The Trace of an Action and the Degree of a Map

Daniel Henry Gottlieb

Transactions of the American Mathematical Society, Volume 293, Issue 1 (Jan., 1986),
381-410.

Stable URL:
http://links jstor.org/sici?sici=0002-9947%28198601%29293%3 A1%3C381%3ATTOAAA%3E2.0.CO%3B2-0O

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Transactions of the American Mathematical Society is published by American Mathematical Society. Please
contact the publisher for further permissions regarding the use of this work. Publisher contact information may be
obtained at http://www jstor.org/journals/ams.html.

Transactions of the American Mathematical Society
©1986 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Mon May 5 20:38:47 2003



TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 293, Number 1, January 1986

THE TRACE OF AN ACTION AND THE DEGREE OF A MAP
BY
DANIEL HENRY GOTTLIEB!

ABSTRACT. Two integer invariants of a fibration are defined: the degree, which
generalizes the usual notion, and the trace. These numbers represent the smallest
transfers for integral homology which can be constructed for the fibrations. Since
every action gives rise to a fibration, we have the trace of an action. A list of
properties of this trace is developed. This list immediately gives, in a mechanical
way, new proofs and generalizations of theorems of Borsuk-Ulam, P. A. Smith,
Conner and Floyd, Bredon, W. Browder, and G. Carlsson.

1. Introduction. Let X be any topological space, and let (G, X) denote the action
of a group G, or, more generally, a monoid of homotopy equivalences, on X. We
define a nonnegative integer tr(G, X) called the trace of the action. This trace
expresses the relationships of related actions by means of divisibility properties of
integers. It divides almost every interesting integer associated to (G, X): for exam-
ple, the order of G (if G is finite) or the Euler-Poincaré number of X if H(X;Z) is
finitely generated. It characterizes free actions of finite groups on compact mani-
folds as well as interesting classes of actions involving elementary abelian p-groups
and compact Lie groups. Finally it is invariant under equivariant retraction,
concordance, and equivariant degree one maps between oriented manifolds.

This trace can be calculated for many actions and these results and the divisibility,
characterization, and invariance results alluded to above form a calculus wherein a
number of famous results can be easily proved. Among these are the Borsuk-Ulam
theorem; Smith’s theorem that a finite group cannot act freely on R"; Carlsson’s
theorem about elementary abelian p groups acting freely on $” X §” X --- X 87
Conner and Floyd’s theorem that if an elementary abelian p-group acts without
fixed point on a closed manifold M the manifold must bound; and others, such as
an elementary p-group cannot act with a single fixed point smoothly on a closed
oriented manifold.

We collect here the principal properties of the trace for easy reference. Then we
give some examples of the use of these properties by proving some of the above-
mentioned theorems. We then discuss how the trace is defined in terms of two other
integer invariants; the degree of a map (which generalizes the degree of maps
between closed connected oriented manifolds) and the fibre number (G, X) of an
action.

We conclude this introduction with a description of the contents of this paper.
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382 D. H. GOTTLIEB

(1.1) THEOREM.

(A) For any arbitrary action (G, X) the trace tr(G, X) is a nonnegative integer
satisfying the following properties.

M) If f: (G, X) = (G,Y) is an equivariant map, then tr(G,Y)|tr(G, X). (6.2)(a).

(2) If : H — G is a homomorphism and (H, X) is induced from (G, X) by o,
then tr(H, X)|tr(G, X). (6.2)(b).

(3) If (G, X) has a stationary point, then tr(G, X) = 1. (6.7).

@ If r: (G, X)—(G,Y) is an equivariant retraction then tr(G, X) = tr(G,Y).
(6.3).

(B) If X is homotopy equivalent to a CW complex, then

1) (G, X) = t(G,Y) if f: (G, X) = (G, Y) is a quasiequivalence (i.e. a G-map
which is also a homotopy equivalence). (11.1).

(2) te(G, X)|A,, where A, is the Lefschetz number of a G-map f, if H(X;Z) is
finitely generated. (6.7).

(3) tr(G, X)|x(X), the Euler-Poincaré number, if H,(X,Z) is finitely generated.
6.7).

(C) Let G be a finite group of order |G)|.

(1) tr(G, X)| |G]. (6.9).

2) If (G, X) = |G|, then (G, X) is free.

(3) Let N be a manifold which is dominated by a finite CW complex. Then
tr(G, N) = |G| if and only if (G, N) is a free action. (6.10).

(D) Let G be a compact Lie group acting on a compact connected manifold N.

(1) te(G, N)|T1Em N exp(H " Y(Bg; H,(N; Z))) if G acts trivially on H «(N; Z) (cf.
[Bro)). (9.1).

(2) If G is connected then either tt(G, N) = O or it divides the order of the Weyl
group; tr(G, N) = 0 if and only if no isotropy subgroup has maximal rank (i.e.
contains the maximal torus T). (6.11).

(3) If M, and M, are connected closed oriented manifolds of the same dimension and
f: (G, M) = (G, M,) is a G-map, then
(a) tr(G, M,)| tr(G, M,)| (deg f)tr(G, M,). (8.1).

(b) In particular if deg f = 1, then tr(G, M,) = tr(G, M,). (8.2).
(¢c) If G préserves orientation and g: M, - M, is another G-map, then
tr(G, My)|A , ,, the coincidence number. (6.7).

(E) If a group G acts smoothly on a closed connected oriented manifold M, then
tr(G, M)|P, where P, is any Pontrjagin number. (6.7). Similarly if G acts
holomorphically on a closed oriented complex manifold, then tr(G, M) divides
any Chern number.

(F) (Browder) If G =(Z,)" =7, X --- X1, for p a prime, and if M is a smooth
action, then tr(G, M) = (the number of points in the smallest orbit). (7.4).

Now we shall consider some immediate applications of the trace. First we note
that Smith’s theorem (no finite group can act freely on R”) and the Borsuk-Ulam
theorem (essentially that any self-map f: S” — S” of the unit sphere into itself
satisfying f(-x) = —f(x) must have odd degree) follow immediately from (C)(3) and
(B)(2) which proves the following generalization [G5, Theorem 3].
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(1.2) COROLLARY. If a finite group acts freely on a manifold N dominated by a finite
complex and if f is an equivariant self-map, then |G||A 7

Carlsson’s theorem [Ca], ((Z,)" can act freely on (S™)% and trivially on
H ., ((S™*; Z) only if r < k) can be generalized as follows in the smooth case.

(1.3) COROLLARY (BROWDER). If G is an elementary abelian p-group which acts
trivially on H ,((S™)*; Z), then the order of the smallest orbit cannot exceed p*.

PROOF. Let p' be the order of the smallest orbit. Then combining (F) with (D)(1)
gives us

kn

p' = tr(G,(S")k) l:[lexp(H"“(G; H,,((S")k,Z))) = pk.

Conner and Floyd in [CF1, (43.7)] prove that if (G, M) is a smooth action of an
elementary abelian p-group on a closed connected oriented manifold, then p|P,,
any Pontrjagin number of M, if (G, M) has no stationary point. This follows
immediately from (E) and (F) and in fact we have the following generalization.

(1.4) COROLLARY. If the minimal orbit of G has order p', then p'|P,,.

Similarly if a torus T acts smoothly without a stationary point on a closed
connected oriented manifold, then all the Pontrjagin numbers vanish. This follows
immediately from (D)(2) and (E). Compare with [Os].

More applications will appear in the body of the paper. Also some of the
hypotheses in Theorem (1.1) are relaxed in later statements.

Now we describe the definition of tr(G, X). In fact we shall define several integer

invariants for an action (G, X). In each case, the invariant is actually defined for
. . . . . . . PG
fibrations or for maps. Then the invariant for the universal fibration X - X; - B

is the invariant of the action (G, X).

For example, suppose that F % E L5 Bis a fibration so that F is connected and
H{(F;Z)=0 for i >n and H"(F;Z) = Z. Then the image of i*: H"(E;Z) —
H"(F;Z) = Z is a subgroup of the integers. Define the fibre number ®( p) to be the
nonnegative integer which generates this subgroup. If (G, X) is an action and
H'(X;Z)=0 for i >n and H"(X;Z)= Z, then the fibre number of the action
®(G, X) = (py).

Variations of this number are obtained by changing the coefficients of the
cohomology groups.

One of the most important properties of the trace can now be stated.

(1.5) THEOREM. Let G be a group so that B; has finite type. Let M be a closed
connected orientable manifold. If G acts on M preserving orientation, then tr(G, M) =
d(G, M). (64).

In general, however, ®(G, X) # tr(G, X).



384 D. H. GOTTLIEB

The degree of a map f: X — Y is defined by looking at all the transfers to
fx: Ho(X;Z) > H,(Y;Z) and taking the integer attached to a “minimal transfer”.
This generalizes the usual definition of degrees of maps between closed oriented
manifolds of the same dimension. Again one can vary the coefficients or use
cohomology instead of homology to define variations of deg f.

The trace of a fibration, tr( p), is then defined to be the least common multiple of
the degrees of the projections of all the pullbacks of p. Then tr(G, X) = tr( p;).
Again there are variations based on the coefficient groups. These variant traces still
have some of the properties of the trace. The version associated with Z, coefficients
can be used to prove Conner and Floyd’s theorems [CF1, (30.1), (31.1)] that if (Z,)"
acts smoothly on a closed manifold M then

(a) there cannot exist only one stationary point and

(b) if there is no stationary point then M bounds.

In §2 two integers are associated with the homomorphism h: 4 — B between
abelian groups: the degree of 4, and the codegree of 4. Elementary properties are
established.

In §3 the degree and codegree of an arbitrary map are defined. They are both
shown to generalize the usual concept of degree from closed oriented manifolds to
arbitrary spaces. An example is given showing that the degree and codegree are in
fact different invariants. The degree depends upon transfers, and in (3.4) the latest
results involving transfers are collected and phrased in terms of degree.

In §4 we study the fibre number, and in (4.2) we establish the central fact that for
manifold bundles the degree equals the fibre number.

In §5 we define the trace of a fibration and show that all the invariants of degree,
fibre number, and trace coincide for manifold bundles. Also we show that every
fibration with fibre and base finite CW complexes is a “retract” of a manifold
bundle.

In §6 we establish many of the properties mentioned in (1.1), including the
characterization of free actions. We end the section by characterizing trace = 0
actions for compact connected Lie groups. Along the way we obtain as a corollary
the fact that orientation reversing involutions kill all Pontrjagin numbers (6.8).

In §7 we study the trace for elementary p-group actions. Here we show that for
compact manifolds the trace characterizes actions with stationary points.

In §8 we show that tr(G, M) is an invariant of degree 1 maps. We apply this to
prove that elementary abelian p-groups cannot act on oriented closed manifolds
with only one stationary point. We discuss Stong’s recent solution to the problem of
which finite G can act on M with only one stationary point, and we use it to show
that the statement “tr(G, M) = 1 if and only if (G, M) has a stationary point” holds
only for G an elementary abelian p-group.

In §9 we calculate some examples of the trace using the Serre spectral sequence.

In §10 we show that if (S*, M) has no fixed point and M" is a closed oriented
n-manifold, then every oriented G-vector bundle of dimension » has a nonequi-
variant cross section.

In §11 we show that trace is a G-quasi-homotopy type invariant. As an example of
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what this implies, consider a manifold M which is dominated by a finite complex.
Let C be any contractible space, and let B, have finite type. If G actson M X C
leaving a slice M X ¢, invariant, then the action is free if and only if the action on
M X ¢, is free.

In §12 we study the orbit map of an action w: G — X. We show that it frequently
induces the trivial homomorphism 0 = w,: H,(G,Z) - H,(X;Z)when tr(G; X) #
0.

Finally, in §13 we use the concept of fibre number to produce two simply
connected smooth manifolds which are rationally equivalent but whose diffeomor-
phism groups are not rationally equivalent.

One result not proved here but worth mentioning is Murad Ozaydin’s theorem
[Oz], for G a compact Lie group acting on a G-complex, that the trace of the action
is equal to the trace of the action restricted to the singular set. This is remarkable,
given the global character of the definition of trace.

It is a pleasure to acknowledge several conversations I had on this material with
Fred Cohen, Ted Petrie, Bill Browder, Murad Ozaydin, Bob Stong, John Ewing,
Steve Halperin, and John Oprea, which resulted in several improvements of this
paper.

2. The degree of a homomorphism. In topology one studies a class of maps
between spaces by studying the induced homomorphisms between homology groups
or homotopy groups. It is reasonable to expect that the topological properties of the
class of maps should result in group theoretic properties of the induced homomor-
phisms. How can we describe these properties? '

For example, consider the set of compact maps, where f: X — Y is said to be
compact if Y and the homotopy theoretic fibre of f are homotopy equivalent to
finite CW complexes. The induced homomorphisms f,: H.(X;Z) > H.(Y; Z) may
satisfy algebraic properties. How can we describe them? The abelian groups 4 =
H.(X;Z) and B = H,(Y;Z) could be very general. In this case the only a priori
conditions are that 4 and B should be finitely generated, so any common properties
that this class of homomorphisms could have must be expressed in terms that are
independent of the exact forms of 4 and B.

Now let #: A —> B be a homomorphism between abelian groups. We might say
that 4 is the trivial homomorphism, or that A is onto, or A is one-to-one, or & is an
isomorphism, or A splits. Each of these properties of 4 does not depend on the
precise form of the groups 4 and B. The purpose of this section is to introduce three
properties of &, the exponent of h, the degree of h, and the codegree of h. In each
case these will be nonnegative integers associated to 4 and independent of the form
of 4 and B.

Of all the possible homomorphisms h: 4 — B between abelian groups, the only
one we know always exists is the trivial homomorphism 0: 4 — B. For self-homo-
morphisms h: A - A we know a little more. Every integer N € Z induces an
endomorphism N: 4 - A4 by sending a > N-a=a + --- +a (N times). Differ-
ent integers need not induce different endomorphisms. If N, and N, induce the
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same endomorphisms, then N, — N, = 0 as endomorphisms. The smallest positive
integer which induces the trivial endomorphism on A is called the exponent of A,
denoted expA4. Then expA divides N; — N,, denoted (expA)|(N; — N,). If there is
no positive integer which annihilates A, then expA4 = 0. In that case every integer
induces a unique homomorphism.

Now if h: A4 — B is a homomorphism between abelian groups and N is an
integer, we have No h = ho N. We abbreviate N o h by Nh.

The smallest positive integer N such that Ni = 0, the trivial homomorphism, will
be called the exponent of h, denoted (exp h). If there is no such positive integer then
(exph) = 0. It is clear that if Nh = 0 then (exp h)|N. Also

(exph)|g.c.d.(expA4, expB).

Note that (exph) = 1 if and only if & = 0.

In order to define the degree and codegree of h: A — B, we must first introduce
the notions of transfer and cotransfer for 4. Let 7: B —» 4 be a homomorphism. If
hoT= N, where N is the endomorphism on B induced by the integer N, then 7 is a
transfer homomorphism for 4 and the integer N is associated to T. Of course, there
may be more than one integer associated with 7 if exp B # 0. Similarly, if 7o h = N,
then 7 is a cotransfer homomorphism for 4. Here N is the endomorphism on A4
induced by the integer N associated with the cotransfer.

Note that the trivial homomorphism 0: B — A is both a transfer and a cotransfer
to h: A — B, and the integer O is associated to 7 = 0. Thus the set of transfers, the
set of cotransfers for 4, and the sets of integers associated with them are always
nonempty.

(2.1) DEFINITION. The (co)degree of h, denoted (co)degh, is the smallest positive

integer associated with a (co)transfer. If no such positive integer exists, then (co)degh
= 0.

(2.2) PrOPOSITION. If N is an integer associated with a (co)transfer, then
(co)degh|N.

PROOF. Let N, and N, be integers associated with transfer 7, and 7, respectively.
Then the linear combination aN; + bN, is an integer associated witht the transfer
ar, + bt,, where a and b are any integers. This follows since

ho(ar, + bry) =heoar, + hobt,=ahot + bhot, =aN, + bN,.

Thus the set of integers associated to a transfer forms an ideal, deg 4 is its generator.
This proves the proposition for transfers. The proof for cotransfers is similar.
As an example let h: Z — Z be a homomorphism. Then deg & = codegh = |h(1)].
Now deg h|expB and codeg h|expA. Degree and codegree characterize isomor-
phisms. That is, degh = codegh = 1 if and only if A is an isomorphism. Now
deg h = 1if and only if 4 is onto and B is a direct summand of A. Also codegh = 1
if and only if 4 is one-to-one and A is a direct summand of B. However deg ,fmd

codeg h do not characterize surjectivity or injectivity as Z » Z/nZ and Z » Z
show.
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(2.3) PROPOSITION. deg h,|deg(h, © hy)|(degh,) - (deg k).

PROOF. By Proposition (2.2) we need only construct a transfer and then the degree
will divide the associated number. So let 7, 7,, and 7; be transfers associated with

the degrees of hy, h,, and h; = h, o hy respectively. Then h, o 7; is a transfer for 4,
with associated number

hyo(hyomy) = (hyohy)or =deg(h,yohy).
Also 7, ° 7, is a transfer for h,; with associated number
(hyohy)o(mom) ="hyo(hom)or,=h,o(degh)om,
= (deghy)hy o 7, = (degh,)(degh,).
(2.4) PROPOSITION.

codeg h,|codeg(h, ° hy)|(codeg h,)(codeg k).

PROOF. Note that the term on the left involves h,, whereas in the analogous
Proposition (2.3) for degree, the term on the left involves #,. The proof proceeds as
in the above proposition. Here 7;0h, is a cotransfer for h; associated with
codeg(h, ° hy), and 7, © 7, is a cotransfer for 4, o h, associated with

(codegh,) -(codegh,).

Let XA, and ¥ B, be direct sums of abelian groups. We say that a homomorphism
h: XA, > ¥B, is graded if h = Lh, such that h,;: A, - B, are homomorphisms.

(2.5) PROPOSITION. Let h: YA, — ¥.B; be a graded homomorphism. Then
degh = l.c.m.{degh,}, codegh =l.c.m.{codegh,}.

PROOF. Let 7: ¥ B, = YA, be a transfer which realizes deg 4. That is, # o 7 = deg h.
Let

T proj
7: B> LB, > LA, A,.

Then Y7, is also a transfer associated to deg 4. This follows since 7(b;) = 7,(b;) + x,
where b, € B, and x € &, , ;4 ,, the complement to 4,, so

(degh)b, = hr(b,) = h(7,(b,) + x) = h,7,(b,) + h(x).

Now A(x) is in the complement of B, since 4 is graded. Hence (deg h)(b,) = h,7,(b,)
and i(x) = 0. So we have shown that 4 o(X7) = (degh). Now it is easy to see that
the least common multiple of the degrees of the 4,’s has an associated graded
transfer X7, where 7, is a transfer associated to deg(/;) multiplied by the quotient of
the least common multiple and deg#,. Hence deg k|l.c.m.{deg4,}. But also since
h;7,=degh for all i, we see that lc.m.{degh,}|degh. Therefore degh =
l.c.m.{deg /,}, as was to be proved. Similarly for codegree.

The situation is more complicated for ungraded maps. If 4 and B are finitely
generated, then 4 = F® T and B= F’ ® T’, where F and F’ are free abelian
groups and T and T’ are torsion subgroups. An ordinary homomorphism h: A — B
does not respect the direct sum structure even through A|T = h: T - T".

The following example is used in §3 to show that degree # codegree.
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(2.6) ExaMPLE. Let A =Z & Z;. Let a denote the generator of Z, and let «
denote the generator of Zg. Let h: A — A be defined by h(a) =2a + a and
h(a) = 4a. An examination of 4 shows that degs = 8. On the other hand, A, =
h|Zg: Ly — Zg is given by hy(a) = 4a. Hence deg(h;) = 4. Also

proj
hprL >Z®Zg—> Z

is given by hz(a) = 2a. Hence deg h . = 2. So
l.e.m.{degh ,degh,} = 4 # 8 = degh.

3. The degree of a map. Let f: X — Y be a map. We define the degree of f by
deg f = deg f 4, where f,: H(X,Z) » H,(Y;Z). The codegree of f, denoted cdg f,
is defined by cdg f = codeg f *, where f *: H*(Y;Z) - H*(X; Z).

While our main concern will be deg f and cdg f, it is convenient to extend the
definition for any abelian group of coefficients 4. Thus deg, f = deg f,, where
fs: Hy(X,A) > H(Y; A), and cdg, f = codegf*, where f*: H*(Y,A) -
H*(X; A).

Now deg o5 f = l.cm.{deg, f, deg f }. This follows from Proposition (2.5) and
the fact that

f+:Hy(X; A ® B) = H,(X; A) ® Hy(X; B)
> H(Y;A®B)=H,(Y;A) ® H,(Y; B)
is a graded homomorphism. Similarly

cdg o5 f = lcm.{cdg, f,cdgyf}.

This fact tells us that the situation when 4 = Z,, is particularly important. We use
the notation deg, f and cdg, f when A = Z,. In the event that n is a prime p we
see that deg,/ equals either 1 or p. Note that deg,f=1 if and only if
[+t H(X;Z,) > H\(Y;Z,) is onto. Similarly cdg,f =1 or p and cdg,f =1 if
and only if f*: H*(Y;Z,) > H*(X;Z,) is one to one. Thus for finite complexes X
and Y

deg,f=cdg,f.

In general, deg f # cdg f. This may be seen from the following example.

(3.1) ExaMpPLE. We construct a free chain complex C consisting of a minimal
number of chains so that H,(C)=Z & Zg and H,(C)= 0 for i # n. Now con-
struct a chain map f: C —» C which induces h: H,(C)— H,(C), where A is the
homomorphism of Example (2.6). For cohomology, H"*!(C) = Zg,and H"(C) = Z,
and f induces h,: H"*}(C)— H"*}(C), and f induces h: H"(C)— H"(C).
Now we can realize C by a Moore space M(Z @ Zg, n) and the chain map f by a
topological map f: M — M. Hence from Example (2.6) we see that

degf=8+#4=cdgf.

f . .
Nowlet X - Y 5 Z be continuous maps on topological spaces.
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(3.2) PROPOSITION.

deg g|deg(g ° f)|(deg f)(deg g)

and

cdg gledg(g o f)|(cdg f)(cdg g).

PRrOOF. The proof for degree follows directly from Proposition (2.3). The proof for
codegree follows from Proposition (2.4), since cdg(ge f)= codeg((ge° f)*) =
codeg( f * o g*). The variation between Propositions (3.2) and (2.4) has prompted us
to distinguish between “cdg” for a map and “codeg” for a homomorphism.

(3.3) COROLLARY. Ifr: X = Y is a retraction, then

degf=deg(for) and cdgf=cdg(feor).

PROOF. Since r is a retraction, degr = cdgr = 1. Thus deg f|deg(f ° r)|deg f from
the proposition. So deg( f o r) = deg f. Similarly for cdg f.

Whenever a map is known to have a transfer, the degree divides the associated
number. Thus there are many results concerning degree in the literature. We collect
them below. We let p: X = Y be a map between CW complexes with homotopy
theoretic fibre F.

(3.4) PROPERTIES. (a) If H ,(F; Z) is a finitely generated group, then deg p|x(F). If
f: X = X satisfies po f = p, then deg p|A, where A, is the Lefschetz number of
f’ = f|F. Similarly cdg p divides x(F) and A [G6, Transfer Theorem).

(b) If f, g: X = X’ are two fibre maps and if p: X - Y and p’: X' — Y are
oriented fibre bundles with F and F' oriented manifolds, then degp|A, ., and
cdg p|A ., where A . is the coincidence number of f* and g": F — F’, which are
restrictions of f and g [N].

(¢) Let G be a compact Lie group, acting on a space X of the homotopy type of a
G-CW complex, and let K be a closed subgroup. Let p: X/K — X/G be the orbit
map. Then cdg p|x(G/K) [Ol, LMM].

(d) Let f: M — N be a smooth map between smooth oriented closed manifolds. Then
f~Xx) is a closed manifold for x € N a regular point. Then deg f and cdg f divide the
Pontrjagin numbers of f (x) [G4, Theorem 3].

(e) Let f: M — N be as in (d) without the requirement of orientability. Then deg, f
and cdg, f divide the Stiefel-Whitney numbers of f *(x). In particular, if deg, f = 2,
then f ~}(x) bounds [G4).

(f) Let F be a finite dimensional CW complex so that m,,(F) is finitely generated,
where F is the fibre of g: X —> S*"*!. Then degq = cdgq = 1.

(8) Let Hy(F;Z,) be finitely generated, where F is the fibre of X 5 S2". Suppose
x(F) # 0. Then deg ,(q) = cdg,(q) = 1.

(h) For F a finite CW complex such that x(F) # 0, degq = 1 where X—q> S2. (In

. . .. . 9 . .
fact, in this situation there is a cross section.) In addition, if X > S*" is a fibre bundle

with a Lie group as structural group, then degq = cdgq = 1.
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ReMARk. Statements (f),(g), and (h) follow from facts about the evaluation
subgroups G,(X). If h: 7 (F) — H,(F;Z) is the Hurewicz homomorphism, then
G,,(F)c kerh: Gy,iq(F) c ker(h ® Z,) if x(X)# 0, Gy(X) =0 if x(X)# 0,
and w, = 0: H,(G;Z) > H,(F;Z). See [G3, Theorem 1; G2, Theorem 4.1; G1,
Theorem IV.1; and BG, Theorem 5). Now we consider a fibration F SE 4 S" and
the Serre exact sequence for it. The fact that w, = 0 implies that p, is onto. This
gives us the results about degree.

The following theorem is the key fact about degree. A consequence shows that
degree generalizes the usual definition of degree of maps between spheres of the
same dimension and between manifolds of the same dimension.

(3.5) THEOREM. Let f: X —» M be a map from a space X to a closed oriented
manifold M. (More generally, M is a Poincaré duality space.) Then (degf)[M]
generates the image of f , in H, (M; Z), where [ M ] is the fundamental class of M.

PrOOF. Let B[ M] generate the image of f, in H,(M; Z).

(a) Bldeg f: There is a transfer 7 so that f, o7 = degf so (degf)[M] is in the
image of f . Hence B|deg f.

(b) deg f|B: Let T € H,(X;Z) be an element so that f,(T') = B[M]. We define
i Ho(M;Z) > HW(X;Z) by 7= (NI)o f*o(N[M])}, where NI is cap product
with T and of course (N[ M]) is an isomorphism. Now f , o 7 = B, hence deg f | 8. To
see this suppose x = y N [M]. Then

far(x) =f*(f*()’) N F) =y N[l =By n[M]=Bx.
(3.6) REMARK. If M satisfies Poincaré duality for 7, coefficients, then the same

proof shows that deg, f=f where B[M] is a generator of the image of
fx H(X;Z,)> H (M;Z,)=1,.

(3.7) THEOREM. Suppose f: X — M is a map such that M satisfies Poincaré dualitv
for Z, coefficients and H ,( X; Z) has finite type. Then deg,, f = cdg, f.
PRrOOF. Define a homomorphism 7: H*(X;Z,) - H*(M; Z,) by letting
T(x) N[M] =fu(xNT),
where I' € H"(X;Z,) is such that f,(I') = (deg h)[M]. Then
7(f(x)) N[M] =f*(f*(x) N F) =xNfy(T)=(degf)x N[M].
Hence 7o f* = deg f. Hence cdg,, f|deg,, f.

We apply the universal coefficient theorem in Spanier [Sp, p. 248, Theorem 12].
This requires that H ,( X; Z) has finite type.

0 - Ext(H"*Y(X;Z,);Z,) > H,(X;Z,) > Hom(H"(X;Z,);Z,) = 0

l L /s Lr*

0 —>Hm(M;Z,,)—E> Hom(H™(M;Z,);Z,) - 0
Q Q
Y/ Z

n n
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Let 7: H™(X;Z,) » H"(M;Z,) be a cotransfer associated to cdg, f. Then 7 €
Hom(H™(X;Z,);Z,). Let r € H,(X;Z,) be an element which maps onto 7. Then
falr) =f#(7) =Fof*=cdg,f.

Then Theorem 3.5 gives deg, f|cdg, f. Since cdg, f|deg, f, from the above para-
graph we have cdg,, f = deg,, f.

4. The fibre number. Let F - E 5 B be a fibration and suppose that H'(F;Z) = 0
for i > m and H™(F,Z) = Z. The image of i*: H"(E;Z) > H™(F;Z)=Z is a
subgroup of Z and so has a nonnegative generator ®. We say that ® = ®( p) is the
fibre number of p. If we replace Z by Z, in this definition, then we obtain
® (p) € Z, the fibre number for 1, coefficients, the smallest positive integer so that
® [ F) generates imi* ¢ H™(F; Z,).

We say the fibration F - E 5 B is orientable if m;(B) acts trivially on H™(F;Z),

or on H™(F;Z,) as the case may be. If ® # 0, then it is easy to see that the

fibration must be orientable. For notational convenience, we adopt the convention
that Z, = Z.

Now suppose that F 5 E 4 B is an m-oriented fibration. Then integration along
the fibre is defined by
p*: H'(E:Z,) > ES ™" By = H'"(B; H'(F;2,)) = H' " (B; Z,)
and
p«: H(B;Z,) = H(B; H,(F;Z,)) = E,, » E%,» H,,,(E;Z,).
Now p,. and p* satisfy, up to sign, the equations
p*(p*xUy)=xUp*(y) and pu(ynp.(§)=(p*y)NE&
If E and B satisfy Poincaré duality, then p, = p, and p¥ = p', where
p(y n[B])=p*(y) N[E] and p'(y) N[B]=ps(y N[E]).

Thus p, and p' are the usual Umkehr homomorphisms for maps of Poincaré
complexes.

(4.1) THEOREM. deg,(p)|®,(p) and cdg,(p)|®,(p).

PROOF. There exists an element A € H"(E) such that i*(A) = ® [F] € H"(F).
Define homomorphisms 7: H,(B) - H,(E) and 7: H'(E) — H'(B) by 7(a) = A
N p.(a) and 7(x) = p¥(x U A). Now p*(A) = ®, - 1 € H°(B). This follows di-
rectly from the definition of p*. Hence

px7(a) =P*(A Nps(a)) =p*(A)Na=2,- 1Na=2da
and
p*(x) = p*(p*x UA) =xUp*(A)=xU(D,-1) = O x.

Thus 7 and 7 are transfers associated to p, and p*, respectively. Hence deg p|®,
and cdg p|®,,.
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We say that a fibre bundle F S E 5 B is a manifold fibre bundle if F, E, and B

are closed connected orientable manifolds. (For Z, coefficients unorientable mani-
folds are allowed.) The following beautiful fact [G4] is essential to our work:

ix[F]= (p*[B)) N[E].
(4.2) THEOREM. If p is a manifold fibre bundle, then deg,(p) = ®,(p) = cdg,(p).

PROOF. Theorem (4.1) already shows that deg,(p)|®,(p). Now we show that
®,(p)|deg,(p). Let T € H,(E;Z,) be an element so that p,(T') = deg,(p)[B].
Then Poincaré duality asserts thereisa A € H*(E;Z,) so that ' = A N [E]. Then

deg, p = ([B], p+(T)) = (p*[B].T) = (i*(1),T) = (1,i\(T)).
The third equality follows from the above paragraph. So i,(I") = deg,(p) - 1. Now
deg, p = iy(T') = i,(AN[E]) = (i*A) ni)[E]
= (i*A)N[F]=k[F]n[F] =k

where k is an integer so that i*(A) = k[F]. Hence ®,(p)|k = deg,(p). Hence
®, = deg,,. Also cdg,(p) = deg,( p) by Theorem (3.7).

(4.3) PROPOSITION. Suppose p’ is a pullback of p. Then ®,(p")|®,( p).
PrOOF. This follows immediately from the commutativity of the diagram

H™(F) H™(F)

O

T T
H"(E') < H"(E)
(4.4) PROPOSITION. Suppose H™(F;Z) = Z. Then ®,(p)|®(p).
PrOOF. This follows immediately from the diagram
Z=H"(F;Z) > H"(F;Z,) =1,
Ti* T
H™(E;Z) - H"(E;Z,)

(4.5) PROPOSITION. Suppose F is a smooth closed manifold and p is a smooth fibre

bundle with fibre F. Then ®(p)|P,, where P, is any Pontrjagin number of F. Also
®,( p)|W,, where W, is any Whitney number of F.

ProOF. The tangent bundle for F is the restriction of the bundle along the fibre
for p. Characteristic numbers are natural.

5. The trace of a fibration. Let p: E — B be a fibration. The trace of p, denoted
tr( p), is defined to be the least common multiple of all the degrees of all the
pullbacks of p. If there is no least common multiple, we define tr( p) = 0. Similarly,
tr,( p) is the least common multiple of deg,( p”) for all pullbacks p’.

This definition gives rise to the following property, which is analogous to
Proposition (4.3).
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(5.1) PROPOSITION. If p’ is a pullback of p, then tr,(p’)|tr,(p).

P
(5.2) PROPOSITION. Suppose E' = B and E 5 B are fibrations and suppose
r: E’ — E is a fibre preserving map over the identity. Then tr,(p)|tr,(p’).

PROOF. By Proposition (3.2) degp|deg(peor) = degp’. Now for any map
f: X > B both p’ and p pull back to fibrations and r induces a map over the
identity between these pullbacks. Hence the degrees of the pullbacks divide in the
appropriate manner, so tr( p) [tr( p’).

We may define the cotrace of a fibration p by setting it equal to the least common
multiple of all the codegrees of all the pullbacks to p. Then Propositions (5.1) and
(5.2) hold for cotrace of p also. Mostly, we shall not make use of the concept, since
by the following theorem it is usually equal to tr( p).

(5.3) THEOREM. () tr,(p)|®,(p) and cotr,(p)|®,(p) when ®,(p) is defined. (b)
If p is a manifold bundle, then

tr,(p) = deg,(p) = @,(p) = cdg,(p) = cotr,(p).
PrOOF. (a) follows immediately from the definitions of tr(p) and cotr( p) and
Theorem (4.1). (b) follows from the definitions and Theorem (4.2).
Thus all the concepts we have defined coalesce for manifold bundles. Now these
manifold bundles are frequently encountered, and we shall show how they ap-
proximate almost every flbratlon we will be concerned with.

Let F’ > E'’S Band F> E % B be two fibrations. We say that p’ dominates
p if there exist maps j: E — E’ and r: E’ — E over the identity 1;: B — B so that
ro j is homotopic to 1, by a homotopy over 1. Now consider two fibrations
F, > E; 3 B, and F, > E, 3 B,. We say that p, governs p, if B; dominates B,

(that is, there exist maps B, —f> B, 5 B, so that g o f is homotopic to 15 ), so that
the pullback of p, by g is dominated by p,. It follows that if p; is governed by p,
and if p, is governed by p,, then p, is governed by p;.

Recall that a compact fibration is a fibration whose fibre and base are homotopy
equivalent to finite complexes.

(5.4) PROPOSITION. A compact fibration with connected fibre is governed by a smooth
manifold bundle.

Proor. First the compact fibration is governed by its pullback by the homotopy
equivalence of the base to a finite CW complex. This new fibration over a finite CW
complex, call it F - E % B,is governed by the fibration F X T e A B,
where T¢ is a torus of dimension d = dimension of B. This is fibre homotopy
equivalent to a smooth fibre bundle N - E — B, where N is a compact regular
neighborhood homotopy equivalent to F X T This follows from the closed fibre
smoothing theorem [CG). Now this fibration is governed by the pullback over a
closed regular neighborhood of B. That one is governed by its pullback over the
double of the base. So now we have a closed manifold as the base with fibre a
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manifold with boundary. That makes the total space a manifold with boundary. If
we double the total space we get a manifold bundle M — E — B which governs our
original fibration. If this bundle is not orientable, we can employ the trick of taking
the cartesian product of the fibre and total space with RP? to obtain the bundle
M x RP2S E x RP? - B which governs M — E — B. Both the total space and
fibre are unoriented manifolds. If we take the oriented double covering of this new
total space and then the mapping cylinder with total space, we obtain an oriented
bundle of manifolds with boundary which dominates the previous bundle. Now if we
double the total space we obtain the required manifold bundle.

(5.5) PROPOSITION. Let p and p’ be fibrations. If p’ governs p, then tr( p’) = tr( p).

PrOOF. Let p denote the pullback of p over the base space of p’ induced by the
map f: B’ — B. Since f o g: B - B’ — B is homotopic to 1, we see that p is fibre
homotopy equivalent to the pullback of p by g. By Proposition (5.1) we have
tr( p)|tr(p)|tr( p). Hence tr( p) = tr(p). Now p is dominated by p. Hence Proposi-
tion (5.2) gives us tr( p)|tr( p’)|tr( p). Hence tr( p’) = tr( p) = tr( p).

The trace satisfies the same divisibility conditions as the degree in Proposition
(3.4) provided the hypotheses are true under pullbacks. Thus Proposition (3.4)(a), (b)
is true for trace. In particular, tr( p)|x(F) when H ,(F;Z) is finitely generated. If p
admits a cross section, then tr( p) = 1. This follows since every pullback has a cross
section, and hence all the degrees are equal to one.

(5.6) REMARK. The connectivity of the fibre in Theorem (5.4) is not essential. If

F—E> Bisthe compact fibration with disconnected fibre F, we may consider the
P . C L
fibration F, - E — B given by identifying the path components of F to a point in

E. Then the quotient space B is a finite covering space of B. Now F, —» E LB is
governed by a manifold bundle by Theorem (5.4). We can reduce to the situation
where both the manifold bundle and the fibration are over B. Then composing the
manifold bundle projection with B — B gives a manifold bundle with disconnected
fibre which governs F - E — B.

6. The trace of an action. Suppose G is a group acting on a space X. We denote
the action by (G, X). Now G has a universal fibre bundle G - E; — B,. Replacing
G by the fibre X, we obtain the universal fibre bundle X — X, 5 B, where
X; = E; XX

(6.1) DEFINITION. The trace of the action (G, X) is tr(G, X) = tr( pg). Similarly,
deg(G, X) = deg p;, cdg(G, X) = cdg p;, and ®(G, X) = ®(py).

Similarly, we define tr,(G, X), deg (G, X), cdg,(G, X), and ®,(G, X). They are
related by deg (G, X)|tr, (G, X)|®,(G, X). This follows from the definition of trace
as the least common multiple of degrees and from Theorem (5.3)(a).

(6.2) PROPOSITION. (2) Suppose f: X — Y is a G-map. Then tr,(G,Y)|tr, (G, X).
(b) Suppose @: H — G is a homomorphism and that the action (H, X) is induced by
@ from the action (G, X). Then tr,(H, X)|tr, (G, X).
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PROOF. (a) A G-map gives rise to a fibre preserving map f: X; — Y, over the
identity on B. Then Proposition (5.2) yields the result.

(b) The homomorphism ¢: H — G induces a map ¢: By — B,;. Then p; can be
thought of as the pullback of p;. Applying Proposition (5.1) gives the result.

These two propositions tell us that tr(G, X) divides the trace of any invariant
subspace and is divided by the trace of any subgroup.

An equivariant retraction consists of X 5 Y5 X where both 7 and i are G-maps
and sothat roi =1,.

(6.3) COROLLARY. If X is an equivariant retract of Y, then tr,(G,Y) = tr,(G, X).

ProOOF. From Proposition (6.2)(a) we see that
tr(G, X)|tr(G,Y) |tr(G, X).

(6.4) THEOREM. Let M be a closed connected oriented manifold of dimension m.
Suppose G acts on M preserving orientation. Suppose B has finite type. Then
tr, (G, M) = ®,(G, M). For n = 2, orientation may be dropped from the hypothesis.

PrROOF. Let B™*! be the m + 1 skeleton of B;. Let M — ES B™1 be the

P
restriction of the universal fibration M — M = B to B™*!, The fibre homotopy
exact sequence then shows that #,(F) 5 m(Mg) for i < m. Hence

H"(Mg Z,) - H"(E, Z,). This implies that ®,(p) = ®,(p;) = ©,(G, M). Now
we imbed the finite complex B™*! in Euclidean space and take a regular neighbor-
hood N of B™*! This is a manifold with boundary. We double N to obtain an
oriented manifold DN. Then DN dominates B”*!, and the pullback of p over DN
induced by the dominating map gives rise to a manifold bundle p’ which governs p.

Now we prove the result by noting that ®,(G, M) = &,(p) = ®,(p’) = tr,(p),
where the first equality is explained in the proof above; the second equality follows
from the fact that p’ governs p and Proposition (4.3); the third equality follows
from Theorem (5.3)(b). Then

®,(G, M) = tr,(p')|tr,(G, M)|®,(G, M)

implies ®,(G, M) = tr,(G, M): The first division follows since p’ is a pullback of
P by Proposition (5.1), and the second division follows from Theorem (5.3)(a).

(6.5) LEMMA. Suppose M is a compact manifold and (G, M) is an action. Then there
is a closed oriented manifold N and an orientation preserving action (G, N) so that M
is an equivariant retract of N. The dimension of N is at most dim M + 1.

PROOF. (a) Let M be a manifold with boundary on which G acts in an orientation
preserving manner. Then G acts on the double DM in an obvious way which
preserves orientation and so that the ordinary retraction DM — M is a G-retraction.

(b) Now suppose that M is not orientable. Let M denote the oriented double
covering. G acts on M by selecting the orientation preserving lifting g of any g € G.
Thus G acts on M preserving the orientation. The projection p: M — M is a



396 D. H. GOTTLIEB

G-map. Now consider the mappi~ng cylinder Mp. This is an oriented manifold with
boundary. The action of G on M extends in an obvious orientation preserving way
to Mp, and the retraction Mp — M is a G-retraction. So we have (a). Since a
G-retract of a G-retract is a G-retract, we can apply (a) to our new manifold and
establish (b).

() Now suppose that M is orientable but that (G, M ) does not preserve
orientation. Then there is a homomorphism ¢: G — Z, such that those gEeC
which reverse orientation are mapped to 1 and those g which preserve orientation
are mapped to 0. Let (Z,, S") be the action given by conjugation of the unit circle in
the complex plane. Let (G, S*) be the action induced by ¢. Let (G, M X S*) be the
action defined by g(m,s) = (g(m),(¢(g))(s)). Then (G, M x SY) is orientation
preserving. Also i M — M X S! given by i(m)=m X lisa G-map, the projection
p: M X S' > Misa G-map,and poi=1,.So M is a G-retract of M X S, and
we are back to (a).

(6.6) PROPOSITION. Let (G, M) be an action on a compact manifold M, and let
B; have finite type. Then tr(G, M) = tr(p), where p is the pullback of p; by a
(dim M + 2)-homotopy equivalence B — B;. If B is an oriented manifold, then
deg(p) = tr(G, M).

PROOF. First assume M is connected. There exists a closed oriented manifold N
and orientation preserving action (G, N) so that (G, M) is an equivariant retract, by
Lemma (6.5). Also dimN < dimM + 1. Since f: B — B; is a (dim M + 2)-
equivalence, the pullback p has the same cohomology as PG, ~y up to dimension
dim N. Hence ®(G, N) = ®(p;) = ®(p). By using the technique in (6.4) we can
find a closed oriented manifold B’ which maps into B by a (dim N + 1)-equivalence.
The pullback p’ over B’ is a manifold bundle, and, hence, by (5.3)(b),

t(p’) = ®(p’) = ®(G,N) = tr(G, N) = tr(G, M).

Also tr(p") = deg(p’) by (5.3)(b). Let p’ be the pullback to B’ of the fibration
P, m)- Then p’ = p’or where r is a retraction of the total space of p’ onto the
total space of p’. Thus, by (3.3), deg p’ = deg p’. Thus deg(p’) = deg(p’) = tr(p’)
= tr(G, M). Since p’ is a pullback of p, we have deg( p’) |tr( p) by definition. Hence

tr(G, M) = deg(p’)|tr(p) [tr(G, M).

Hence tr( p) = tr(G, M) when M is connected.

In the case that M is disconnected, the fibrations involved will decompose into a
union of fibrations, each with a connected total space. From this we can reduce to
the case of disconnected M with G acting transitively on the components M,. We
pull back over the appropriate closed oriented manifold B’ as before. If E is the

total space, we have E — B’ 5 B’, where B’ is the quotient space of E given by
P
identifying each component M, of the fibre to a point. Then E - B’ is a bundle

1

. . ~, 4 . .
with fibre M;, B’ - B’ an n-fold covering, where n is the number of components of
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M. So the degree of E — B’ is
deg(qp) = (degq) -(degp) = [G: H] - tr((H, M),

where H is the subgroup of G fixing M,, and n =[G : H], the index of H in G.
Since every pullback can be factored as E — B — B by identifying components of
fibres to points, we can use the covering space transfer for B — B to show that
tr(G,M)|[G : H] - tr(H, M,). Hence, tr(G, M) = [G : H] - tr(H, M,), and this is the
degree over B’ which we wanted to show.

The formula tr(G, M) =[G : H]-tr(H, M,) is due to Ozaydin [Oz] and was
independently discovered by Stong.

Note that B has finite type when G is finite or a compact Lie group.

(6.7) PROPOSITION. (a) If (G, X) has a stationary point, then tr(G, X) = 1.

(b) If Hy(X;Z) is finitely generated, and X is homotopy equivalent to a CW
complex, then tr(G, X)|x(X). In addition if f: X = Xis a G map, then tr(G, X)|A .

(©) Iff, g2 M — N are two G-maps between closed connected orientable manifolds
and G preserves orientation, then tr(G, M)|A 1.g> the coincidence number of f and g.

(d) If M is a smooth closed manifold and G acts smoothly, then tr,(G, M) =
D,(G, M)|W,, where W, is any Whitney number. In addition, if M is orientable,
tr(G, M)|® (G, M)|P,, where P, is any Pontrjagin number.

PROOF. (a) is true since any stationary point gives rise to a cross section to
P
XG—g B,. Hence, tr(X,G) = tr(pg)=1. (b) and (c) follow from Proposition
(3.4)(a), (b). Proposition (4.5) implies (d).
We get the following amusing corollary from (d) of Proposition (6.7):

(6.8) COROLLARY. Let M be a smooth oriented closed manifold with a smooth
involution a: M — M which reverses orientation. Then all its Pontrjagin numbers
vanish. If M bounds, then it bounds orientably.

PROOF. «a gives rise to an action (Z,, M) which is not orientation preserving. Thus
®(Z,, M) = 0. Hence, 0|P, so P, = 0. If M bounds and all its P, =0, then M
bounds orientably.

For some groups the trace fails to distinguish most actions. Thus if (Z, X) is any
action of the integers on a path connected space X, then tr(Z, X) = 1. This follows
since B, = S! and any fibration over S' with path connected fibre must have a
cross section.

On the other hand, for any group G there is a free action with trace equal to 1.
For G acts freely on the contractible E;, so tr(G, E;) = 1. In view of this it is
remarkable that the trace characterizes free actions of finite groups on manifolds
which are dominated by finite complexes.

(6.9) PROPOSITION. If G is a finite group acting on X, then tr(G, X)||G|, where |G|
is the order of G.
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PROOF. Let x € X and let G, be the isotropy subgroup fixing x. Then the orbit
G /G, is a G-space which includes equivariantly into X. Then

(@, {6, &) E) = 10

(6.10) THEOREM. Let M be a manifold dominated by a finite CW complex. Let G be
a finite group. G acts freely on M if and only if tr(G, M) = |G|.

|G-

ProoF. First, suppose that G does not act freely. Then there is an x € M such
that G, is not trivial. Then tr(G, M)|(|G|/|G,) < |G|.

Now suppose that G acts freely on M. We shall show that tr(G, M) = |G|. First
we assume that M is a closed orientable manifold on which G acts in an orientation
preserving manner. Then the quotient space M /G is a closed oriented manifold, and
the projection p: M — M /G is a covering map of degree |G|. Now there is a map g:
M;=E; X;M — M/G induced by the projection E; X M — M. Then p = g1,
and since G acts freely, ¢ is a homotopy equivalence. Now the image of
p*. H"(M/G;Z) —» H"(M;Z) is generated by |G| - [M] and im p* = im i *. Hence
®(G, M) = |G|. Hence tr(G, M) = |G| in this case.

Now suppose that M is a compact manifold on which G acts. Then Lemma (6.5)
states that there is a (G, N) so that N is closed, oriented, and G acts in an
orientation preserving way, and so that M is a G-retract of N. Since G acts freely on
M, it follows that G acts freely on N, so |G| = tr(G, N) = tr(G, M). The first
equality follows because of the above paragraph, and the second equality follows
because M is an equivariant retract of N.

Finally, suppose M is a manifold dominated by a finite CW complex. The
quotient M /G is also a manifold. It may not be homotopy equivalent to a finite
complex, but by [G5, Lemma 1] it is dominated by a finite complex K. We may
assume that K is a compact manifold with boundary. Then we get a pullback
diagram

i

M - K -> M

Lp 4 Lo
M/G 5> K 5 M/G

of principal G-coverings. Since r o i is homotopic to the identity, the left and right
coverings are the same. Now G acts freely on K since K is a principal G bundle and
K a covering of K; hence K is a compact manifold with boundary. Since 7 and 7 are
bundle maps, they are G-maps. Then tr(G, M)|tr(G, K)|tr(G, M). Hence tr(G, M)
= tr(G, K) and tr(G, K) = |G| by the previous cases. This concludes the proof.

Now we can see that the concepts of tr(G, X), ®(G, X) and deg(G, X) disagree. If
we let G = H{ Z, act freely on a torus 7" in a nonorientation preservmg way, then
tr(G,T) = p’, €I>(G T) = 0, and deg(G, T') is either 1 or p since exp(H*(BG, 7)) =

As a corollary to Theorem (6.10), we find that a free action of a finite group G on
a manifold M dominated by a finite complex must have |G| |x(M) or |G| |A ,, where
f: M —> M is a G-map. This is Theorem 2 of [G5]. Also for closed smooth manifolds
and free smooth actions we see that |G| divides the Pontrjagin numbers of M.
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Now let G be a compact connected Lie group acting on a compact manifold M.
Then G/G, is a closed manifold for any x € M. Since any orbit G/G, is an
invariant subspace of M we see that tr(G, M)|tr(G,G,)|x(G/G,). Now x(G/G,) #
0 if and only if G, contains a maximal torus T. If G, O T, then x(G/G,)|x(G/T)
and x(G/T) = order of the Weyl group of G. Thus we see that for compact Lie
group actions the trace either is zero or divides the order of the Weyl group. We
know exactly when the trace equals zero for compact manifolds.

(6.11) THEOREM. Let a compact connected Lie group G act on a compact manifold
M. Then tr(G, M) = 0 if and only if no isotropy subgroup contains a maximal torus.

PrROOF. If Gy D T then x(G/G,) # 0. Since tr(G, M) |tr(G/G,)|x(G/G,) # 0,
we see that tr(G, M) # 0.

Conversely, we assume tr(G, M) # 0. Since tr(T, M)|tr(G, M) # 0, we see that
tr(T, M) # 0. Let ¢t € T generate T, that is, the set of powers of ¢ is dense in 7. We
find a sequence ¢, of elements in T which converge to 7 such that ¢, has order p,
where p is a prime. Now 7, generates Z, acting on M and tr(Z,, M )tr(G, M) # 0.
Also tr(Z,, M) = 1 if ¢, has a fixed point and tr(Z,, M) = p if 1, does not have a
fixed point, since then Z, would be a free action. Since ptr(G, M) for at most a
finite set of primes, we see that 7, has a fixed point for all p > tr(G, M). These
fixed points have limit points as p — oco. These limit points must be fixed points of
t. Hence they must be stationary points of 7. Hence 7' C G, for some x € M.

7. Elementary abelian p-group actions. Let G = Z, where p is a prime. Then
tr(Z,, X) is either p or 1 depending on whether the action is free or has a fixed
point. In general the larger the trace for a finite group G, the more free-like is the
action. When the trace equals one, we can only say with certainty that every element
of prime order in G has a fixed point. But for the case of elementary abelian
p-groups G = (Z,)", the trace equals 1 characterizes fixed points for manifolds.

(7.1) LEMMA. Let X be a compact G-space. Let G = (Z,)". Then the action has a
stationary point if and only if cdg (G, X) = 1.

PROOF. This is Corollary 1 of W. Y. Hsiang’s book [H, p. 45].

(7.2) THEOREM. Let M be a compact manifold and G = (Z,)". Then tr(G, M) = 1 if
and only if tr,(G, M) = 1if and only if (G, M) has a stationary point.

PrOOF. If (G, M) has a stationary point, then of course tr(G, M)=1 and
tr,(G, M) =1. Now we assume that tr(G, M) =1. By Lemma (6.5) M is an
equivariant retract of an oriented (G, N). Hence tr(G, N) = 1 also. But tr(G, N) =
®(G, N) by Theorem (6.4). So ®(G, N) = 1. Now @,(G, N)|®(G, N) by Proposi-
tion (4.4). Hence ®,(G,N)= 1. Since tr,(G,N)= ®,(G,N) by Theorem (6.4)
again, we see that tr,(G,N)=1 Since deg,(G, N)|trp(G, N), we see that
deg,(G,N) = 1. But deg,(G, N) = cdg,(G, N). Hence cdg,(G,N) =1, and the
preceding lemma tells us that (G, N) has a stationary point. Since (G, M) is a
G-retract of (G, N), (G, M) also has a stationary point.
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A particular case of Theorem (7.2) is that tr,(G, M) = 1 if and only if (G, M) has
a fixed point. If this is combined with Proposition (6.7)(d), which states that
tr,(G, M) divides Stiefel-Whitney numbers, we obtain the following result of
Conner and Floyd [CF,, 30.1] as a corollary.

(7.3) COROLLARY. If G = (Z,)" acts smoothly on a closed manifold M without a
stationary point, then M bounds.

PrROOF. M bounds if and only if every Stiefel-Whitney number equals zero.

Now for elementary abelian p-groups we see that tr(G, M) = 1 if and only if
there is a stationary point; that is, the smallest orbit consists of one point; and we
see that tr(G, M) = |G| if and only if the action is free; that is, the minimum orbit
consists of |G| points. It is natural to ask if tr(G, M) is equal to the order of the
minimal orbit.

William Browder can show under some conditions that ®(G, M) = (order of the
minimal orbit), where M is some space and (G, M) is orientation preserving. The
conditions that this holds certainly include smooth actions on smooth closed
oriented manifolds. From the methods developed so far, it immediately follows that
tr(G, M) is the order of the minimal orbit. We present a proof quite different from
Browder’s, which nevertheless was inspired by his proof.

(7.4) THEOREM. Let (G, M) be a smooth action of an elementary abelian p-group
(Z,)" on a compact manifold M. Then tr(G, M) is equal to the order of the smallest
orbit.

As corollaries we see that the order of the minimal orbit divides Pontrjagin
numbers, as was mentioned in the Introduction, Euler-Poincaré numbers, and
Lefschetz numbers. In fact, Murad Ozaydin [Oz] can show that for finite groups, the
greatest common divisor of the order of all the orbits must divide the Euler-Poincaré
and Lefschetz numbers.

We begin the proof by recalling a well-known lemma:

(7.5) LEMMA. Let G = (Z,,)" and let X be a G-space so that the action (G, X) has
one isotropy subgroup H. Then X is homotopy equivalent to By; X (X/G).

PrOOF. Let K = G/H, so that G = H @ K. Now let E,, and E be contractible
spaces so that H and K act freely on each one, respectively. Then G acts freely on
the contractible space Ex X E by letting (k, h)(e;, e,) = (ke,, he,). Then X, =
(X X Ex X Ep)/G, where G acts diagonally. But this is

((XX Ex X Ey)/H)/K = (XX Ex X Ey/H)/K = (X X Ex X By)/K
= ((X X Eg)/K) X By = Xy X Bg.

Since K acts freely on X, we see that X, is homotopy equivalent to X/K; and
X/K =(X/H)/K = X/G since H acts trivially on X.

Now suppose that G = (Z,)" acts on a compact manifold M. We can filter M
into invariant subspaces M, C M,_, C --- C M, = M, where M, is the set of all
points whose isotropy subgroup has rank greater than or equal to i. Then M, — M,
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consists of the disjoint union of spaces M, ; where each point of M, ; has a single
1sotropy subgroup H, of rank i. This f11trat10n gives rise to a flltratlon M - M 1
c .- = Mg of MG, and M, — M, is homotopy equivalent to a disjoint union
of spaces, each one homotopy equivalent to B;, X M, ;,/G. If E — B is a pullback
of M, — B, let E; denote the pullback of M Then E.CE,_,C -+ CE,=FE
filters E.

PRrOOF OF (7.4). We may assume that (G, M) is a smooth effective and orientation
preserving action on a closed oriented manifold M. For if (G, M) were not effective,
we consider (G, M X D), where D is a unit disk of an effective linear representation
of G on R" and G acts diagonally on the product. Now (G, M) is an equivariant
retract of (G, M X D), so a minimal orbit of (G, M) will be a minimal orbit of
(G, M X D), and also tr(G, M) = tr(G,M X D) by (6.3). Note (G,M X D) is
effective. Similarly, by Lemma (6.5) we can find a smooth oriented action which has
(G, M) as a retract.

So consider M — M; # @. This is an open G-manifold of dimension equal to
dim M = m on which G acts freely. Since the action is smooth, we see that M — M,
has a compact manifold with boundary as a deformation retract. Thus by (6.6) we

can find a fibre bundle M — E 5 B which has the property that tr(g) and tr(q,),

where (M — M,) > E 4 B, are both realized by the degree over B and at the same
time are equal to tr(G, M) and tr(G, (M — M,)), respectively.

Now since (G, (M — M))) is a free action, we see by (6.10) that tr(G,(M — M))
= p". Hence degq, = p". Let dim B = b. Then there is a I';, € H,(E — E};Z) so
that q,.«(T;) = p'[B] by Theorem (3.5). Consider the commutative diagram of
inclusions and projections:

j(E-E) 5 (E-E) 5 . - (E-E) 5 E
a | 4 b a Va=qi1
B o B - - B o B

where k is the maximal rank of all the isotropy subgroups. For each E — E; there is
a I, € H,(E — E;Z) so that (g,)«(I}) = (deg q,)[ B].

We claim that pT, € Image(j,_,)s. Hence p*T’ € Image(j4) so degq|p” ™ * by
commutativity of the diagram. Also g 4( pkT) € Im(q 4 j«) = Im(g,4) = p"Z. Hence
p’| p* deg q. Hence p"~¥|deg q. Thus deg g = p"~* = order of the minimal orbit.

To prove the claim we show that H,(E — E;)/Im(j;_;«) has exponent p. This
follows if we can show that H,(E — E;, E — E,_,; Z) has exponent p.

So consider H,(E — E;, E — E,_,;Z). Since E is a closed oriented manifold of
dimension b + m and since the E, are compact, Poincaré duality states that

H,(E - E,E - E,_;)= H"(E,_,, E). Since B~ B; is an m+ 1 homotopy
equivalence, H™ (E,_,E)= H'"(M, 1 M)

Now since the action is smooth, each M, has an equivariant tubular neighborhood
W, in M, -1 which deformation retracts equivariantly onto M,. Hence H™(M, —1 M, )
=H "‘(M 15 W) Excision then shows that

H™(M,_, W)= & (H"((M,_.,)/H;) X By, (3W,)/H, X By).
J
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Thus it is a direct sum of groups of the form H™((C, D) X By; Z), where (C, D) isa
pair of spaces whose dimension is less than m. Applying the Kunneth formula we
see that this group splits as a direct sum of groups of the form H'((C, D); H/( By; 7)),
where i + j = m. But H™((C, D); H°(B,; Z)) = 0, since C has dimension less than
m. Since H’/(B,; Z) has exponent p for j > 0, we see that H™((C, D); H/(B,Z))
has exponent p. So H”(M,_,, M,) has exponent p, and thus H,(E — E,, E — E,_))
has exponent p. '

8. Equivariant degree 1 maps. In this section we consider the following situation.
Let M and N be oriented closed G-manifolds of dimension m. Assume that B; has
finite type. Thus G could be a compact Lie group for example. Finally, suppose
f: M — N is an equivariant map.

(8.1) PROPOSITION. tr(G, N)|tr(G, M)|(deg f) - tr(G, N).

PROOF. tr(G, N)|tr(G, M) by Proposition (6.2)(a). Now since f is equivariant we
have a commutative diagram

f

M - N

i i

M; - Ng
f

First we assume that G acts orientably on both M and N. Then tr(G, M) = ®(G, M)
and tr(G, N) = ®(G, M) by Theorem (6.4). Now

(degf) - @(G,N)[M] = f*(2(G,N)[N]) = f*i*(A)
for some A € H"(Ng; Z). But f*i*(A) = i*f*(A). Hence (deg f) - ®(G, N)[M] is
in the image of i*. So ®(G, M)|(degf)®(G, N), and this establishes the corre-
sponding result for trace for orientable actions.

Now if degf = 0, the result is true, so we assume that deg f + 0. Then, since
fg = gf for all g € G, we see that g either preserves the orientation on both M and
N or reverses both orientations. Thus we are left with the case where G does not
preserve the orientation of M and N.

Now we let G act on M X S! as in part (c) of the proof of Lemma (6.5). Similarly,
G actson N X S!, and in both cases G preserves the orientation. Now

fx1
fi MxSt'> NxS§!
is a G-map and deg(f X 1) = (deg f). So applying the oriented case of the proposi-
tion, we see that
tr(G, M x S') |deg(f x 1)tr(G, N x S).
Since M is a G-retract of M X S, we see that tr(G, M) = tr(G, M X S'). Similarly
for N. Hence tr(G, M)|(deg f)tr(G, N).

(8.2) THEOREM. If f: M — N is a G-map of degree 1 between two closed orientable
G-manifolds of the same dimension, and if B; has finite type, then tr(G, M) =
tr(G, N).
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PrOOF. By Proposition (8.1) we see that
tr(G, N)|tr(G, M) |(deg f)tr(G,N) = tr(G, N).

(8.3) COROLLARY. (a) Let G be finite and suppose f: M — N is a G-map of degree 1.
Then G acts freely on M if and only if G acts freely on N (cf. [Bre, Theorem 5.1)).

(b) If G =(Z,)" for p prime, then (G, M) has a stationary point if and only if
(G, N) has one. (Independently discovered by Browder.)

(8.4) COROLLARY. Suppose f: M — N is a G-map and G acts freely on M and has a
fixed point on N. Then |G||deg f. For G a compact connected Lie group, deg f = 0.

PrOOF. From Proposition (8.1),
tr(G, M)|(deg f) - tr(G, N).

Since (G, M) is a free action, tr(G, M) = |G| (or 0 if G is a compact Lie group).
Since (G, N) has a fixed point, tr(G, N) = 1. Hence |G| |deg f (or O|deg f in the Lie
group case).

(8.5) COROLLARY. Suppose a finite group G acts smoothly on a closed oriented
manifold M with exactly one stationary point. Then (a) G cannot be an elementary
abelian p-group, and (b) the action cannot be semifree.

PrROOF. Let x € M be the stationary point. We can assume that the metric of M
is G-invariant.

Let B be a small invariant open ball with center x in M. Then M — B is a
manifold with boundary S"~!. Let D be its double. Then G acts on D in the
obvious way. We will define an equivariant degree one map from D — M. Since
(G, M) has a fixed point and (G, D) has no fixed point in (a) or is free in (b),
Corollary (8.3) gives a contradiction.

So we must construct the degree 1 G-map f: D — M. Let f be the inclusion on
the first copy of M — B, and let f map the second copy of M — B onto B by using
the collar neighborhood of 8B in M to map onto B equivariantly and then
extending the map on the boundary of the collar (which is a constant map into x) to
a constant map on the rest of the second copy of M — B. This is the required f.

(8.6) COROLLARY. If G = (Z,)" acts smoothly on a closed manifold M, there cannot
be exactly one stationary point.

PrOOF. By the same construction as in (8.5) we obtain an equivariant map
f: D > M from a fixed point free action to an action with a fixed point. Now
f*[M]=[D],so ®,(G, M) = ®,(G, D). Hence

2 =tr,(G,D) = ®,(G,D) = 9,(G,M) = tr,(G, M) = 1.

Hence, the construction is impossible, so the corollary is proved.
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ReMARKs. The question of which groups act smoothly on closed manifolds with a
single stationary point has been studied for years. It has very recently been
completely solved by R. Stong after (8.5) was discovered. First, G. D. Mostow
showed that Z, could not act with a single stationary point. This result fascinated
Conner and Floyd so much that it gave them the impetus for starting their
investigations into cobordism and group actions and resulted in their book [CF1]. In
that book they gave an example of Z, acting with a single stationary point, but they
conjectured that Z,,. for odd primes p could not act with a single stationary point.
Atiyah and Bott [AB] showed that this conjecture was true by using their Lefschetz
index theorem. Also Conner and Floyd proved it in [CF2]. For elementary abelian
2-groups Conner has shown Corollary (8.6) [Co]. Suprisingly the result (8.5) for odd
primes never appeared in the literature. We shall record Stong’s solution below.

(8.7) STONG’s THEOREM. (a) A finite group G acts smoothly on some closed manifold
with a unique stationary point if and only if G is not an elementary abelian 2-group.

(b) G acts on some orientable M with a unique stationary point if and only if G is not
an elementary abelian 2-group or an abelian p-group for p odd [EW].

We use Stong’s theorem and the construction in (8.5) to answer the following
question: For which groups G does tr(G, M) = 1 imply that (G, M) has a stationary
point?

(8.8) PROPOSITION. Suppose G is not an elementary abelian p-group. Then there
exists a smooth action on a closed orientable manifold M without a stationary point so
that tr(G, M) = 1.

PrOOF. If (G, M) has a unique fixed point, consider the construction of (8.5) to
find a degree 1 equivariant map f: D — M. Since tr(G, M) = 1 because (G, M) has
a stationary point and since tr(G, D) = tr(G, M), we see that tr(G, D) = 1, and
(G, D) does not have a stationary point. By Stong’s theorem this eliminates all
groups except abelian p-groups for odd p which are not elementary. In this case we
have a surjective homomorphism @: G = Z .. Let Z, act freely on an odd-dimen-
sional sphere S”. Let p: Z . > Z, be the obvious surjection. We show in (9.3) that
this action induced by p has tr(Z >, S") = 1 and has no fixed points. So then the
action (G, S™) induced by ¢ has no fixed points and tr(G, S™)|tr(Z 28" =1

9. Trace and the Serre spectral sequence. The trace can be calculated or estimated
by use of the Serre spectral sequence. Let (G, M) be an action on a compact
manifold M and let B, have finite type. Then by Proposition (6.6), tr(G, M) = tr( p),
where p is the restriction of p to the (dim M + 2)-skeleton of B. If we embed this
skeleton in a high-dimensional Euclidean space and take a regular neighborhood and
double it, we get a closed oriented manifold B whose first (dim M + 1)-homology
and cohomology groups agree with those of B;. In the resulting fibration M —
E 4 BV, the trace tr(G, M) will be the generator of Im p, € Hy(B";Z) = Z. Now

this number is precisely the product of the orders of the images of the generators
under d": Ef, — Ef_,,.,. Since E;_  is a subquotient of E; =
HP(BN; {H,(M;Z)}), the orders of the images must divide the exponents of
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Hy_,_ (BY {H(M;Z)})forr=1,...,dim M. So

dim M
tr(G, M)| T expHy_,_,(B"; (H/(M:Z)})

r=1
dim M
[T expH*Y(BY; {H(M;Z)})

r=1

dim M
= [1 expH""'(Bg; (H,(M;2)}).
r=1
(by Poincaré duality [W, pp. 22, 23]).
Similarly, for cohomology,
dim M
(G, M)| [ expH,(Bg: (H'(M;Z)}),

since here the trace must divide the product of the orders of E;¥ "', r > 0, assuming
that EX® = Z. So we have

(9.1) THEOREM. If (G, M) is an action on a connected compact manifold such that
By is of finite type, then

dim M
(a) tr(G, M)| 1:[1 exp(H""'(Bg; { H,(M; Z)})),
dim M
(b) tr(G, M)| 1:[1 exp(H,(Bg; { H'(M;Z)})) if (G, M)+ 0.

In [Bro], W. Browder studied free actions on a chain complex. He found that for
finite groups acting freely that the order of the group divides the number in (a).
Since tr(G, M) = |G| for free actions, we generalize his result for M a compact
manifold. We also generalize his result for the number in (b), which unfortunately,
he states incorrectly in his paper.

One example of an application is the generalization of Carlsson’s theorem [Ca],
which was done in the Introduction (1.3).

Another example using connected Lie groups: Let G = S* and let M be a
compact manifold so that H,(M; Q) = 0 for r = 3mod 4. Then

dim M
11 exp(H’“(B(SB); H (M, Z))) # 0.
r=1
Hence tr(S>, M) # 0. Hence, by (6.11),

(9.2) COROLLARY. With M as above, S 3 cannot act on M with only finite isotropy
subgroups.

Another example of the use of spectral sequences is due to W. Browder.

(9.3) PROPOSITION. Let Z, act freely on S". Let (Z,2,8") be induced by
@: sz > Zp. Then if n > 1is odd, tr(sz,S”) =1.
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PrOOF. H*((BZ L) is g§nerated by the powers of an element « of dimension
two and order p. Similarly, H*(BZ,; Z) is generated by the powers of an element
B of dimension 2 and order p% The homomorphism ¢: Z, — Z, induces a map
$: BZ,. > BZ, Now §*(a) = pB. Since (Z,,S") is a free action, ®(Z,, S") = p
and so in the Serre spectral sequence for S" — (S")z, - BZ,, 4d"([S"]) = ok e
E%* where k = $(n + 1). This spectral sequence maps into that for the action
(Z,2,S™). But a* maps into (pB)* = p*B* = 0. Thus d"([S"]) = 0 in the (Z 2, S")
spectral sequence. Hence ®(Z 2, S") = 1. Hence tr(Z 2, $") = 1.

It is worth noting that for n =1, te(Z,2, S1) = p. This is easily seen, since if
f: S > S'is given by f(e'?) = e'??, then f: S' — S! is equivariant from the free
action (Z,2,8") to (Z,,S"). Now f has degree p and tr(Z,., S')’ = p?, and
tr(Z 2, S') # p* since the action is not free. By (8.1) p*(p - tr(Z,2, S'). So
tr(Z,2, S*) = p.

For Z, acting on even spheres, tr(Z,, S") = 1 for n > 2 since the even spheres
have odd spheres imbedded equivariantly. For n = 2 this argument breaks down.
However, Ozaydin can show that tr(Z,, S*) = 1. He also shows that the trace for
finite G on one-dimensional or zero-dimensional G-complexes is just the g.c.d. of the
orders of the orbits. This is not true for 2-complexes, as tr(Z,, S?) = 1 shows [Oz].

Finally, we give one more corollary of the combination of Theorem (9.1) and
(6.11).

(9.4) CoROLLARY. Let (G, M) be a smooth action of G = (Z,)" on a compact
manifold M which acts trivially on integral homology. Then
log, (order of minimal orbit) < dim M.

10. Traces and cross sections to G-bundles.

(10.1) THEOREM. Suppose (G, M) is an action of a compact connected Lie group on
a closed oriented manifold of dimension n. If tr(G, M) = 0, then all n-dimensional
oriented G-vector bundles over M admit nonzero (nonequivariant) cross sections.

PrOOF. The obstruction to finding a nonzero cross section to ¢ lies in
H"(M;@,_(S""Y) = H(M;Z). Since ¢ is an oriented G-bundle, the Borel con-
struction gives an oriented vector bundle £; — M. If §¢ had no nonzero cross
section, then §; — M would have none. So there is an obstruction C; in H"(M, Z)
to finding a nonzero cross section. Then i*(Cg) is the obstruction in M, and since
there is no cross section, i*(C;) # 0. Hence tr(G, M) = ®(G, M) # 0, which is a
contradiction. Note that the theorem is still true if we consider G-fibrations over M
with fibre $" 71,

(10.2) CoROLLARY. If (T, M") has no stationary point, then every oriented n
dimensional T-vector bundle over M admits a nonzero cross section. Here T is a torus.

11. Trace and concordance.

(11.1) THEOREM. Suppose X and Y are G-spaces homotopy equivalent to CW
complexes. If f: X — Y is a G-map which is a homotopy equivalence, then tr(G, X) =
tr(G,Y).
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PROOF. Since f: X — Y is a homotopy equivalence, the Borel construction gives a
fibre preserving homotopy equivalence f: X, — Y. This is a fibre homotopy
equivalence by a theorem of Dold. Clearly the trace defined for fibrations is a fibre
homotopy equivalence invariant.

Quinn has defined a concordance between two actions. We say (G, X;) and

f g
(G, X,) are concordant if there exists a diagram X; —» Y < X, of G-maps and a
G-space Y so that f and g are homotopy equivalences.

(11.2) COROLLARY. Trace is preserved by concordances. In particular, if X, is a
manifold dominated by a finite complex and G is a finite group, then any concordant
action must be free.

REMARK. (a) If we remove the condition of finite dimensionality from X;, then
there exist nonfree actions concordant to (G, X;). The G-cone over E; shows that
the free action (G, E;) is concordant to (G, point).

12. Trace and the orbit map. Let (G, X) be an action of a connected group on X.
An orbit map w: G — X is given by sending g — g(x,) for some choice of x, € X.
We show that exp &* and exp &, divide tr(G, X) when X is a compact manifold,
where &*: H*(X;T) —» H*(G;T) for any untwisted coefficients T'.

(12.1) THEOREM. tr(G, M )&* = Q for M a compact manifold.

(12.2) COROLLARY. If G is a connected Lie group and if tr(G, M) # 0, then
&y H (G, Z) > H(M;1Z) is trivial.
ProoOF oF THEOREM. First we consider the case where M is closed and oriented.

Let &: G X M — M denote the action. We get a commutative diagram

A

GXM > M

Vix1 Vi
¢

E. XM - M,

N l

B; > B
1

From this we see that &*i*(k)=1 X i*(k) € H¥(G X M; Z). Then
&*(tr(G, M)[M]) =1 X tr(G, M)[M]. Now any element x € H'(M;T) has the
form

0*(x) = w*(x) X1+ Xa; X b, + L, *dy.
So
0=o*(x U tr(G,M)[M])
= (@*(x) X1+ Za, X b+ Zc,xd,) U(1 X tr(G, M)[ M])
= o*(x) X tr(G, M)[ M ] + (other terms of different filtration).
So &*(x) X tr(G, M)[M] = 0. So tr(G, M)&*(x) = 0.
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Now suppose that M has a boundary and is orientable. Then the double of M
J

has an obvious G action, and w: G - M C DM. Since j* splits and
tr(G, DM ) &*j* =
by the previous case, we see that tr(G, DM )&* = 0. But tr(G, DM) = tr(G, M).

Now suppose M is not orientable. Then the mapping cylinder of p: M — M,
where M is the oriented double covering, is an oriented manifold with boundary on
which G acts. Then the above case proves the result.

PRrROOF OF COROLLARY. If tr(G, M) # 0, then the maximal torus is contained in an
isotropy subgroup G,. Hence, w factors as w: G 5 G/T - G/Gy = M. Now
tr(G, G/T)p* = 0 by the theorem, and tr(G,G/T)|x(G/T) # 0. So
p*: fI*(G/T; Q) —» H*(G; Q) is trivial. Hence py: H.(G; Q) > H(G/T;Q) is
trivial by duality. But H,(G/T;Z) is torsion free, so p, = 0 for integral coefficients.
Hence &, = 0 for integral coefficients. See [G6] for other results on w ,.

(12.3) THEOREM. tr(G, M)&, = 0 for M a compact manifold.

PrOOF. Suppose that M is a closed oriented manifold. Let x € H,(G;Z) for
i > 0. Then &4(x X [M]) =0 for dimensional reasons. Thus if ® = tr{G, M) we
have
O4(0*(@ - [M]) N(x x[M])) =@ - [M] N &,.(x X[M])=0.
Also

O4(0*(@ - [M]) N(x x[M])) = ax((1 x @ -[M]) N(x x[M]))

IA)
= +00,(x X1)= +® - w,(x).

Hence, ® - w,(x) =0 for closed oriented manifolds. The extension to compact
manifolds follows as in Theorem (12.1).

13. An example for (Diff),. Two CW complexes, X and Y, are rationally
homotopy equivalent if there exists a sequence of maps X - X, « X, » -+ « Y
such that each map induces an isomorphism on homology with rational coefficients.

Let M and N be rationally equivalent closed oriented manifolds. Let 5,(M ) and
M4 (N) be the monoids of self-homotopy equivalences homotopic to the respective
identities.

Now there exists a functor which takes a nilpotent CW complex X to a rational
space X and gives a map f: X — X, which induces an isomorphism of rational
homology groups. This functor has the pleasant property that J},( Xq) is homotopy
equivalent to (#;(X))q. This property extends to classifying spaces, so B(#;( Xg))
is homotopy equivalent to (B#;(x)) o. Thus we have a commutative diagram

X - Xo
1) )
E, - (Eoo)Q
) )

B - (Boo)Q
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where E_ — B, is the universal oriented fibration and each horizontal map induces
an isomorphism on rational homology. Thus if X and Y are rationally homotopy
equivalent, there exists a sequence of fibrations and fibre maps between them
preserving the rational homology. See [HMR, Theorems 3.11, 3.12].

(13.1) THEOREM. @ (%, M) = 0 if and only if ®(,, N) = 0.
PrROOF. The sequence of commutative diagrams from M it E, » Bs#y(M) and

N 5 E, > Bi#y(N) alluded to in the above paragraph results in two fibrations
having the same rational cohomology, and the fibre inclusions i, and i, must induce
the same homomorphism on rational cohomology.

(13.2) ExaMPLE. Now we consider an example of a smooth manifold M such that
®(#,, M) = 0 but ®(Diff, M, M) = 1. This M is rationally homotopy equivalent
to §3 X §* X $° and

@ (Diff(S* X §* x §%), 8> x §4x §%) = 0.
This results in the fact that (Diff, S> X $* X §°), is not equivalent to (Diff, M),
for otherwise the fibre numbers ® would agree.

By a theorem of Sullivan [Su, Theorem 13.2], for every closed oriented simply
connected manifold X and for certain elements [V;] € &,H*(X;Q) there is a
smooth oriented closed simply connected manifold M and a map f: M — X so that
f is a rational equivalence, the degree of f equals 1, and the Pontrjagin classes
p; € H*(M; Z) satisfy p( p;) = f*(V,), where p: H*(M;Z) > H*(M; Q). The ele-
ments [V,] can be arbitrarily chosen if dim X # 0 (mod4) and must satisfy the
Hirzebruch index formula for dim X = 4k. That is, o(X) = (L, (V)),[ X]).

Now let X = S3x §* X 8% Choose V; =[S*], V,=62[S® X S°], and V; =
13[S? x $* x §7]. Since dim X = 12 = 4 X 3, the appropriate L genus is L, =
(1,/945)(62V, — 13V}, + 2V?), also o(X) =0, since HS(X;Z)= 0. Hence the
Pontrjagin numbers of M are 0, 62, and 13. Now g.c.d.(13,62) = 1, so ®(Diff,, M)
=1.

On the other hand ®(#,, S* X §* X §3) = 0 since the fibration S* X (§* x S°)
- Eg X (8* %X S§%) KR Bgs has ®(p) = 0. Since S* X S* X S° is rationally equiva-
lent to M, we see that ®(#,, M) = 0 by the theorem. Also (Diff,, S* X §* X §%)
= 0 since ®(p) = 0.

REMARK. If we knew that the classifying spaces involved were of finite type, we
could have used trace instead of ® in the above argument.
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