] a for all a€x (X).

The above theorem enables us to determine precisely what G(X) is.
when X is aspherical, i.e., when =, (X) =0 for n > 1.
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CororrAry 1.13. If X is aspherical, then G(X,z,) =Z(m (X, )).

Proof. Since X is aspherical, X X S* is aspherical. Thus any map
fo: X V St— X which is R-extensible must be extensible over X X S§*.

The above corollary permits us to settle the one holdout among the closed,
2-dimensional manifolds the Klein Bottle K.

Cororrary I.14. Let K be the Klein Bottle. Then G(K) =127 (m (K)).

II. The universal covering space. As in the first chapter, A will
always be a pathwise-connected C. W.-complex. This is enough to insure the
existence of the universal covering space €. We shall let p: (C, ) = (X, 2)
be the covering projection.

§1. The Universal Covering Space and G(X,,).

There is a natural isomorphism, v, between =, (X,z,) and the group of
Deck Transformations, D (X), acting on C. Thus G(X,x,) corresponds to
a subgroup of D (X) under v. This subgroup, v (X), has a natural definition
within 9D (X).

TurorEM II.1. G(X,z,) is tsomorphic to the subgroup of those Deck
Transformations which are homolopic o 1¢ by fiber preserving homotopies.

Proof. Suppose that [A] € m (X, 2,) gives rise to the deck-transforma-
tion I: C— C. This means that any path « from 7, to I(Z,) projects down
upon the closed path poa€ [A].

Now suppose that [A] € G(X,2,). Then there exists a cyclic homotopy
hy: X — X whose trace is A. Now 1g: C'— C covers the map 1yop: O— A
Since h;op: C—>X is a homotopy of 1xop, by the Covering Homotopy
Property there must exist a homotopy hy: C— C which lifts hyop. That is
h,0p=po}.bt. Now h, = 1x so p=pOﬁl. Thus 7;1 must be a deck trans-
formation of . Now h; =1 since the path 7(¢) =7LL(50) running from 7,
to hy (%) lifts A. So f; is the required fiber preserving homotopy from 1 to I.

Conversely, if hy is a fiber preserving homotopy such that hy=1¢
and h, =1, then there exists a cyclic homotopy h;: X — X such that i,op
=p<37{t. Clearly h; is a cyclic homotopy and its trace =(t) = h¢(x,) is
contained in [A].

For covering spaces, fiber-preserving homotopies satisfy a very nice
condition.

TueoreM I11.2. The homotopy hy: C—C is fiber preserving iff fohy
—hsof for every f€ D (X).

Proof. Suppose &, is fiber preserving. Let f be any deck transformation
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and 2 € ' any point. Then f(x) and « are in the same fiber.  Since k;(z)
and 1, (f(a:)) are both in the same fiber, there is a g¢ D(X) such that
gohi(z) =hiof(z). If e>0 is sufficiently small, go ht_e(a:) = hHOf(x)
Thus the greatest lower bound of the set of ¢’s such that goh(x) = hso f(z)
must occur when {=0. Therefore by continuity, g o ﬁo(x) — hyo f(z). But
hy=1¢, so g(2) =f(z). This can occur only when g—f. Thus fok,
—hyof for all f€ D (X).

On the other hand, suppose foh;—=h,of for all f€ D(X). Let =z
and y both be in the same fiber of p and suppose that f(z) =y. Now
ﬁtzf-lo};to]”, S0 h—t(:c) =f‘10i.bt(y). Thus ?;t(a:) is in the same fiber
as hi(y). Hence h; is fiber preserving.

CororLLARY I1.3. G(X, ) is isomorphic to the subgroup of D (X)
giwen by those deck transformations which are homotopic to the identity by
a homotopy which commutes with every deck transformation.

§ 2. Computations.

Let p and q be relatively prime integers. Then L(p, q), a three dimen-
sional lens space, has a fundamental group isomorphic to the cyclic group
of order P.

Tuvorem I1.4. G(L(p,q)) == (L(p,q)).

Proof. Let 8° be the 3-sphere given by the complex coordinates (Z,,Z,)
such that Z,Z, + Z,Z, —=1. Then let f: §°— 8% such that

F(Zoy 22) = (Zogemiln, Z,omailn),

Now f generates a cyclic group Z, of rotations, each element of which is fixed
point free. The factor space 8°/Z, is the lens space L(p,q). [3, page 262]

Now let h¢: 8%— 8% such that h;(Zo,Z,) = (Z,e*7tiIv, Z,¢*matilv) he a
homotopy. Now h, is the identity on §° and 7, =f. Also foh,—hsof, so
hi commutes with all Z,. Therefore f€ vG'(L(p,q)), hence G(L(p,q)) =7,

TureoreM II.5. Let P be the real projective space of dimension n.
Then G(P*1) =g (P?*) = Z,.

Proof. §°»* can be given by the n 41 tuple of complex numbers
(Zo,+ - -, Zy) satisfying the equation Z,Z,+- - -+ Z,Z,=1. The projec-
tive space P*"* is created by identifying antipodal points. Let f be the deck
transformation such that f(Zo,- * +,Z,) = (—Zo,~ - *,—Z,). Define a
homotopy h: §*'#*— §2n1 such that hi(Zo,- - -, Z,) = Z,emt%,- - -, Zpemtt).,
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Then h, is the identity and h, =f. Also foh;="h;of. So by Corollary 1I.3,
G(P21L+1) = (P2n+1) e~ Zz.

§3. H(X).

Definition. Let ¥ (X) be the set of all those deck transformations in
the center of D (X) which are homotopic to the identity. It is easy to verify
that % (X)) is a subgroup of D (X). We shall use the same symbol, ¥ (X),
to stand for the corresponding subgroup in = (X,2,).

Tuarorem 11.6. G(X,z,) CH(X) CP(X,x,).
Proof. That G(X,z,) C ¥ (X) is obvious from Corollary II.3.

Let f€ D(X) such that f==1x. Let h;: C— C be the homotopy such
that ho=—1x and hy=f. Let ¢: I—C such that ¢(t) = hs(z,). Let
¢=po¢. Then f corresponds to [¢] under ».

Suppose ¢ operates on [a] € m, (X, @), n > 1. Then ¢ operates trivially
on o iff the map g: §» VV 8*— X such that g | S*=¢ and g | S*=¢ can be
extended to a map ¢": S* X §*— X.

We define g’ as follows. There exists a map [: S*"— (C such that
pol=g| 8 for n>1. This is a well known property of the universal
covering space. If we consider S* as the unit interval such that 0 and 1 are
identified, then ¢’(s,¢) =pohsols). Since ¢’(s,0) =P (I(s)) =pof(l(s))
=poh,ol(s)=g'(s,1), ¢ is well defined and it is easily verified that ¢
is an extension of g. So we have shown that & (X) is contained in the sub-
group of all elements of = (X,2,) which operates trivially on m,(X,x,)
for n>1. Since H(X) CTZ(m(X,20)), € H(X) operates trivially on
71 (X, %), hence ¥ (X) C P(X,x).

We have no examples which indicate whether the inclusions are proper.
Certainly, for spaces whose universal covering spaces are compact, odd-
dimensional homotopy spheres, ¥ (X) =P(X) =Z (= (X)). In particular,
if X is a compact three-dimensional manifold with finite fundamental group,
then ¥ (X) =Z (= (X)).

§ 4. Aspherical Spaces.

TareoreEM I1.7. Let X be a contractible C. W.-complex with =, « discrele
group of homeomorphisms of X onto ttself, acting freely on X. Then if
f€Z(xw), there is a homotopy hy which commutes with g for all g€« such
that hy=1x and h,=7.

Proof. If we let X/« stand for the space obtained by identifying the
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orbits under =, then X may be regarded as the universal covering space of
X/x. Thus = may be regarded as the deck transformations of the covering
and hence also as the fundamental group of X/=. Since X/ is aspherical,
G(X/n) =Z(x). Hence the center of = consists of homeomorphisms of X
which are homotopic to the identity by a homotopy % such that folh;=n;of.

III. XX,

Let XX denote the space of continuous mappings from X into X with
the compact-open topology. Let Q be the path connected component of X¥
which contains the identity 1x.

Let p: XX — X be the evaluation p(f) =f(z,). Since we wish p to be
continuous, we will assume that X is locally compact throughout this chapter.
We also avoid complications if p is a fibering, and this occurs when X is a
locally finite simplicial polyhedron. With the help of p, we can characterize
G(X, ).

Remark IV. There is a natural homeomorphism between the space of
maps (XX)5" and XXXS" given by ¢: (XX)5"— XXXS" guch that ¢(f) (z,s)
= (f(s)) (¢) for x€ X and s€ 8" Note that f=g iff ¢(f) =¢(g).

TaEOREM III.1. pem (XX, 1x) = G(X, ).

Proof. By the remark, the closed path f: S*— XX corresponds to the
cyclic homotopy ¢(f) : X X 8*— X. Now pof: S*— X is equal to ¢(f)]| S*
for p(f) (2o, 8) =7(5) (%) =p(f(s)) =pof(s).

This is to say that every closed loop f in @ C XX is a cyclic homotopy
of X whose trace equals pof and conversely, every cyclic homotopy of X is
a closed path f in Q such that pof equals the trace of the cyclic homotopy.

TueorEM III.R. Let X be a locally finite, aspherical, pathwise con-
neclted simplicial polyhedron. Then py: = (XX, 1x) =Z (7 (X,2,)) and
m(XX,1x) =0 for n > 1.

Proof.
LeMMa 1. 7 (XX, 1x) =0 of n> 1.

Proof. Let f: X X S"— X such that f(X,s,) == for all z€ X where
8o € 8™ is the base point of §*. Define d: X X 8*— X such that d(z,s) =z,
that is d is the projection of X X S* onto X. By the remark, if we can
show that f==d, then ¢'(f) =¢*(d). Since ¢*(d): S1—> XX is the
constant map onto 1y, this will prove the lemma.
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Since X is aspherical, f==d iff f,: = (X X 8" 25 X 80) = m (X, 2,) and
dy: m (X X 8" 20 X 80) = m (X, 2,) are equivalent, that is

fa(o) =& gy (a) €
for all @€ m (X X S*) and some £€ 7 (X). See Hu [4], pp. 198-9.

Now oy (X X 8% 20 X 80) = w1 (X, 20) D 7 (8% 8) =m (X, 2,). Both f,
and d, “act like the identity ” and so f,=d,. Hence f=d.

LEMMA 2. py(m (X%, 1x)) = Z(X,2,)).

Proof. Since X is aspherical, Z (= (X, %)) = G(X,2,). Hence by the
preceding theorem, the lemma is true.

Lemya 8. Let Q,C XX be the space of maps such that f(z,) ==,
for all f€Qo. Then m (Qo,1x) =0.

Proof. Let d: X X S*— X such that d(z,s) ===z. Let f be any arbitrary
f: X X 8*— X such that f(w,,s)=2a, for all s€ S*. We will prove the
lemma by showing there is a homotopy h:: X X 8*— X such that ho=7Ff
and h, =d and h¢(z,,8) ==, for all €I and s€ S*. For then ¢*(hy) will
be a homotopy connecting ¢*(f) € Q, and ¢*(d) which is the constant map
St—1x. Since ¢ *(h¢) € Q, for each € I, the lemma will be proved.

We may regard S* as I with the points 0 and 1 identified. Thus we
may regard f and d as maps from X X I into X.

Let
A= (X XOXIH)U (X X1IXI)U (2, XIXI)
UXXIX0)U(XXIX1).
Define H®: A — X such that

HM(z,8,0) =f(z,s)

HM (z,8,1) =d(z,s)

H® (g, 5, 1) =,

H®(z,0,t) =H(z,1,t) ==.

We wish to extend H® to a map H: X XIXI—X. Then H(x,s,t)
=h¢(w,s) will give us the homotopy mentioned above, which will prove
the lemma.

Let X® be the n-skeleton of X. Let K =X X I X I. Regard I as being
decomposed into {0}, {1} and (0,1). Then

KO CA and KO CXO XTI XITUA.
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We shall extend H®: A— X to H®: K®— X by the following pro-
cedure. Let z;€ X©. Then

forms a circle. Since S;t€ A, H® | Sit: Sit— X. It is easily seen, that
H® | 8 is null homotopic and hence may be extended to H;®: X; X I X I.
Define H®: K® — X by
H®(y) =H®(y) if ye 4
H®(y) =H®(y) if yex; X IXI.

Since X is aspherical, we may extend H®: K®—>X to H: X X I X I
—X. Since H(z,0,t) —=H(x,1,t), H may be regarded as a map from
XX 8" X1 to X. Now we can define & (z,s) — H(z,s,t) and we see that
ho={f and h,=d and h;(z,,s) = ,.

LeMMA 4. py: m (XX, 1x) =Z(m (X, 20) ).

Proof. Consider the homotopy sequence

Uy P
rl(Qo) ———-)nl(XX) —_éwl(X).
Since m (Qo) =0, py must be 1-1. But pym (XX) =Z(m (X)).
Lemmas 1 through 4 prove the theorem.
CororLary III.3. If X is a pathwise connected aspherical locally finite

simplicial polyhedron, then Q, the path component of XX containing 1x, is
contractible when Z(w (z)) =1.

Proof. By Milnor [6], @ has the homotopy type of a C.W.-complex.
Since 7, (2) = 0 for all n, by a theorem of Whitehead’s [8], © is contractible.

CoroLrLArY III. 4. If X is a pathwise connected, aspherical, locally finite
simplicial polyhedron, then p: Q— X is a homotopy equivalence iff = (X, )
s abelian.

Proof. Again by Milnor [6] and Whitehead [8].
IV. The Euler-Poincaré number and G(X).

TurOREM IV.1. Suppose X has the same homotopy type as a compact,
connected polyhedron. Then if the Euler-Poincaré number x(X) is not
equal to zero, G(X) s trivial.
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Proof. By Theorem I.10, we may assume that X is a compact, connected
polyhedron.

The proof is a simple application of the Nielsen-Wecken theory of fixed
point classes. We shall summarize the pertinent facts needed for the proof.
These arve proved in Wecken [7] and are in the notation of Jaing Bo-Ju
in [1].

Let ¥ be the universal covering of X. We regard =,(X) as the group
of deck transformations on X. TLet f: X — X. Consider the set of all lifts
of f to maps f: X — X. We define an equivalence relation among these lifts
as follows: f==7, if and only if f;=y*ofoy for some y € = (X). Let [f]
denote the equivalence class of f. The set of fixed points of f project down,
by the covering map p, onto a subset of fixed points of f. The fixed points
of any f, in the same equivalence class as f also project down to the same
subset of fixed points of f. If 7, is not equivalent to f, then the fixed points
of f, project down to a subset of fixed points of f disjoint from those of f.
This procedure partitions the fixed points of f into disjoint subsets, called
fixed point classes. Thus each fixed point class is uniquely associated with
an equivalence class of lifts of f. We can also have lifts, f, of f with no
fixed points, and so the equivalence class of 7 corresponds to a void class of
fixed points.

If hy: f=g¢g for g: X — X, then h; defines a 1-1 correspondence between
the lifts of f and those of g preserving equivalence classes. Hence there is a
1-1 correspondence between fixed point classes.

With each fixed point class [f], it is possible to assign a number v such
that v=0 if [f] is empty and such that v is preserved under homotopy.
That is if [f] corresponds to [§] under a homotopy from f to g, then » for
[4] is equal to the v for [f]. Finally the sum of all the +’s equals Ay, the
Lefschitz number.

Suppose that f=1y. Then every v=0 except possibly for v, the
number associated with the fixed point class given by the identity 1: X — X.
This follows since every other lift of 1x has no fixed point. Also we know
that Ay=x(X) when f=15. Assume that x(X) 5£0. Then », = x(X) 540.

Let «€ G(X). Then there is a cyclic homotopy h;: X — X which can
be lifted to a homotopy h;: 1 ==« where we regard « as a deck transforma-
tion. So [1] corresponds to [«]. But @: X — X has no fixed points, unless
«—1. Since v5£0 for [a], the associated fixed point class must be non-
empty so ¢=1. Thus ¢=1¢ m(X). Hence G(X)=1.

This theorem yields a number of very interesting corollaries.
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CoroLLARY IV.2. Let X be the homotopy type of a connected, compact
polyhedron. If X is an H-space and x(X) 540, then = (X) =1.

Proof. By Theorem 1.8, G(X) =, (X). Hence, since G(X) =1, we
have = (X) =1.

As a matter of fact, it can be shown, using homological properties of
H-spaces, that x(X) =0 or x(X) =1, in which case X is contractible. See
[2] for a proof of this in the case of semigroups.

CorotTARY IV.3. Let X have the same homotopy type as a connected,
compact polyhedron. If x(X) 40 and X s aspherical, then Z(m (X)) =1.

Proof. By Corollary 1.13, G(X) =Z (= (X)). Hence Z(x (X)) =0.
As an application of this result, we can get the following well known
result.

CoroLrARY IV.4. For any closed 2-dimensional manifold, excepting the
torus, projective space and the Klein Bottle, the center of the fundamental
group s trivial.

Corollary IV.3 also has applications to the imbedding of complexes in
spheres. The author is indebted to L. P. Neuwirth for suggesting this line
of approach.

CoroLLARY IV.5. Let X be an m-dimensional, connected subcomplex of
Sr where m <n—2. Then S*—X aspherical implies that Z (=, (S*—.X))
=1 provided that x(X) =0 if n is odd and x(X) 4R if n is even.

Proof. Let »*(Y) stand for the i-th Betti number of any topological
space ¥ for ¢ >0. For t=0, #»*(Y) will equal the number of connected
components of ¥ minus 1. Now #?(X) =#"?*(§*»—X) for 0=p=n—1
by Alexander’s Duality. Then

X(X) =2 (—1)7(X) + 1

= 3 (— 1) (81— X) +1

p=0
n-m-1

— 3 (— ) (S —X) 1

since #/ (§* — X)) = #"71(X) =0 for j <n—m —1. Also since »(S* — X)
=0, we have
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X(X) =3 (— 1)l (81— X) + 1
— () (1w (P — )] +1

X(X) = (—1)»*[x(8*—X) —1] +1
—— (—1) (8 —X) + (— 1)+ 1.

Hence we have that
X(87—X) = (—1)"(X) + (14 (—1)»).

So x(Sh—X) 540, if x(X) 550 when n is odd and also if x(X) %R if n
is even.

Now S»— X is connected and is of the same homotopy type as a closed
subcomplex of S». Hence apply Corollary IV.3.

A natural generalization of Theorem IV.1 is the following: If X is a
compact polyhedron and x(X) 540, then pym,(X%,1x) =0 for all n.

This statement is untrue. It is known that the homeotopy sequence {5]
gives rise to isomorphisms py: 7, (G) ==, (S%), n > 2 where G is the group
of homeomorphisms of 82 onto itself and p, is induced by the evaluation
map. Since pyma (XX, 1x) D pema (G, 1x), we see that pyars (XX, 1x) =3 (S*?)
=7 if X =282 x(8%) 540 so the above generalization is false.
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