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EVALUATION SUBGROUPS OF HOMOTOPY GROUPS.

By DanieL HENRY (ROTTLIEB.

Introduction. In this paper we shall define and study the evaluation
subgroups, Gn(X), of a topological space X. This extends and generalizes
the author’s work on G4 (X) which appears in [9], [10] and [11]. We obtain
some interesting geometric corollaries as a result of our investigation. For
example. if p: F— §® is a fibration with fibve ¥ a finite dimensional CW
complex such that =, (#) has no torsion elements, then p: F—> §» admits a
cross-section.

The paper is divided into eight sections. In Section 1 we define the
subgroup G, (X), which we call the nth evaluation subgroup of =,(X). The
relationship between evaluation maps from mapping spaces to X and G, (X)
is examined and it is shown that G, (X) si an invariant of homotopy type in
the category of spaces homotopically equivalent to CW complexes.

In Section 2, we study the evaluation subgroup of product spaces and
of H-spaces. Then we generalize and note some rvesults proved in [10].
Finally we record the relationship between the evaluation subgroups and the
homotopy exact sequence of a fibration which was developed in [11].

Section 3 serves as an introduction to the next two sections. We gather
in §3 Theorem 3-1, proved in [10], and some of its corollaries. The next
two sections result in partial generalizations of Theorem 3-1.

In Section 4 we develop the homology structure arising from G, (X) to
obtain in Theorems 4-1 and 4-4 relations between G, (X), the Fuler-Poincaré
number of X, and the kernel of the Hurewicz homomorphism.

In Section 5 we investigate the effect of G,(X) on the cohomology of X
and obtain more results using the Hurewicz homomorphism when X has finite
dimensional cohomology or X is a suspension of another space. We compute
G (S™).

Section 6 is devoted to the relationship of Gy(X) to G,(X), where
X is a covering space, or an n-connective covering space, of X.

The results of the earlier sections are applied in Section ¥ to compute
Gu(X) and apply the results to cross-sections of fibre spaces over spheres.
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130 DANIEL 1IENRY GOTTLIEB.

One the more interesting results is Theorem 7-1 which states that G,(.Y)
is contained in the torsion subgroup of =,(X) if X is a finite dimensional
CW complex. We find a new proof of the fact that an H-space has Tuler
Poincaré number equal to zero or is contractible.

In Section 8, various questions and conjectures about the work of this
paper are recorded.

1. The evaluation subgroup. Let . be any topological space. I.ct
S be the n-sphere. Consider the class of continuous functions

F:XxX8"—X

such that F'(a,s,) =, where +€ X and s, is a base point of S». Then the
map f: 87— X defined by f(s) =1 (a,,s), where @, is a base point of .\,
represents an element o= [f] € =, (X, z,).

Dejinition.  'The set of all elements « € «, (.Y, 2,) obtained in the above
manner from some ¥ will be denoted by @, (X, x,).

Thus for every a € ¢, (X, a,), there is at least one map F: X X §*— .\
which satisfies the above conditions such that [f] =« We say that /' is an
affiliated map to @. Note that « may have two affiliated maps which are not
homotopic.

It is easy to see that (7, (X, 2,) forms a subgroup of =, (X, .z,). We call
G (Y, 20) the n-th evaluation subgroup of =,(X,z,). Presently we shall
explain why the word evaluation was chosen.

We wish to study the category of spaces which are homotopy equivalent
to OV complexes. Thus, from this point on, we shall always assume the
hypothesis that A" has the homotopy type of a CW complex. The main goal
of this section is to show that evaluation subgroups are invariants of homo-
topy type in this category. This will be done in Theorem 1-7.

Let 4 and B be CW complexes. Let L(A4,B) denote the space of
mappings from A to B with the compact open topology. If *€ A is a base
point, the map o: L(4,B)— B given by o(f) =f(*) is continuous. We
call o an evaluation map.

Now o induces a homomorphism

Oy W”(L(AUB): 7") ﬁ”:z(B; k(\>)

for all n. Since 4 is a €'V complex, any continuous map §»— L (A4, B) gives
rise to a continuous associated map 4 X S*— B; and conversely, any
continuous map A4 X 8"— B is the associated map of a continuous map
S"— L(A,B). This fact easily establishes the following proposition.
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ProrosiTioN 1-1. If X is a CW complex, then
w*[rn(L(X, X), 11)] = Gll(X) z,)
where o(f) =f(z,).

Because of Proposition 1-1, G,(X,,) is called the “evaluation” sub-
group of X.

Of course, one may generalize the problem and note that w,[m.(L(4, X), k)]
is also a subgroup of (X, z,) where k(*) =ua, In this setting, G, (X, z,)
is the lower bound of all the subgroups formed in the above manner. This
is made precise in the following proposition.

ProrosiTioNn 1-R. If k(*) ==, and A and X are CW complezes, then
G (X, 20) © oy[ma(L(4,X), k)]

Proof. If a€ Gn(X,x,), there is an affiliated map F: X X S»— X.
The composition

EX1 F
AX I —— X X Sr— X

establishes that « € w,[7.(L(4,X),k)].

The subgroups w,[m(L(4,X),k)] of the fundamental group play an
important role in fixed point theory. They are called Jaing subgroups in
honor of Bo-Ju Jaing who first recognized their importance to fixed point
theory (see [14]). Jaing subgroups appear in the work of R. F. Brown
and his students, see [3], [5], [6]. Of course, G4(X,z,) plays a central
role in the study of Jaing subgroups as a result of Proposition 1-2.

In [9], [10], and [11], Gi(X,,) is written as G(X,z,). In [11],
G+ (X, z,) was shown to play a dual role in the theory of Hurewicz fibrations.

From now on, we shall concern ourselves with a series of results which
lead to Theorem 1-7.

Our first result will show that, in the usual sense, G,(X,x,), viewed
as a subgroup of ,(X,,), is independent of the base point. Let o: [ — X
be a path such that ¢(0) =2z, and o(1) =2,€ X. Then o induces a
isomorphism oyt m (X, 1) =7 (X, 7). See [13], p. 126.

PROPOSITION 1-3. oy G (X, ) = Gu(X, 2,).
Proof. Define h;: S»— X as follows:

Let @€ Gn(X,z,). Then there exists an affiliated map F: X X S»—> X
such that F(z,*) —z and F(z,,y) = f(y) where [f] =a. Now define
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-3
oo
o

hi(y) =F(o(1—1),y) for ye Sn

It is clear that ho =1 and &, vepresents o [f] € m (X, 2,). Now the existence
of F: X X 8"— X shows that o.[f] € G, (X, ).

This proof works for every element of G,(.X,z;), so we see that
0. (Gn(X,2,)) € Gu(X,20). On the other hand, we know the reverse path
ot: I— X induces an inverse isomorphism, (o7%),: m (X, %) = m (X, 24),
to oy Thus o,: Gu(X,2,) = Gu(X,2,) and (07)y: Gu(X,20) > G (X, 24)
where o, is the inverse of (o7'),. Xence, by definition, o4: G, (X,2;)
=G, (X,2).

By virtue of this result we frequently write G, (X) instead of G.(X,x,).

It is not true that f: X— Y induces a map from G,(X) to G,(Y).
This was shown in [10]. However, for some maps, it is true that f, maps
Gn(X) into Gn(Y). Suppose r: X — Y. We say that + has a right homo-
topy wnverse if there is a map ¢: ¥ — X such that 7 o4 is homotopic to 1y.

Prorosirion 1-4. Suppose that ¥ is « CW complex. If v: X — Y has
a right homotopy inverse i: ¥ — X, then vyt my (X, %) = ma (Y, r(20) ) carries
Gu(X, o) into Gu(Y,7(x0)).

Proof. We need two facts which follow from the hypothesis that ¥ is
a OW complex. First, since ¥ X *C Y X S» is a subcomplex, ¥ X * has
the homotopy extension property in ¥ X S Second, any point in ¥ has
the homotopy extension propetry.

Let a€ Gh(X,20) and let F': X X 8*— X be an affiliated map to a.
We define a map /7: ¥ X §*— ¥ by letting

F'(y,s) =roF(i(y),s).

Now F’(y,*) =roF(i(y),*) =roi(y). Since roi==1ly, we may find a
homotopy H’; connecting F” with a map, H’;, for which H” (y,*) =y. This
follows from the homotopy extension property for ¥ X * in ¥ X 8=

By the homotopy extension property of points in ¥, we may assume that
i(Yo) = o, Where yo=1r(2,). Then observe that I restricted to 7, X S
gives a map of S"— Y which represents 7, (). Let o: I—Y be given by
o(t) =H'¢(yo,*). Then o induces an isomorphism o, : (Y, yo) = mu( ¥, o).
Let &z 8*— Y be given by restricting H’; to yo X §". Then ¢, [1] =r,(a).
Since [h] € Gu(Y,90), then o [h]€ G\ (Y, y,) by Proposition 1-3. so
7. (@) € Gu(Y,9,) as was to be proved.

CorOLLARY 1-5. If r: X =Y 4s a retract, then

ret Gu(X,20) = G (Y, 1r(z0)).
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CoROLLARY 1-6. Let Y be a CW-complex. If i: Y —X has a left
homotopy inverse, then i,(a) € Gu(X,x,) implies that a€ Gn(Y,y,) where
1:(:’/0) =$0.

Proof. By the homotopy extension property for points in ¥ we may
find an r: X —Y such that r(z,) —y, and roi=1y. Let h;: Y—>Y be
the homotopy connecting o4 and 1y. Let o: I— Y be the closed path given
by o(t) = h¢(y,). Then

"';:407:*=0'*: Wl(Y:yO) '_)WI(Y’?/O)'

If 4, (@) € Gu(X), then r4(ix(x)) € Gu(Y) by Proposition 1-4 and hence
a=0,1(ry(1x(a))) € G»(Y) by Proposition 1-3.

Now we can prove that G,(X) is a homotopy type invariant by using
1-4 and 1-6.

TuEOREM 1-7. Suppose that X and Y are both the homotopy type of
a OW complex. If f: X—Y is a homotopy equivalence, then f,. carries
Gn(X, o) 1somorphically onto Gn(Y,f(x,)).

Proof. First we shall assume that ¥ is a CW complex. Since f has a
right homotopy inverse, we have, by Proposition 1-4, that f,(G.(X)) C Gu(Y).
Since f has a left homotopy inverse, we have, by Corollary 1-6, f.™* (Gn(Y))
C Gu(X). Thus Gu(Y) =fuf s (Gn(Y)) SfiGn(X). Hence fi(Ga(X))
— G,.(Y). Since f, is an isomorphism, the theorem is true for the special
case that ¥ is a CW complex.

Now in general, ¥ is homotopy equivalent to a CW complex Z. Let
g: Y —Z be a homotopy equivalence. Then the composition

X—Y—7

is & homotopy equivalence. By the previous paragraph, g¢.f, carries Gy(X)
isomorphically onto G,(Z) and g, carries G, (Y) isomorphically onto Gy (Z).
Hence f,, must carry G,(X) isomorphically onto G4(Y). This proves the
theorem.

2. Some elementary formulas. The purpose of this section is to
record some properties of G,(X) which have elementary homotopy theory
proofs. We begin by computing @,(X) when X is a product space or an H-
space and we conclude by stating results which were proved elsewhere.

THEOREM 2-1. G(X X Y, (%o, %0)) = G (X, Z0) ® G (Y, 5,).
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Proof. Let Z=X X Y and z,= (%o, %,). There exists an isomorphism

b wi(Z,20) = w1 (X, o) @ m (Y, 90),
such that
h([a]) =py([2]) ® gi([a])

where p, and ¢, are induced homomorphisms from the projections of Z onto
X and Y respectively. (see [13]). Now h(Gn(Z)) C Gu(X, zo) @ Gu(Y, o)
as may readily be seen by noting that p and ¢ are retractions and applying
Corollary 1-5.

On the other hand, let [«] and [B] be elements of Gu(X, z,) and Gu(Y, 9o)
respectively.

Now A ([a] ® [B]) =[(jo«)- (koB)] where j and k inject X = X X z,
and Y= Y X y, respectively.

Let H: X X S»— X such that H is affiliated with [«]. Suppose we
choose « such that a(s) = H (2,s). Then define K: X X Y X S"—>X XY
such that

K (2,y,8) = (H(2,9),9).
The existence of K shows that [joa] € Gu(Z, 2,). Similarly [ko B8] € Gu(Z, 2,).
Thus the product [joa]-[koB] € Gu(Z,2,). Therefore
B (Ga(X) @ Gu(Y)) C Gu(2).
Hence h(Gn(Z)) 2 Gu(X) @ Go(Y) and so
h(Ga(Z)) = Gu(X) @ Gu(Y)

as was to be shown.
Now suppose X is an H-space. Then we have the following fact:

ProrositionN R-2. Suppose X is an H-space, then Gy(X) =m(X).
Proof. Let e be the identity and let z-y denote z multiplied by .

Then given any map f: 8"—X such that f(*)—=e, we have a map
F: X X 8"— X such that

F(z,s) ==z-f(s).
Since F(z,*) —2-e=ux and F(e,s) =f(s), the existence of F implies that
[f] € Ga(X) for all f: S*— X. This proves the proposition.

In general, G4(X) 74m,(X). There does exist a subgroup P,(X,z,)
of my(X,z ) which must contain G,(X,2,). We define P,(X,z,) to be the
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set of elements of m,(X,z,) whose Whitehead product with all elements of
all homotopy groups is zero. It turns out that P,(X,z,) form a subgroup
of m(X,2,). If [f] €ma(X,2), a necessary and sufficient condition that
[f] € Pa(X, ) is that for every [g] € mm(X,%,) and every m, there exists a
map G: 8™ X 8"—> X such that G(*s) =f(s) for all s€8* and G(r,*)
=g(r) for all re 8™

ProrosITION 2.3. Gy (X,z,) C Po(X, ).

Proof. Let a € Go(X,2,). Then there is an affiliated map F: X X §"—> X
such that F(z,*) =z and F(z,,s) =f(s).

Let [g] € mm(X,%,). Then the map G: 8™ X8"— X given by G(r,s)
= F(g(r),s), restricted to S™ is ¢ and restricted to S is f. Thus « € Pn(X, ).
As a corollary to the above result, we prove a result from [10].

COROLLARY 2-4. G1(X,20) CZ (w1 (X, o)), the center of = (X).

Proof. If a€m(X), then [a,8] = a,(B) — B, where [a, 8] is the
Whitehead product of « with any B€ mu(X), and «,(B) is the action of «
on B. If a€ P,(X), then a must operate trivially on ,(X) for all n. The
subgroup of =, (X, z,) which operates trivially on = (X) is Z (= (X, ,)), s0
Py (X) & Z(m(X)).

Remark 1. T. Ganea has produced an example in [8] which shows that
G1(X) # P, (X).

Remark 2. Corollary 2-4 is trivially true for n>1 since m(X) is
abelian. However, there is no group theoretic proper subgroup of m,(X)
which must contain G,(X) if n=2. That is, for any abelian group =, there
is a space X such that G,(X) =m,(X)=x. This is seen to be true by
allowing X to be a K(m,n). Then X is an H-space and the statement
follows by Proposition 2-2. When n =1, it is possible to find a space X such

that (7, (X) is center of any group =. This is seen from the following theorem
which is proved in [10].

TaEOREM R.-5. If X has the homotopy type of an aspherical CW
complex, then G,(X)=7Z(r (X)), the center of = (X).

Let F be the homotopy type of a CW complex. Then there is a uni-
versal fibration p,: E,— B, with fibre F,, which is homotopy equivalent to
F. See [?], [7] or [10] for more details. There is a homomorphism
At Ty (Bw) —> mn(F,) which arises from the homotopy exact sequence of
the fibration p,. The following theorem is proved in [10].
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THEOREM 2-6. Gy(Fy) = dup(mui(Bw)). Thus, for any fibration
1
FP——>F——B,
d(mne1(B)) C Gu(F) where d: myy(B) = mu(F) arises from Lhe homotopy
cxact sequence of the fibration.

Comparing the above theorem with Proposition 1-2, we see that &, (.Y)
occupies a very strategic position. Tt is the intersection of all subgroups of
ay (X)) which are the image of a homomorphism induced by an evaluation
map and also the union of all subgroups of x,(X) which are the image of a
boundary homomorphism which arise in the fibre homotopy exact sequence
of some fibration with X as fibre.

ConroLpary 2-7. If G,(F) =0, then every fibre space over S™', will
fibre F, has a cross-section.

This fact follows from the previous vemarks and the covering homo-
topy property. Tt turns out that it is possible to prove that G, (F) =0 for
a large class of spaces.

3. The Euler-Poincaré number and G,(X). The following theorem
was proved in [10] (Theorem IV.1), using Nielsen-Wecken fixed point
theory.

THEOREM 3-1. Let .\ have the homolopy lype of a compact polyhedron.
If the Euler Poincaré number x(X) 40, then Gy (X) s the trivial subgrou).

This theorem leads to corollaries of algebraic and geometric interest.
For example, combining the ahove theorem with Theorem 2-5 we obtain the
following result, (see [10]).

CoROLLARY 3-2. If X s homolopy equivalent to an aspherical, compacl
polyhedron and x(X) 540, then the center of (X)) 1s trivial.

John Stallings has put this result in a homological algebraic setting
in [16].

Let F' be a connected graph contained in S% Papakriakopoulos has
shown that S® — I is aspherical. By use of this result and Alexander Duality
(see Corollary 1V. 5, [10]), we can prove the following corollary to Theorem
3-1.

CororraAry 3-3. Lel I be a connected graph imbedded as a subcompler
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of S83. If the center of «,(S®—F) is nontrivial, then F has the homotopy
type of a circle.

It would be interesting to generalize Theorem 3-1 from G,(X) to G.(X)
in the hope that we may obtain more, interesting corollaries as we did above.
Certainly the statement of the theorem offers many possible ways of generaliza-
tion, for the statement relies only upon concepts of homotopy theory and
homology theory. On the other hand, the proof depends upon Nielsen-
Wecken fixed point theory and offers no possibilities of generalization. We
need new methods.

In the next two sections, we examine the homology and cohomology
which arises in connection with G, (X) and we are able to find analogous
theorems to Theorem 3-1. The most analogous is Theorem 4-1. The hypo-
theses generalize from compactness to finitely generated homology, but the
conclusion specializes for the case G,(X) to a weaker result.

4. Homology and G,.(X). We wish to study the algebraic structure
induced by ¢: X X §*— X, affiliated to some € G,(X), on the homology
and cohomology of X.

By the Kunneth formula and the fact that H,(S";Z) has no torsion,
we have
H, (X X8";G)=H,(X;0)®H,(8";Z).

Thus if z€ H, (X X 8";G), we may represent s —y®142®A where
A€ H,(8";Z) is a fundamental class of S». Define 4,: X— X X 8 by
11(2) = (2,*). Define 1,: S"— X X S by i,(s) = (*,s).

Let p; be projection from X X 8* to X and let p, be projection from
X X 8" to 8m. Then, p. 235 [15], p1,(2®72") —2®e(2’), where € is the
augmentation. That is,

P1x(z®1) =2 and p,, (z®A) =0.

Also P2 (1®X) =, and poy (@A) =0 and poy (v Q1) =0 if z € Hq,(X; @)
where ¢ > 0.

Now since piiy =1y, 1,(2) =2®1 for z€ H,(X;@) and since
Pl =1gn, G2, (y) =1®y, y€ Hy(8";Z). So since ly=dgoi, ¢s (2®1)
—a and since f=¢0i, ¢, (1®N) =F,(A), where f: §»— X is induced
by ¢: X X 8»— X.

Let € Hy(X;G). We shall define ar€ Hym(X;G) to be equal to
¢4 (z®A). It is easily seen that A: Hy(X;G)—> Hgn(X;G) such that
Z->2A is a homomorphism. We shall define A" = (zA")A.

11
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Let y stand for the diagonal map for any space Y —Y X T.
(XX X)X (8" X 8

WLN 1XTX1

¥
XX 8 ——— (X X 8") X (X X 8)

¢ ¢ X ¢

v 1
X XA

The above diagram commutes where 7': X X §»— S» X X is given by
T(z,8) = (s,2).
Let G be a field. Then by the Kunneth formula,

Hy(X;G)®H,(X;6)=H, (X X X; ).

Now T',: H (X;G)®H,(8";Z) > H,(8";Z) QH,(X ;@) by letting
T,(2Q®2) = (—1)?2®2z where 2€ Hy(X ;@) and z€ H,(S*;Z). Thus

Yy (TX) =Y. ds (T®N)
‘ = (¢4®y) 0 (1T ®1) o (Y, Qyy) (z®N)
= (¢:®¢y) 0 (1B T, Q1) (Y, (2) ® (1QA+ 1B 1)).

Now y (z) has the form 3z;® 2/ where z,€ H, (X ;@) and 2/ € Hy (X ; () so

Yu (21) = (65 © ) {2(2®1) ® (2/ O 1)
+ 3(—1)rdined (2,@0) @ (27 1)}
=320 2/A + 3 (—1)rdima'y)\ Q /.

We shall establish the following convention. We regard the symbols
MQA,p,q=0,1,2,- - -, as right operators on H,(X;G) @ H,(X;@) by
the rule

(2@ y) (AP QAY) = (—1)rr dimyg\r @ yAg,

Thus, by the above remarks, we see that

Pu(@A) =9 (2) AQ 1+ 1QN)
Note that

Y (212) =y, (22) (A 1+ 1@ )
= {¢, (z) (A®1+1®A)}(A®1+1®A).
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So Yy (zA?) = (Y,x) (A® 14+ 1QA)? where
A®1+1®A\)P=(A®1+1®AN) (A1 +1®2)).

We have two cases to consider. If n is even, then (z®y) (M Q\2)
=A@ y)e, so we may regard

P

AR1+1®N\)2=3 (Z;),\i@),\ﬂ-i.

i=0
On the other hand, if # is odd, then observe that
(2®y)(A®1+1QN)2= (2Qy)(AR1+1QN) (AQ1+1R®))
= ((—1)rdmig\Qy 4 2Qyr) (1QA+ A1V 1)
= (—1)rdimupA Qyr + @ yA2 4 (— 1) dmip)2Q y
+ (—1)rdimAz) Q yA.

Now dimyr=dimy+n. So ndimyr=ndimy -+ n? Since n? is odd, we

have (—1)ndimsA— __ (—1)ndimy 5o the zA @ yA terms cancel. Thus
(z®y)(AB14+1QN)2= (2A*Qy + 2R yA?)
= (2Qy) (M2Q1+1Q%).

We shall use these formulas to establish some theorems about G,(X).

Let h: m(X)—> H,(X;Z) be the Hurewicz homomorphism. We shall
define hp: my(X) > H,(X;Z)—> H,(X;Z,) as composition of & tensored
with Z,. hy, will be called the mod p Hurewicz homomorphism. We shall let
he stand for the Hurewicz map he: m(X) = H,(X ; R) where R is the field
of rationals.

THEOREM 4-1. Let X be a topological space with finitely generated
integer homology. If n is an odd integer, then G,(X) C kernel of hy for p
any prime number or o provided the Euler-Poincaré number x(X) 5% 0.

Proof. Suppose that @€ G, (X) is not contained in the kernel of A,
Then, if ¢: X X 8*—> X is affiliated to @, we have, using the notation above,
that (1)As40€ H,(X;Z,). We shall write A for (1)A when no danger of
confusion arises. Suppose € H;(X;Z,). We say that « has depth d if
there exists an element y € H; 4,(X ; Z,) such that yA—z and 2A%** £z for
any 2€ H,(X;Z,). We prove the following lemma.

LemMMA 4-2. If aA=0, then = has odd depth.

Proof. Suppose z has depth d and yrA?—z. Then 0=y, (zr)
= (Y5 (yA%1)). Let us assume that d is even and that

Vi (y) =?/®1+1®?/+2_7/i®?/i/-
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Then by remarks above,

U (JA) = (y®1) (A2 @1+ 1®22) 42 (1QA41O1)
+(10y) (A2®1+1@A)42(1®AF+ 1B 1)
+3+ (1®y) (MOLF+1®A) (1@ +A1B1)

=0.

Thus we see that yA?@A -+ 32,®2/ =0 where dimension of 2z’ is n
and dimension of z; is — dimyA? Thus 32z ® 2/ =3vA®** Q2 for some
v, € Hy (X 3Zy). Now 3o ®z/ ——yA?®\. Thus Svir®* @ 2z must have
the form 2% Q@ A for some 2. Hence — zA%! = yA¢ =z, so @ has depth d 4-1,
a contradiction.

Now H,(X;Z,) is a vector space over Z, and can be written as the
direct sum of spaces

ASD- - DAL

such that z € 4, has depth ». We shall let A(4,") represent the image of
A, under A in Hym(X ;Z,). Then we may regard

Hom(X3Zp) = Aqn™ @+ D Agun’
and we may require in addition that
A(AgH) D A gt

In fact, let K be the subspace of 4,4 such that every # € K is mapped onto
an element z\ with depth greater than d—i-+1. Then 4,4 '=K ® Q,
where @ is a complementary subspace to K. Then define A(Q) = Agm® .

We may inductively define the 4,2 such that A(A44%) D Ag.%* for all ¢
and d. Now if d is even, the lemma above tells us that A: Ag%== A4,
For suppose not. Then there exists an z € 4,% such that zx has depth greater
than d + 1. Thus there is a y with depth greater than d such that yr =z,
Now @#—y has depth d since z has depth d. But (z—y)A=0. Since d
is even, z—y=0. So y has depth d which is a contradiction. Thus A is
the required isomorphism.

Let x(H,(X;Z,)) =X (—1)% (dm Hi(X;Z,)). Since Hy(X;2,) is

finite dimensional, x(H, (X ;Z,)) is well defined. Now the above paragraph
implies that y(H,(X;Z,)) =0 since

X(Hy(X32,)) = 3 (—1)7( S dim 4
— 3 (—1)2( S (dim 4,2 4 (—1)" dim Age) ).
q 2d

Since dim 4,%¢ = dim 44,,°%** and n is odd, x(H.(X;Z,)) =0.
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Our theorem will be proved by applying the following lemma:

Lemuma 4-3. Let H,(X;Z) be finitely generated. Then the Euler-
Poincaré number of X, x(X), is equal to x(H(X;Zp)).

Proof. From the universal coefficient theorem, we see that
Ho(X32y) = (H(X) ®Zy) © (Hoa(X)*Zy).

See p. 222, [15]. Now H,,(X)*Z,= kernel of p: Hyy(X) > Hyy(X)
where p: z—> pz. Now every cyclic subgroup whose order is divisible by p
gives a one dimensional contribution to Hy(X)®Z, in H,((X) ;Z,) and
contributes one dimension to H,(X)*Z, in Hg,y (X ;Z,). These two con-
tributions cancel out in x(H,(X;Z,)). On the other hand, any infinite
cyclic group Z gives a one dimensional contribution to Hy(X) ® Z, and no
contribution to Hgyu(X)*Z,. So x(H.(X;Z,)) =x(H(X) ®R) =x(X).

THEOREM 4-4. Let X have finitely generated integer homology. Suppose
p s a prime which does not divide x (X). Then Gn(X) C kernel hy for even n.

Proof. We shall assume that « € G,,(X) is not in the kernel of h,. Now
suppose that ¢: X X §"— X is affiliated with &, then (1)A5£0€ H,(X;Z,).
Now y, (2A7) = (Y4 (2)) (X2 (%)M@x\’l‘i) for any x € Hy(X;Z,) since

n is even. We shall show that if A —0, then « has depth d=-—1(mod p).
Then by an argument similar to the last theorem, we can show that x(X)
is divisible by p.

Lemma 4-5. If oA =0, then the depth of * d=-—1 (mod p).
Proof. Suppose yA?==2. Then

0=y (TA) = s (YAT) = (1) ( ;( d;!_ 1)z\i Q Ad+1-i)

Now ¢, (y) =y®1 4 other terms, so (d-41)yA?@ 1\ must appear in
V. (yA%t). Now since y, (yAd) =0,
@+ RQINF 2@ 2/ =0

where X 2,® 2 consists of all terms in ¢, (yA%') such that 2/ has dimension n.
Thus > 2;® 2/ must come from terms of the form

Cw®z) ((d+1)A+1@1)

where X y;® 2/ is the sum of all terms in y, (y) with the 2/ having dimen-
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sion n. Thus (d-+ 1)y @ IN+ (d+1) DA ®2'=0. This implies
that a linear combination of the y;A%, times d + 1, equals (d 4 1)yArd. Hence
there exists a z such that (d -+ 1)yr®= (d 4+ 1)za%:. If d 41540 (mod p),
then @ — yA%= 2\, which is a contradiction to the fact that y has depth d
and so d=-—1 (mod p).

Now, as in the proof of the preceding theorem

Hy(X;2,) =ALD: - - D4y

such that A(4,2) D 4. Now, by the lemma, A: A f==A,,,% if d41
is not a multiple of p.
Now

X (H (X 52p)) =§(—1)qdimﬂq(X;Zp)
= (—1)2( X dim 442)
— é { (—l)q((ilimAq" 4+ (—1)erdim A%y - - -4 dim A%.qn +- -}
=% (—1)‘1(dzodim A% .4,) since n is even.
Now since dim A,/ — dim 4,,,"** =" + - = dim A g, (p-1),"??** we see that
> dim A%,q4, is a multiple of p and so x(H.(X;Z,)) is a multiple of p.
]:Ience, by Lemma 4-3, x(X) is a multiple of p.

COROLLARY 4-6. If X has finitely generated integer homology and if
x(X) =1, then G,(X) Ckerh, for all n and prime p.

Proof. No prime divides 1.

5. Cohomology and G.(X). We now study the consequences in co-
homology of the map ¢: X X §»—X. By the Kunneth formula and the
fact that H*(8";Z) has no torsion, we have

H*(X X 83 G) = H*(X; G) @ H* (8" Z).

Thus if z€ H¥*(X X 8*; @), we may write z=y®1-+ 28X where
A€ H*(S8*;Z) is a fundamental class of S dual to A. Let 4,: X > X X 8
by 4 () = (z,*). Let i5: S"—> X X 8" by 4,(s) = (*,s). Let p, be pro-
jection from X X S» to X and let p, be projection from X X S» to S*. Then,
p- 249 [15], py*(2) =2®1. Also p,*(A) =1®2X and of course p,*(1)
=1®1.

Now since pii; =1x, 9,*(#®2") =0 unless 2/ € H°(S*;Z) in which case
1,*#(2®1) =2, Similarly 7,*(#®2’) =0 unless z€ H°(X ; G) and ,* (1 Q7
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=7. So since ly=¢01,, ¢* () =2®1+y®X. From now on, we shall
denote y by @A, so that ¢*(z) =2 ®1 -+ 2A Q@A for all € H*(X;G). The
map «—> z is 2 homomorphism as is easily seen. We define zA* = (zAn ).
Now A: H(X; () - Ho"(X; @) is dual to A: Hy(X ; @)= Hyn(X 5 G).
That is, <u, vA> = <uX, v)> where {u,v> is the Kronecker product. In fact

Uy VAY = KU, g (’I)®/\)> = <¢* (u):v®’\>

=U®1+ur@X v\
= UL R X, v @Ay = (— 1)9=muX, vy - (A, A
= {ud, v).

The cup product in X X 87 is given by
(@®y) U (¢'Qy) = (—1)r(zU ' QyUy)
where @’ € H1(X ;@) and y€ H"(S";Z). Thus

¢*(uUv) = (u®14+ur®X) U (v®1 -+ vA®1)
=uUv®1+ (wU (vd) + (—1)ndimoyx Uop) QA.

The map f: §»— X given by f=¢ o1, plays a role. Let z€ H"(X;@G).
Then
A (z) =10¢%(2) =4,*(z®1+2AQN)
=1,*(ZA Q) =17X

r is some integer. By dimensional arguments, 2A =s-1 where s is some
integer. Now 4,*(s:1Q®X) =1,*(1®sA) —=sA=1]X, so zA=r1.

Now we shall investigate some consequences which flow from the above
considerations.

TuEOREM 5-1. Suppose X has only a finite number of nonzero homol-
ogy groups, then G, (X) C ker hq.

Proof. Suppose @€ G,,(X) is not contained in the kernel of hy,.
Suppose ¢: X X 8"~ X is affiliated with . Then hy,(¢) = (1)A€ Hy(X; R)
R is the field of rational numbers. Let 8€ H?*(X ;R) be dual to (1)A. Then
1={B, (1)Ay =<BA, 1), so BA—=1€ H°(X;R).

Now we shall prove that 8740 for all integers r, where 3" is the cup
product of 8 with itself r times. First we show that

$*(B) =pr®1 4 rf1 QX

This formula is clearly true for r=1 since A —1. Now suppose it is true
for r—1. Then
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¢*(Br) = ¢*(B)¢*(B)
= (B'®1+ (r—1)p2®X) U (B®1+4101)
—FO1+ ((— 1)V (r—1)F*+ F) X
=B R®1 L1
Now if =0, then ¢*(8) =B 1+ rfr*®X=0. So rf-*=0. Thus
Br-* =0 since we have rational coefficients, but this leads to a contradiction.
Since Br<40 for all r, H*"(X;R)+0 for all » and hence by the relation
between homology and cohomology, X has an infinite number of nonzero
homology groups.
The proof of the theorem breaks down if we try the same method for Z,
coefficients since g»*—0 does not imply B**=0.
However if G,(X) & ker y, the cohomology structure of X must have
many properties. We can exploit this fact in the following theorem:

THEOREM 5-2. Let X be the suspension of some CW complex ¥ and
suppose that X has integer homology of finite type. If there is an a € Gy(X)
such that h(a) ~0€ H,(X;Z), then h(a) has infinite order, n is odd and
X has the rational cohomology of S».

Proof. Since H,(X;Z) is finitely generated,
Hn(X,Z) =F@A1@ DA

where F is free abelian group and the 4; are cyclic subgroups generated by
a; € A; with order r; such that 7; | 7, for 1=7¢=m. Now assume that & (a)
has finite order; then h(a) =t,a, - - - -+ tman where the ¢; are integers
such that 0 =1{; < r;. Since H,(X;Z) has finite type, the torsion subgroup
of H,(X;Z) is isomorphic to the torsion subgroup of H™*(X;Z). Thus
there is a b, € H*'(X ;Z) which corresponds to @, and since the torsion
subgroup of H'(X;Z) is trivial, we see that b,A=0€ H*(X;Z). Now
suppose k is the largest integer such that #,540. We shall consider
H,(X;Z,). Then by the universal coefficient theorem, we have the fol-
lowing split exact sequence

I
0= Hy(X32) ® Zyy——> H (X 1 2,,) = Hos (X3 2) 5 20— 0

We shall let the symbols a; represent p(a;®1) in H,(X;Z,). Similarly
for h(a) € Hy(X;Z,,).
For cohomology, we have the functorial short exact sequence

"
0>HY(X;Z)®Z,,——> HY(X;Z,)>H"(X;Z,) *Z,,— 0
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and we define b, € H**(X ;Z,,) as p(bn®1). Since the exact sequence is
functorial, we have b,A=0€ H*(X;Z,,).

Now we have the following split exact sequence relating holomogy and
cohomology :

0> Ext(He4(X32Zy,),2p,) > H(X ;Z,,) >Hom(H(X ;Z2),Z,,) = 0.

Let a; € H*(X;Z,,) such that {a@y,ary =1€7Z,, and {ax,a;> =0 if 154k,
Then
G h(a)} = Oy 1101+ * A L)
— by Oge> = by~ 0 € Zp.

So, since (L)A="h(a), tx=<ax h(a)> =<0 (1)A> =<a@A,1>. So @A
=iyl € H(X ; Z,,).
Since X is a suspension, @z U b, =0. So

0 — ¢* (@ U b) — ¢* (@) U ¢*(bm)
— (@G®1+ 411 U (5,®1)
=tk5m®l—\=0-

So txbm==0. But ;40 and & <1, so that &30, %0 since b, has order
Tm = 7% > tr. This contradiction shows that () must have infinite order.

If h(a) has even dimension n, it is easy to see that the dual element
B€ H(X;Z) has nonzero powers. See the previous theorem. This cannot
happen in a suspension, so n must be odd.

Now we shall show that X is a rational cohomology n-sphere. Let
B€ H*(X;R) be the dual of h(a) in H,(X;R). Then BA=1Fk1 for some
rational k. Suppose that z€ H"(X;R), r > 0 is an element not a multiple
of 8. Then BUZ=0. So

0=¢*(BU 2) = ¢*(B) U ¢*(2)
— (B®1+kIQX) U (ZQ@1+ A Q1))
= (BUZ)®14 (BUZ) ®X - (—1)dim=(}3) QX

Hence fU ZA —— (—1)dim#(kz). If 7540 and dimZ\ >0, then BU ZX
—0=kz. Hence 2—0. If 2A=0, then BUZA=BU0=0 implying
#2=0. If z has dimension n and Z is linearly independent of 3, then there
exists 7540 such that ZA=0. Thus  =—0. This contradiction establishes
the theorem.

CoroLLARY 5-8. Let a€ Gu(X). If h(a)€ Hy(X;Z) s a generator
for Hy,(X ;Z), then X is homotopically equivalent to Sn.
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Proof. Suppose h(a) is not divisible in H,(X;Z). Let B€ H*(X;Z)
be the dual to h(«). This exists since k() is not a torsion element. Now g
is not divisible. Therefore 3® Z,, for any prime p is not zero. We shall
let B stand for w(B®1,) € H*(X;Z,). Now PBA=1€ H(X;Z,). If
v€ H"(X;Zy), >0 then U7 —=0. But this implies, by the standard
argument, that — AU B8=7o. This can only be true if =0 or A =kl
for some k€ Z,. This implies that H"(X;Z,) =Z, and H"(X;Z,) =0 if
540 or n. This is true for all primes p, so it must be true for H* (X ;Z).
That is, X has the homology of S*.

Since ¢ | §7: §S»— X sends the fundamental class of H,(8";Z) onto the
generator h(«) of H,(X;Z), ¢ | S* induces an isomorphism on the homology
groups. Since S is simply connected for n > 1, we are finished. If n—=1,
then X =37 and Y is a set of contractible path components. Thus 37 is
homotopically equivalent to a one dimensional graph, so if H,(3Y,Z) =7,
3 Y is homotopy equivalent to S*.

THEOREM 5-4. G,(8") =0 if n is even
=22 CZ ==, (8") if n odd
and ns41,3,7
Gr(8") =Z =7, (S") if n=1,3,7.

Proof. If n is even, then (,(S") =0 by Theorem 5-12 and the fact that
ker hp =0 € 7, (87).

w
—> S* where V

Let n be odd. Then there exists a fibration S»— V
is the Stiefel manifold V... of all unit tangent vectors on S+, Ts is known,
see page 323 of Hu [13], that the image of the boundary homomorphism
d: mnyy (8™1) =, (8™) is a subgroup of index two in m,(S*). Thus
RZ C Gn(8") Cmy(S") =7 if n is odd. If G,(8") = m,(8"), there would
exist a (1,1) map 8" X 8"— 8", and so S» would be an H-space. Thus
Gn(8") = (8) if and only if n=1, 3 or 7. (Adams [1]).

CoroLLARY 5-5. Suppose 3 X has homology of finite type and suppose
there is an a € Gy (2 X) such that h(a) is a generator of H,(SX;Z). Then
n=1, 3 or 7 and 3 X 1is homotopy equivalent to S».

Proof. By Corollary 5-3 and Corollary 514, we are finished.

6. Coverings maps and G.(X). The purpose of this section is to
investigate the relationship between (,(.1') and the evaluation subgroup G(X)
for the n-connective covering space X. We begin by studying covering spaces
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in the first part of the section, and then we consider fibrations with fibre
K(m,n). We obtain a general result, Theorem 6-3, which allows us to
generalize our results about covering spaces to m-connective covering spaces.

In [10], we considered the case where X is the universal covering of X
and we classified G,(X) in terms of the Deck Transformations of X. We
shall begin this investigation by considering G (X), where X is any covering
space of X.

THEOREM 6-1. Let p: X— X be a covering of X. If p,(a) € G(X),
then a € G,(X).

Proof. Since p, (@) € G1(X, x,), there is a map ¢: X X §*— X affiliated
to py(@). This map ¢ allows us to define a homotopy h;: X — X such that
ho=—h, —1x and the closed path o: t— h;(z,) represents p,(«). By the
covering homotopy property, we can find a homotopy hi: X — X which covers
he such that ho=1% Then &: t—> h;(F,) lifts the path o. Here &, is a
base point of X such that p(Z,) =, Since o represents p,(«), o must be
covered by a closed path in X which represents «. This path must be ¢ since
po=o0. Thus ¢(0) =0 (1) =1%,.

Now %,: X — X is a covering transformation (i.e. covers 1ly). Also
hy(%) —o (1) =7, The only covering transformation which has a fixed
point is the identity, 1x. Thus ho="h,—1% and ¢ represents a, so using %,
we may construct an affiliated map to «. Hence ¢ € G (X,%,).

THEOREM 6-2. Let p: X—X be a covering map. If n>1, then
P51 (Gn(X)) C Gu(X). In other words, if we identify mo(X) with =, (X)
under the isomorphism p,, then G,(X) D G.(X).

Proof. If a€ G,(X), there is a map affiliated with . Call it ¢: X X S»
—X. We may lift ¢ to ¢: X X S*— X so that the following diagram
commutes.

. ¢

X XS —> X
lpxl Jp

X X X

gr—
¢

The existence of ¢ is guaranteed by a well known result about covering
spaces, see Theorem 16.2, [13].
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Now @ | X is the identity on X and ¢ | S» represents p,*(«). Thus
P+t (a) € Gn(X).

Suppose we have a principal fibration p: E—> B with fibre a K (w, ). Here
r>0. Suppose there exists a map ¢: B X S*— B such that ¢ | B is the
identity on B. Under what conditions does there exist a map ¢: E X S*"— B
such that ¢ | E is the identity on F and the following diagram commutes

¢
X 8§r———FE

Jp><1 lp ?
¢

BXS§*————B

The map ¢: B X 8*— B induces structure on the cohomology of B.
We shall use the notation of §5.

Now there exists a map f: B— K (a,7 4 1) such that the induced fibra-
tion of f from the fibration PK — K (w,r -+ 1), where PK is the space of
paths over K (w,7-1), is fibre homotopy equivalent to p: E—> B. Let
l€e H*'(K (mr-+1);m) be a characteristic element for K (,r 4 1). Define
p=r*(1) e H™*(B;=).

THEOREM 6-3. With the above notation, there exists a map ¢: E X S»
— E such that ¢ | E is the identity on E and

¢
EX8r———E

oo |-

BX8{r———>B

commutes if and anly if ph=0.

Proof. Let ¢: (D® 8"') — (8" s,) be the usual quotient map. Then
we have the diagram

ll — PK

1Xe ¢ f
BXDi——— 5B X 8" B K (m,r+1).

Here f is a fibre map.

We may lift ¢ o (1 X ¢) to a map ® by the homotopy covering property
such that the following diagram commutes:
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P
E X D» E
¢

i
1Xe¢

BXDt—>B X S8*"—B

p

Consider ® | B )X §7-*. Call this map &’. Then we have

@l
EX 8" —— T

I |

B—————B
1p
as a commutative diagram, and &": B X s— F is a fibre homotopy equiv-
alence for each s€ S*1, Here #: §»*— B is a constant map.
Now note that we may have a commutative diagram

é
EXS§t——F

|

BX 84— B
if and only if it is possible to find a homotopy ®’;: E X S»'—> E such that

&,
EXSrte—m————F

e |
1p

B———B

commutes for all ¢ € I, and such that &, — &’ and &, (¢,s) = e for all s € 1,
For in this case, we may define S» — D_»U D,» where D,» N D_»= 8™ and
then define ¢: EX S*—>E by $(e,s) =®(e,s) if s€ D and &(e,s)
= ®’;(e,s") where (¢,¢) represents the point s€ D,» (we represent D,” as
the cone over §7-*). This definition of ¢ covers a map h: B X §*—> B defined
by h(b,s) =¢o (1 X c)(b,s) for s€ D and h(b,s) —=b for s€ D,». Now
h is clearly homotopic to ¢, so by the covering homotopy property we may
alter ¢ so that it lifts &.

In [11], the author studied just such a situation. Letting L**(E,E)
be the space of fibre homotopy equivalences from E to F, he denoted
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the group of homotopy classes of such mappings ®: E X 8" *—E by
Qna(L**(E,E)). (The homotopies &’; must cover 1: B— B for all t).

Now there exists a classifying fibration p,: Eo,—> B, for fibrations with
fibre K (x,r). See [7], p. 16.8 or [2]. Suppose that k: K («,r+ 1) = B,
is a classifying map for the fibration PK — K (x,r+1). Then by Lemma 4,
p. 48 [11], Quo(L**(E,E)) = m(L(B,Bx) ;kof). In addition, the iso-
morphism is given by the correspondence which relates the homotopy class
of : F X 8"*—E to the homotopy class of kofo¢: B X S*—> B, We
can obtain the required homotopy ®’; if and only if kofo¢ is homotopic to
kofop, where p,: BX S*— B is projection into the first factor. Now
fop~fops if ¢*of*(l) =p,*of*(1). Since

¥ (1) =% (n) =p®1 4 AR

and p,*f*(l) =p,*(n) =pn®1, we have the required homotopy if uX= 0.

To show that yA =0 implies kofop~Fkofop,, we must prove the
following lemma.

LemMA 6-4. k: K(w, 7+ 1)—> B, is homotopic to h: K(m,r 4 1)— B,,
where h is the universal covering map from K (m,r 4 1) = By t0 Be.

Proof. Let By, be the classifying space of fibrations with fibres K (=, 7).
Let B., be the covering space of B,. Then we get the following commutative
diagram :
K('n',?’) —éK(vr,T) —)K(r,?")
\ \) s
PK —— h*(Ey) —— E,
\L ]E \l/ h \l« Po

K(wmr+1)——> B, —— B,

Here h is the covering map and h*(E,,) is the induced total space. Since
r+1>1, K(m,r+ 1) is simply connected and so k: K (r,7 + 1) = By, can
be lifted to a map k: K(mr-+1)— B,. The top horizontal arrows are
homotopy equivalences in the above diagram.

This diagram gives rise to a commutative diagram of homotopy groups
using the fibre homotopy exact sequence

b b
Tra (K (mr +1)) —— mp1(Bo) ——> a1 (Bao)

=

== dw dau

me(K(m,7)) = m (K (7, 1) ) —> m(K (7))

==
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Now, by Theorem 5.1 in [2] we see that
0y (L (K (m,n), K (m,n)) ;1g) == (K (m,n)) for n=2.

If n =1, the result still holds by applying Theorem II.1 of [10]. The
fact that e, is an isomorphism implies that d, is an isomorphism, see [11].
This implies that d, is an isomorphism and thus that

7;1* D area (K (myr+1) =y (Bw)

is an isomorphism.

In fact By, is a K («, 7+ 1), because m;(By) == miq (L (K, K),1x) where
K=K(m,r). By Thom, [18], m(L,1x) = E(K), the group of homotopy
equivalences from K to K and =, (L, 1x) ==, the other homotopy groups being
zero. Thus Ti(Bw) =0 unless 1 =174 1, then =,y (Bw) =a. This establishes
the lemma and hence the theorem.

As a consequence of Theorem 6-3, we have a generalization of Theorem
6-2.

COROLLARY 6-5. Suppose X is (n—1)-connected. Let X be an n-
connective covering of X. Then there is a fibration p: X — X which induces
isomorphisms p,: m(X) = m(X) for all 1 > n. Identifying = (X) to m(X)
by py, we see that Gy(X) C Gi(X).

Proof. The fibration p: X— X has fibre a K(wr,n —1) where = = m,(X).
To show that G4(X) C G4(X), i>mn, we need only show that any map
¢: X X S*— X affiliated with an element in G;(X) gives rise to a commu-

tative diagram
1< —X
XXBt—X

such that ¢ | X is the identity on X. By Theorem 6-3, this occurs if and
only if uX =0 where u€ H"(X ;x) which defines the fibration p: X— X.

Since A lowers dimension by 4, and since 7 > n, ud =0.

7. Applications. We shall combine the results of the preceding sec-
tions to obtain some interesting theorems.

TueoreM 7-1. Let X have only a finite number of monzero rational
homology groups, then G,(X) C torsion subgroup of m(X).
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Proof. Let X be the universal covering space of X. We may identify
7o (X) with 7, (X) by the isomorphism p,. Then, by Theorem 6-2, we have
@, (X) D G,(X). Since X has only a finite number of nonzero rational
homology groups, by Theorem 5-1, (,(X) C ker /i, Since X is simply con-
nected, the Hurewicz Theorem tells us that %: m,(X) == I[,(X). Thus the
kernel of h, must be those elements of w,(X) which are killed by ten-
soring with the rationals, that is, the torsion subgroup of =,(X). Thus
(. (X) C @,(X) C torsion subgroup of m,(X) = torsion subgroup of =, (X).

Suppose = is a finitely generated abelian group. Then = — F @ 7" where
1" is the torsion subgroup of = and F is a free group. We may regard

K (z,n) =K (F,n) X K(T,n).

Now H*(K(T,n);R), where R is the rational numbers, is trivial except
tor H°. Also H*(K(Z,n);R)) is isomorphic over R to an exterior algehra
generated by an element of degree n if n is odd and is isomorphic to a poly-
nomial algebra generated by an element of degree m if n is even. Thus,
when 7 is odd, since F=Z @ - - - ® Z for a finite number of summands,

H*(K (myn) ;R) = H*(K (Z,n) ;R) ® - -@H*(K(Z,n);R),

has only a finite number of nonzero rational homology groups. We use the
above facts in the proof of the following theorem :

TrmorEM 7-R. Suppose X is a OW complex with a finite number of
nonzero rational homology groups. Let =;(X) be finitely generated and
suppose that =i (X) is a finite group for all odd i, 1 <i<N. Then G (X)
is a finite subgroup for all integers i such that 1 <1< N.

Proof. Let X be the universal covering space of X. Then X satisfies
the hypothesis of the theorem. Then we know, Theorem 7-1, that G,(.\")
C @2 (X) Ctorsion subgroup of ,(X') which is a finite group since . (.\)
is finitely generated. ILet X, be the 2-connected covering of ¥. Then we
have the fibration K (,(X),1) — X,— X. Since both the base and the fibre
have only a finite number of nonzero rational homology groups, it follows
from the Serre spectral sequence of a fibration that X, has only a finite
number of nonzero rational homology groups. So ¥, satisfies the hypothesis
of the theorem. Now (I;(X) is finite if =, (X) is finite.

Consider s, the 3-connective covering of ¥,. Then we have the fibration

K (my(X),2) = &y — %o
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Since 3 (X) is finite, K (w5(X),?) has trivial positive dimensional homology
groups. So, by the Serre spectral sequence, the rational homology groups
of X, are isomorphic to those of X; and thus there are only a finite number
of nonzero groups. Hence X, satisfies the hypotheses of the theorem.

Now X, is 3-connected, so by the Hurewicz theorem, the kernel of the
Hurewicz homomorphism %: m,(X3) — H,(Xs) is zero. Hence the kernel
of he, is the torsion subgroup of ,(X) =,(X). Since X; has only a finite
number of nonzero homology groups, G4(Xs) C ker i, =torsion subgroup
of my(Xs). Since G4(X) C Gy (Xs), we see that G4 (X) is contained in the
torsion subgroup of =,(X) and hence must be finite.

We repeat the arguments for X, and X; for X, and Xz, in an alter-
nating pattern until ¢+=N.

This last theorem is interesting, for we apply results which depend upon
a finite number of nonzero homology groups far beyond the largest dimension
of the nonzero homology groups.

As another application of our results, we shall investigate the concept
of a G-space.

Definition. We call a space for which G,(X) =m,(X) for all n a G-
space. Any H-space is a G-space. For finitely generated homology, H, (X),
G-spaces and H-spaces share a striking property.

TurorEM 7-3. Let X be a connected G-space such that H, (X ;Z) is
finttely generated. Then either x(X) =0 or X is contractible.

Proof. TFirst we shall show that X is either simply connected or
x(X) =0. By the definition of G-space, ¢4 (X) ==, (X). Thus by Corollary
2-4, =, (X) is abelian. Hence the Hurewicz map h is an isomorphism.
Suppose m; (X)5£0. Then there is a generator ¢ € (X). Let p be a
prime which divides the order of & (possibly o). Then k(a) ®Z,540. So
by Theorem 4.1, x(X) =0, since ky(a) 540 and «€ G,(X).

Now suppose that y(X)40. Then X is simply connected. Assume
also that x(X)=£1. Then for some n >0, H,(X;Z) has a torsion free
element. Assume that n is the smallest such integer. Let J be the Serre
class of all torsion groups. See [13], for example. Then, since X is simply
connected, we may apply the mod J Hurewicz theorem, see p. 305 [13], which
tells us that h: m(X) - H,.(X;Z) is a J-isomorphism. Thus there is some
torsion free B € H,(X ;Z) such that & (a) = B for some &€ =, (X) = G, (X).
Hence a¢ kerh, and a€ G,(X), so by Theorem 5-1, this contradicts the
fact that H,(X;Z) is finitely generated if » is even. If n is odd, then
x(X) =0 by Theorem 4-1, so we have a contradiction.

12
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Thus if x(X) 540, then x(X) =1. In this case we use the Hurewicz
theorem and Corollary 4-6 or Theorem 4-1. Suppose there is a n > 0 such
that H,(X;Z) 0. Then let n be the smallest such integer. Since
1 (X) =0, the Hurewicz theorem tells us that &: m(X) > H,(X;Z) is an
isomorphism. So let 8 be a generator of H,(X;Z). Then there exists an
€ Gp(X) =my(X) such that A(a) =B. Suppose p divides the order of 8.
Then %,(a) 5£0. If n is even, we use Corollary 4-6 to produce a contra-
diction. If n is odd, we use Theorem 4-1 to show that x(X)=0. Thus if
x(X) =1, H,(X;Z) =0 must be zero for all » > 0. Since = (X) =0, we
see that 7,(X) =0 for all » and so X is contractible.

Using Corollary 2-7 and various of our above results, we may obtain
results of the following type.

TaEOREM 7-4. Let p: E— 8" be a fibration with fibre F a CW complex
with finitely generated homology. There is a cross-section to this fibration
if one of the following conditions hold: (n >R except where specified)

1) n=2 and = (F) has trivial center.

%) n=3 and m,(F) has no torsion.

3) F is n—2 connected, x(F) =1, and the order of the torsion sub-
group of m,y (F) 1is square free.

4) F s n—2 connected, x(F) 540, and the order of the torsion sub-
group of mn_y (F) is square free and n is even.

5) F is a n—2 connected suspension not an odd dimensional rational
homology sphere.

Proof. A cross-section exists if G,,(F) =0 by Corollary 2-7. Now
Gn1(F) =0 in the above five cases by Theorem 2-4, Theorem 7-1, Theorem
4-6, Theorem 4-1, and Theorem 5-2 respectively. For 8), 4) and 5) we also
need the Hurewicz isomorphism theorem.

8. Questions. Theorem 3-1, which says that G,(X) is trivial if X
is a compact polyhedron and x(X) 40, is proved using the Nielsen-Wecken
fixed point theory. On the other hand, Theorem 4-1 tells us that G,(X)
C ker hy, for all primes p if x(X) 540 and X has finitely generated homology.
The proof is an application of homology theory, and thus generalizes to
dimensions greater than n =1, but the conclusion is weaker.

It would be interesting to find a proof of Theorem 3-1 which generalizes
to higher dimension. In particular, does Theorem 4-1 imply Theorem 3-1°?
Let X have finitely generated homology. If X is n—1 connected, where
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n is odd, and if x(X) 540, then G,(X) is trivial if every element of H,(X)
has order a number whose prime factorization contains a prime of power one.

This theorem would generalize Theorem 3-1 if we could remove the
condition on the order of elements of H,(X). This can be done if we can
improve Theorem 4-1 from G, (X) C ker h, for all primes p to G(X) C ker h.

For suitable conditions on X, Theorems 5-1 tells us that G,,(X) C ker he,.
One may ask if this theorem can be improved to G2,(X) C ker &, for primes
p. This would put the conclusion of Theorem 5-1 in agreement with the
conclusion of Theorem 4-1.

It is known that G.n.(X) Ckerh, if H,(X) is finitely generated and
x(X) =1 (Corollary 4-6), or if X is suspension (Theorem 5-2), or if X is
an H-space with finitely generated homology. This last result follows from
a theorem of W. Browder [4] which states that

byt mon(X) = Hyu(X 3 Zy)

is the zero map. Since G, (X) ==, (X) for all n, G, (X) C ker h,,.

We may also ask if (,,(X) Ckerh when H,(X) is finitely generated.
This conjecture implies that G,(X) = 0 if X has finitely generated homology.
This fact, then, would imply that every fibre space over S3, with fibre F such
that H,(F) is finitely generated, admits a cross-section.

Finally, it would be interesting to know if there exists a G-space which
is not an H-space.

Added in proof. Jerrold Siegel has a finite dimensional example, the
author and H. B. Haslam have examples with a finite number of non-zero
homotopy groups.

PURDUE UNIVERSITY.
INSTITUTE FOR DEFENSE ANALYSIS.
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