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Vectors

I. Definitions and Properties

Let E be the space studied by Euclid and the Greeks in 200 BC. Let x be a point
in E. Let Ex be the set of all possible velocities of a particle at x.

Definition 1. The exponential map associates to every velocity ~vx ∈ Ex, the point
in E which a particle at x reaches after one “second” after traveling in a straight
line with velocity ~vx.

Proposition 2. The exponential map is a one to one correspondence between Ex
and E.

Definition 3. Let a ∈ R be a real number and ~v ∈ Ex. We define scalar mul-
tiplication a~v to be that velocity so that a particle at x travelling at velocity a~v
reaches a distance |a| times the distance the particle travelling at velocity ~v . The
two particles travel on the same straight line, in the same direction if a > 0, in the
opposite direction if a < 0, and if a = 0, the particle moving with velocity 0~v = ~0
does not move.

Definition 4. Let ~v and ~w be in Ex. We define vector addition ~v + ~w as that
velocity which takes a particle to the point z ∈ E in one second, where z the point
reached in two seconds by a particle which travels with velocity ~v for one second to
reach the point y, and then travels for one second along a velocity ~w ∈ Ey for one
second to reach z. Here ~w ∈ Ex is equivalent to ~w ∈ Ey by the following definition.

Definition 5. ~v ∈ Ex is equivalent to ~w ∈ Ey if the line segments swept out by
the two particles are parallel, of the same length, and are directed in the same way.
That means it is possible to construct a parallelogram with the two line segments
as opposite sides and the line segment from x to y. If the two line segments lie on
a straight line, the motion of the two particles should be in the same direction.

Proposition 6. Let a, b ∈ R and ~u,~v, ~w ∈ Ex.

a) ~u+ ~v = ~v + ~u commutivity of addition

b) (~u+ ~v) + ~w = ~u+ (~v + ~w) associativity of addition

c) ~u+~0 = ~u

d) ~u+ (−~u) = ~0

e) 0~u = ~0, 1~u = ~u, (−1)~u = −~u
f) a(b~u) = (ab)~u associativity of scalar multiplication

g) a(~u+ ~v) = a~u+ a~v distributivity

h) (a+ b)~u = a~u+ b~u distributivity
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Theorem 7. (The Fundamental Theorem)

If ~u,~v, ~w ∈ Ex do not lie in a plane, then every vector ~r ∈ Ex can be written
uniquely as a linear combination, a~u+ b~v + c~w = ~r.

Definition 8. Three velocity vectors in Ex which do not lie in a plane are a basis
for Ex.

II. Using Vectors in Euclidean Geometry

To use vectors to solve Euclidean Geometry problems, the first thing is to choose
a point x for your Ex. You can choose it off the plane if you want to preserve
generality and if you are looking for symmetry. You choose x at a point on the
figure if you want to eliminate an equation.

You think of your vectors as velocity vectors in Ex or as points in E, whichever
seems more suitable. You pass from one point of view to the other by the exponen-
tial map.

The most important elements of Euclidean geometry are planes, lines, line seg-
ments and triangles.

Planes: Let Π be a plane passing through points A,B,C (which are not on a

line) and suppose we choose a point x not in the plane. let ~A, ~B, ~C ∈ Ex be the

vectors associated with A,B,C under the exponential maps. Note ~A, ~B, ~C form a
basis of Ex. Then any point in the plane Π is associated under the exponential map
uniquely to a vector of the form

(1) a ~A+ b ~B + c ~C where a+ b+ c = 1.

Those points on or inside the triangle ABC correspond uniquely (under the
exponential map) to a vector of form (1) with the condition

(2) a ≥ 0, b ≥ 0, c ≥ 0.

If x were chosen on the plane, then ~A, ~B, and ~C would no longer form a basis.

Lines: Let ` be a line passing through two distinct points A and B, and suppose we
choose a point x not on the line. Then any point on the line ` corresponds uniquely
to

(3) a ~A+ b ~B where a+ b = 1.

If the point lies on the line segment between A and B, then

(4) a ≥ 0, b ≥ 0.

Note that if a = 0, then the corresponding point is B, and if b = 0, then the
corresponding point is A.
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Another way to describe the line ` is by the set of points which corresponds to

(5) ~A+ t~v for arbitrary t and

~v ∈ Ex which is parallel to the line `. A useful choice of ~v is ~B − ~A. Then we can
regard the particle as being at A when t = 0 and at B when t = 1. Thus ` is given
by

(6) ~A+ t( ~B − ~A).

Let x be chosen at a key point in the diagram, then that point corresponds to
the zero vector ~0. Then the above equations lose their uniqueness clauses and their
symmetry. On the other hand an extra symbol is not needed. The choice of x is
the first step in solving the problem.

Another approach is to label the sides of the diagram as vectors. Then the
diagrams correspond to relations.

For example figure 1 corresponds to ~A + ~B = ~C and figure 2 corresponds to
~A+ ~B + ~C = ~0.

Figure 1

Figure 2

To interpret the results of the algebra we note that ~A + ~B + ~C = ~0 means the

sides and lengths can form a triangle. Also ~A+ ~B+ ~C+ ~D = ~0 means that the sides

labeled by A, B, C, D can form a quadrilateral. Also ~A =
−1

3
~C means side C is

parallel to side A and 3 times bigger. The minus sign can sometimes be ignored. It
means that the vector is directed in the opposite direction, which sometimes isn’t
important in Euclidean Geometry.
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III. Linear Transformations

Mathematicians have learned in the last 50 years that functions are the funda-
mental concept of Mathematics. Via functions, we can describe how two things can
be the same and yet different at the same time.

A function (alias map, mapping, transformation, ...) is a rule which assigns to
each element in a set, called the source (or domain), an element in another set,
which is called the target (or range) set. The notation f : A −→ B is read: The
function f which maps the source A into the target B.

The key class of functions to use with vectors are linear transformations.

Definition 9. A linear transformation is a mapping T : E −→ E such that

T (a~v) = aT (~v)

T (~v + ~w) = T (~v) + T (~w).(7)

Proposition 10. Let T be a linear transformation.

a) T (a ~A+ b ~B + c ~C) = a ~A′ + b ~B′ + c ~C′ where

~A′ = T ( ~A), ~B′ = T ( ~B) and ~C′ = T ( ~C).

b) If two linear transformations agree on a basis, then they agree for every vector.

That is, if ~A, ~B, ~C is a basis and if T ( ~A) = S( ~A), T ( ~B) = S( ~B) and T ( ~C) =

S( ~C), then T (~v) = S(~v) for any vector.

c) Let ~A, ~B, ~C be a basis, and let ~A′, ~B′, ~C′ be any three vectors. There is a linear

transformation T so that ~A′ = T ( ~A), ~B′ = T ( ~B), ~C′ = T ( ~C). If ~A′, ~B′, ~C′ also
are a basis, then T is an isomorphism.

d) T (~0) = ~0 if T is a linear transformation.

Definition 11. T : E −→ E′ is an isomorphism if

a) For every ~w ∈ E′, there is a ~v ∈ E so that T (~v) = ~w , and

b) If T (~v) = T (~w), then ~v = ~w.

If there is an isomorphism between two spaces, we say they are isomorphic.
The exponential map is an isomorphism, so Ex and E are isomorphic. Parallel
translation gives an isomorphism between Ex and Ey.

IV. Using Isomorphism to Solve Geometry Problem

To prove a theoretical theorem involving a triangle, ∆ABC, choose a particularly
nice triangle ∆A′B′C′ for the problem and define the unique linear transformation
which takes A −→ A′, B −→ B′, and C −→ C′. Suppose the theorem is easily true for
triangle ∆A′B′C′. Then it may be true for ∆ABC under the right circumstances.

The wrong circumstances involve equal angles or equal lengths. The right cir-
cumstances include midpoints, parallel lines, intersecting lines.

The reason this works follows from the following Proposition.
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Proposition 12. Let T : E −→ E be an isomorphism.

a) T sends a plane not passing through ~0 into a plane not passing through ~0.

b) T sends a line into a line.

c) T sends line segments into line segments, and midpoints into midpoints, and
preserves any ratio of lengths along the line.

d) T sends parallel lines into parallel lines and intersecting lines into intersecting
lines.

e) T sends triangles into triangles, quadrilaterals into quadrilaterals, pentagons into
pentagons.

To show how this method works, consider the proposition that the medians of a
triangle meet in a common point. Let ∆ABC be an arbitrary triangle and ∆A′B′C′

be an equilateral triangle. The medians obviously meet in a point in a equilateral
triangle. Now the isomorphism which takes ∆ABC into ∆A′B′C′ takes medians
to medians and intersections to intersections. So the medians of ∆ABC also meet
in a point.

We summarize the method: Any proposition whose hypotheses and conclusions
are invariant under linear transformations is true for all cases if it is true for one
case.

V. Axiomatics: Level 0 of Notation

Euclid wrote down his 10 axioms, after much thought and trial and error by
Euclid himself and probably by other mathematicians as well. He knew, and his
contemporaries knew, that the choice of axioms was arbitrary, subject only to the
conditions that they were obviously true, and that they implied most things known
about geometry.

Over the centuries, though, the axioms became set in stone. No one dreamed
of tampering with them. Only the parallel axiom was played with, to try to show
that it was implied by the other nine.

Nowadays mathematicians can propose all kinds of axioms. We do it as follows:
We define objects, such as vector spaces, by listing their properties. For example,
Proposition 6 is transformed into a list of axioms for a vector space. Two vector
spaces are the “same” (isomorphic) via Definition 11.

Now the description of vectors as velocities and the choice of an x makes E
isomorphic to a vector space in which Theorem 7 holds as an additional axiom. So in
effect, we have chosen a different set of axioms for Euclidean Geometry (Proposition
6, Theorem 7). Does this choice imply all the theorems of Euclidean Geometry?

No! Because we haven’t defined the idea of a circle or sphere. That is, we haven’t
defined the notion of the “length” of a vector. Similarly, we haven’t defined Area or
Volume. We will add these concepts to our vector spaces by means of two choices:
A standard length and a standard orientation.

The choice of a standard length, which is called a metric, leads to the dot product
in Level −1 of notation. The additional choice of orientation leads to the cross



6

product in Level −2 of notation.

The Greeks, by the way, never chose a unit of length or area or volume in their
theoretical work. On the one hand this is very good, since different choices couldn’t
cause confusion. A bee knows what it means for one flower to be twice as far or
twice as big as another, without the aid of inches or centimeters. So length does
not depend on a metric.

On the other hand, picking a metric, and thus expressing length, area, or volume
as numbers leads to very convenient ways of expressing information.

For example, the famous formula A = πr2 expresses the relation of the area of
a circle to its radius much better (even in words) than Euclid’s “The areas of two
circles are proportional to the squares of their radii.” On the other hand, replacing
a : b = c : d by a

b
= c

d
loses something too. For example, the statement “A man

is to a woman as a bull is to a cow” makes more sense than “A man divided by a
woman is equal to a bull divided by a cow”.

VI. The Dot Product: Level −1

We choose a unit of length. Then every vector ~v ∈ Ex has a length ‖~v‖ = v ≥ 0.
We define the dot product of two vectors ~v and ~w ∈ Ex as follows:

Definition 13. ~v · ~w = vw cos θ where θ is the angle between ~v and ~w.

Proposition 14.

a) ~v · ~w = ~w · ~v commutativity

b) a(~v · ~w) = (a~v) · ~w = ~v · (a~w)

c) (~v + ~w) · ~u = ~v · ~u+ ~w · ~u distributivity

d) ~v · ~v = v2 ≥ 0, and if ~v · ~v = 0, then ~v = ~0 positive definiteness

Definition 15. If ~v · ~w = 0, we say that ~v and ~w are orthogonal. If ‖~v‖ = 1, we

say that ~v is a unit vector. We say ~i,~j,~k is an orthonormal basis if each vector is a

unit vector and ~i ·~j = ~j · ~k = ~k ·~i = 0.
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Proposition 16.

a) Let ~v and ~w be expressed in terms of an orthonormal basis by ~v = x~i+ y~j + z~k

and ~w = x′~i+ y′~j + z′~k. Then ~v · ~w = xx′ + yy′ + zz′.

b) If the basis in 16a were just an ordinary basis, then

~v · ~w = (x, y, z)

~i ·~i ~i ·~j i · ~k
~j ·~i ~j ·~j ~k · ~k
~k ·~i ~k ·~j ~k · ~k

 x′

y′

z′



Proposition 16a gives us the Pythagorean Theorem. It forms the foundation of
matrix notation.

From the point of view of axiomatics, we let Proposition 14 be additional axioms
which are added to the axioms of Proposition 6. The result is what we call an “inner
product space.”

Two inner product spaces are isometric (the same) if there is an isometry between
them. An isometry T : Ex −→ Ex is an isomorphism which preserves the metric.
That is,

(7) (T~v) · (T ~w) = ~v · ~w.

This implies that T preserves angles and lengths. If we choose an x ∈ E to be our
origin, and choose a unit length in E, then E is isometric to an innerproduct space
satisfying Theorem 7. Thus an axiom system comprising Proposition 6, Theorem
7, and Proposition 14 would give us Euclidean Geometry.

VII. The Cross Product: Level −2

We choose an orientation of E, either the right hand or the left hand.

Definition 17. Let ~v and ~w ∈ Ex. We define the cross product ~v× ~w to be a vector
of length vw| sin θ| orthogonal to the plane defined by ~v and ~w with the direction
fixed by the orientation. (Line the fore finger along ~v and the middle finger along
~w, then ~v × ~w points in the direction of the thumb.)

Unlike the properties in propositions 6 and 14, the cross product is not suscep-
tible to generalization to different dimensions directly. It is a creature of E.

Proposition 18. Elementary Algebra.

a) ~A× ~B = − ~B × ~A anti–commutivity

b) a( ~A× ~B) = (a ~A)× ~B = ~A× a ~B

c) ( ~A+ ~B)× ~C = ~A× ~C + ~B × ~C distributivity

d) ~A× ~B = ~0 if and only if ~A and ~B are parallel.
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Proposition 19. Geometrical Facts.

a) ~A× ~B is orthogonal to ~A and to ~B.

b) ~A× ~B = (area of ~A~B parallelogram) (oriented normal unit vector)

c) ( ~A× ~B) · ~C = ± (volume of the parallelopiped with sides ~A, ~B, ~C)

The + sign is taken if ~A, ~B, ~C agree with orientation convention.

Proposition 20. Oriented Orthonormal Basis.

Let ~i,~j,~k be an orthonormal basis so that ~i×~j = ~k. Then suppose

~A = A1
~i+A2

~j +A3
~k and

~B = B1
~i+B2

~j +B3
~k and

~C = C1
~i+C2

~j + C3
~k

~A× ~B = det

∣∣∣∣∣∣
~i ~j ~k
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ = (A2B3 −A3B2)~i− (A1B3 −A3B1)~j + (A1B2 −A2B1)~k

(a)

( ~A× ~B) · ~C = det

∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣
(b)

Proposition 21. Vector Identities.

a) ( ~A× ~B) · ~C = ~C · ( ~A× ~B) = ~A · ( ~B × ~C)

b) ~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C (replaces associativity)

c) ( ~A× ~B)× ( ~C × ~D) = [( ~A× ~C) · ~D] ~B − [( ~B × ~C) · ~D] ~A

d) ( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C)

VIII. Level −3

In level −2 we have all we need to solve any problem or prove any proposition in
Euclidean Geometry (with the exception of constructions with ruler and compass).
So in level−2 we have algebracized Geometry. In the next Levels we will arithmetize
Geometry. That is we will introduce notation which gives names to every point in
E, and in such a way that the vector operations of +, ·, and × become arithmetic
calculations.

In this level we choose a point x ∈ E and call it ~0, the origin. With the origin
fixed, we can identify the points of E with unique vectors, and thus we can do all
the vector operations directly on the points of E.
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IX. Level −6

We choose a basis ~b, ~β, ~B for E. Then every point x can be written as a unique

linear combination of this basis. For example ~x = 3~b − 4 ~B + 2~β. Thus x can be

completely described by giving its ~β number 2, its ~B number −4, and its ~b number
3.

X. Level −8

We introduce an ordering to the basis. Let us choose ~B to be the first vector, ~b

to be the second vector, and ~β to be the third vector. Let us change our notation

to reflect this by denoting ~B as ~B1, ~b as ~B2, ~β as ~B3.

Then ~x = −4 ~B1 + 3 ~B2 + 2 ~B3. We can condense this into ~x = (−4, 3, 2). In this
notation

~x+ ~y = (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3)(8)

a · ~x = (ax1, ax2, ax3).(9)

As a surprise extra benefit, linear transformations are described by means of
matrices. This follows from Proposition 10.

Let

(10)

T ( ~B1) = ~B1 + 2 ~B2 + 3 ~B3

T ( ~B2) = 4 ~B1 + 5 ~B2 + 6 ~B3

T ( ~B3) = 7 ~B1 + 8 ~B2 + 9 ~B3

Then T is completely described by the matrix

(11)

 1 2 3
4 5 6
7 8 9


and T (~x) is given by

(12) (−4, 3, 2)

 1 2 3
4 5 6
7 8 9

 = (22, 23, 24)

So matrix arithmetic is a slave of Level −8!!

XI. Level −9

Let us choose our ordered basis to be an orthonormal basis. Let us denote it by
~i,~j,~k. Then Proposition 16a allows us to express the dot product arithmetically by

(13) (x, y, z) · (x′, y′, z′) = xx′ + yy′ + zz′.
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XII. Level −10

We require ~i,~j,~k to be an oriented basis. That means that

(14) ~i×~j = ~k.

Then Proposition 20 allows us to express the cross product arithmetically

(15) (x, y, z)× (x′, y′, z′) = (yz′ − zy′, zx′ − xz′, xy′ − yx′)

XIII. Level −13 The Standard

We choose symbols x, y, z to represent a variable vector ~X = x~i + y~j + z~k =
(x, y, z). We call the coefficient of ~i the x coordinate, the coefficient of ~j the y

coordinate, and the coefficient of ~k the z coordinate. The lines given by t~i and t~j

and t~k are called the x, y, and z axes. We can represent the x axis as the solution
of two equations: y = 0 and z = 0.

In fact, that is the power of level −13. Many curves and surfaces can be expressed
by equations. Since everybody knows the standard Level −13, information can be
quickly and efficiently exchanged.

For example: the intersection of the cylinder x2 + y2 = 1 with the sphere x2 +
y2 + z2 = 1. The smallest distance between (1, 2, 3) and the plane x+ 2y+ 3z = 4.

XIV. Calculus and Vectors

We assume that a vector ~X is a function of time t. Then as t varies we see that
~X travels over a path in space or on a plane or maybe on a line. We define the
velocity vector as the derivative with respect to t of ~X and we denote it by ~X ′.

(16) ~X ′ = lim
∆t→0

1

∆t
( ~X(t+ ∆t)− ~X(t))

Proposition 22. Differentiation of Vectors.

a) If ~X = x~i+ y~j + z~k then ~X ′ = x′~i+ y′~j + z′~k

b) ( ~X × ~Y )′ = ~X ′ × ~Y + ~X × ~Y ′

c) ( ~X · ~Y )′ = ~X ′ · ~Y + ~X · ~Y ′

d) (a ~X + b~Y )′ = a ~X ′ + b~Y ′
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Vector Problems

1. Give a vector which bisects the angle between ~A and ~B.

2. A 100 lb. weight is resting on an icy inclined plane of angle 45o. What tension
in the rope keeps the weight motionless?

3. If the wind ~v1 is blowing at 30 miles/hour from the west, and the plane ~v2 is
flying NW at 100 mph. with respect to the air, find the resulting velocity ~v1 +~v2

with respect to the ground.

4. a) A smuggler’s ship is 5 miles due west of the lighthouse and the coast guard

ship is 5 miles south west of the lighthouse. What is the vector ~A from the
coast guard to the smuggler?

b) What direction should the coast guard go to intercept the smuggler if the
smuggler is travelling due north at 15 miles per hour and the coast guard can
go at 20 mph?

c) How long will it take the coast guard to catch the smuggler?

d) What is the time and direction if the smuggler is heading due south instead
of north?

5. Find the length of 2~i+~j + 2~k and of 3~i− 4~k and the angle between them.

6. Do the lines t(~i+~j + ~k) and s(~i+~j) + 4~k intersect?

7. Prove the sum of the squares of the diagonals of a parallelogram equals the sum
of the squares of its sides.

8. Prove the diagonals of a rectangle are perpendicular if and only if the rectangle
is a square.

9. Prove the sum of the squares of the sides of any quadrangle minus the sum of
the squares of the two diagonals, equals four times the square of the distance
between the midpoints of the diagonals.

10. Show that the midpoints of a quadrilateral are the vertices of a parallelogram
whose area is one half that of the quadrilateral.

11. What is the locus of points ~x so that (~x− ~a) · (~x− ~a) = 0?

12. What is the locus of points ~x so that (~x+ ~a) · (~x− ~a) = 0?


