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Correction to “On fibre spaces and
the evaluation map”

By DANIEL H. GOTTLIEB

These Annals Vol. 87 (1968), 42-55

Guy Allaud has pointed out a gap in the proof of Lemma 2 in [1, § 3].
This lemma is basic to the results of the paper. We shall fill the gap with
Lemma 1 which is a strong form of the fact that equivalent fibrations have
homotopic classifying maps.

Let p: E— B and p": E' — B’ be fibrations. Suppose we have maps f and
£ such that the following diagram is commutative:

~

S

E——PF

Pl

B—m——PB
f

Then we say that f covers f. Now f restricted to any fibre F' in E maps F to
a fibrein E’. If f maps the fibres of E to the fibres of E’ by homotopy equiva-
lences, then we say that f properly covers f.

LEmMMA 1. Suppose that p..: E.. — B, is a universal fibration for fibre
F and suppose that p: E— B is a fibration with fibre F. Suppose that f: B— B..
and g: B— B., are classifying maps for p: E—B. Let f, §: E— E.. properly
cover fand g respectively. Then f and § are homotopic by a fibre preserving
homotopy, written f ~ §.

It will be convenient to consider an altered form of the above lemma.

LEMMA 2. There is a map §: E— E.,, which properly covers a classify-
g map s: B— B, for the fibration p: E— B, having the property that h~ 3
for any fibre homotopy equivalence h: E— E.

Please note that the fibre preserving homotopy between 3% and 3 is not
necessarily a fibre-wise homotopy, i.e., the homotopy need not cover s for all
values of t e I.

Proof that Lemma 2 — Lemma 1. We shall prove that f~ 3. The argu-
ment for §~ 3 is exactly the same, so f~ g.

Both f and s: B— B., are classifying maps for p: E— B, so f is homotopic
to s. By the covering homotopy property, there is a §,: E— E. such that §,
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properly covers f and 3, =~ 3.
Let f*E. be the total space of the fibration induced by f. Then we obtain
the following diagram:

E——— f*E.—'—E.
"] |-
B o B 7 B,

Here 7 is the natural map f*E.—E. and f and 5, are the unique maps such
that 7 = fand 73, = 3.

Now f and §, both properly cover 1, and so, by a result of Dold, f and 3,
are fibre homotopy equivalences. Let £, 57": f*E,— E be fibre homotopy in-
verses to f and 5, respectively. Now 5;'of is a fibre homotopy equivalence

from F to E, so by Lemma 2 and the above considerations,
§x8o(8r'of) = 5,087 ef) = o808 e f = pof = F.

PrOOF OF LEMMA 2. To show the existence of such an §, we will con-
struct a fibration using the techniques of Dold [2, pp. 6.3-6.5]. Let J, and J,
be two closed intervals whose union is the circle and whose intersection con-
sists of two disjoint small intervals. Then p x1: Ex J,—Bx J,,v = 1, 2 are
fibrations. Here we let H, = Ex J, and X, = Bx J, and U = Bx (J, N J,).
Then, in the notation of Dold, H' = HY = E x (J, N J,). Any fibre homotopy
equivalence h: E— E gives rise to a fibre homotopy equivalence p: HY — HY
by defining @ = h x 1 over one component of U and ¢ = identity over the
other component. Using this ¢ we construct R as in [2, p. 6.4]. Defining
H, U H, U R as in [2], we obtain a weak fibration, which we shall denote by
E,—Bx S\

We can regard E as a subspace of E, under an inclusion map ¢ which
takes e— (e, r) where r ¢ J, N J,. Then we can define a fibre preserving homo-
topy h.: E — E, such that k, = 7 and h, = 7 o h.

Now from each fibre homotopy equivalence class, we select a fibre homo-
topy equivalence and perform the above constructions. Then we identify the
subsets E of each of these E,, together. Call the space M. There results a
weak fibration M— B x (V S'). Since every weak fibration is fibre homotopy
equivalent to a Hurewicz fibration, we obtain the following diagram:

E— M I M* . E.,

I l l |>

B————Bx (V8 ——Bx(VS§)——B.
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Here M* is the fibre space and j~ is a fibre homotopy equivalence and k is the
classifying map of M* and & properly covers k. Then we define our map § =
kji. Then any fibre homotopy equivalence h': E —E gives rise to a fibre
preserving homotopy

R i %
E-SE,cM-2sM* SR,
connecting § with $o 7',

Lemma 1= Lemma 2 of [1]. Let p: E—B be a fibration and let
k: B— B.. be a classifying map for p. Suppose k: E— E.. properly covers k.
Let i: X— CX be the inclusion of X into the cone over X. Then we have the
commutative diagram

1x4 % X const.

Ex X — E x CX — E,

|1 o1 |7-

Bx X——BxCX
1X1

RN Bw
kX const.

To prove Lemma 2 of [1], we must show that for any map A:Ex X—E.
which properly covers a map A: Bx X — B,,, we have 4 =~ (& x const.)o(1 X 7).
This follows from Lemma 1 and the fact that both A and (k x const.)o (1 x %)
are classifying maps of p x 1: E x X—B x X.

A remark in [1, § 6] should be amended. If E, — B, is a universal fibre
bundle or fibre space for some theory, and if E,— B, satisfies the proper
analogue of Lemma 1, then the analogues of the results of [1] will follow.
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