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The Index of Discontinuous Vector Fields

Daniel H. Gottlieb and Geetha Samaranayake

Abstract. The concept of the index of a vector field is one of the oldest in Algebraic
Topology. First stated by Poincare and then perfected by Heinz Hopf and S. Lefschetz
and Marston Morse, it is developed as the sum of local indices of the zeros of the
vector field, using the idea of degree of a map and initially isolated zeros. The vector
field must be defined everywhere and be continuous. A key property of the index is
that it is invariant under proper homotopies.

In this paper we extend this classical index to vector fields which are not required
to be continuous and are not necessarily defined everywhere. In this more general
situation, proper homotopy corresponds to a new concept which we call proper otopy.
Not only is the index invariant under proper otopy, but the index classifies the proper
otopy classes. Thus two vector fields are properly otopic if and only if they have the
same index. This allows us to go back to the continuous case and classify globally
defined continuous vector fields up to proper homotopy classes. The concept of otopy
and the classification theorems allow us to define the index for space-like vector fields
on Lorentzian space-time where it becomes an invariant of general relativity.
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A. The results. We generalize the notion of homotopy of vector fields to that of
otopy of vector fields. Using otopy we can:

1. Classify the proper homotopy classes of vector fields. The index is a proper
homotopy class invariant but two vector fields with the same index may not be
proper homotopic. (See (4) in Section 5.)

2. Show that two vector fields are properly otopic if and only if they have the same
index. (See (3).)

3. Extend the definition of index to any vector field, without hypotheses. (See
Subsection C in the Introduction.)

4. Define a local index for any connected set of defects for any vector field instead
of merely for isolated zeros. (See the penultimate paragraph of C or Section 4.)
Under an otopy these defects move and interact. The following conservation law
holds: The sum of the indices of the incoming defects is equal to the sum of the
indices of the outgoing defects. (See (1).)

5. Demonstrate that the concept of the index of a vector field depends only on
elementary differential topology, the concept of pointing inside, and the Euler-
Poincare number. This is done in Sections 1, 2, 3, 4. The classical approach
depends on the degree of a map. In this paper we show how the degree of a map
might be defined via the index of a vector field by using (11).

6. We can study vector fields along the fibre on fibre bundles. An otopy generalizes
to a vector field V along the fibre restricted to an open set. For a proper V , only
certain values of the index of V restricted to a fibre are possible. (See (14).) For
example, the Hopf fibrations of spheres admit only the index zero.

7. We can study space-like vector fields on a Lorentzian space-time, M . The con-
cept of otopy generalizes to a space-like vector field restricted to an open set of
M . For a proper space-like vector field V , the index of V restricted to a space-
like slice is independent of the slice. Thus, the index is an invariant of General
Relativity. Hence it should be used to describe physical phenomena. For example,
the Coulomb electric vector field E of an electron or a proton has index −1 or 1
respectively. This remains true no matter what what coordinate system is used to
describe the field.

B. Organization of the paper. There are a few features to be explicitly noted.
First, we are actually defining two types of indices. These are usually denoted
IndU (V ), and ind(P ). The first takes values in the integers and ∞ and the last
takes on the value −∞ as well. Second, there are two different definitions of these
indices. The advanced definition is based on the definition of index already defined
for continuous vector fields and is found in Subsection C of the Introduction. The
elementary definition is given inductively in Sections 1, 2, 3, 4. This definition
is equivalent to the first, and the proof that it is well-defined is completely self
contained, using only pointset topological methods. The only algebraic topological
notion is that of the Euler Poincare number.

Subsection C of the Introduction establishes notation and the formal concept
of proper otopy as well as the key example of otopy which forces the concept on
us. If the reader draws a few pictures and understands what is to be formalized,
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the formal definitions will be obvious except for a few small details. The formal
definition of otopy is in Subsection C along with the advanced definition of index.

Subsection D of the Introduction contains guides for three different ways for
reading the paper. Especially contained in D is a simplified description of the
index which if combined with the list of key properties of Section 5 should give the
reader the essence of the subject without the technicalities of the proof.

The main burden of the paper is the development of the elementary definition
of the index. It is here that the two different types of index, IndU (V ), and ind(P ),
are carefully defined. The definition is made inductively on the dimension of the
manifolds and is shown to be well-defined. This takes up Sections 1, 2, 3, and 4.

In Section 5 we write a list of 14 properties of the index. There are short proofs
of them. It is hoped that this list will be easy to use for the mathematician or
physicist who needs to apply the idea of index in their work.

C. Definition of otopy and index. The concept of otopy arises from homotopy
in a natural way. Consider a smooth compact manifold M with boundary ∂M . Let
V be a continuous vector field defined on M . There is an associated vector field ∂V
on ∂M given by projecting the vectors of V on ∂M to vectors which are tangent to
∂M . (See the paragraph above Lemma 2.1 for the definition of projection.) Denote
by ∂−M the open set of ∂M where the vectors of V point inside. Let ∂−V denote
∂V restricted to ∂−M . For outward pointing vectors we define ∂+M and ∂+V . Let
∂0M denote the closed set of ∂M where the vectors of V are tangent to ∂M .

Now consider a homotopy Vt. It induces a homotopy ∂Vt on ∂M . Now ∂−Vt
is varying with t, but it is not a homotopy. We say it is an otopy. It is the key
example of an otopy.

The key observation about otopies. Consider a zero of ∂V which passes from
∂−M to ∂+M in ∂M . As it passes over ∂0M it coincides with a zero of V which is
passing through ∂M .

Thus there is a connection between the zeros of Vt which pass inside and outside
of M through ∂M and the zeros of ∂Vt which pass inside and outside of (∂−M)t.
The concepts of proper homotopies and proper otopies and proper vector fields are
introduced so that no zeros appear on ∂M or ∂0M .

Definition of continuous otopy. Let N be a manifold and let V be a continuous
vector field defined on N × I so that V is tangent to the slices N × t. Then we
say that V is a continuous homotopy and that V0 = V (m, 0) and V1 = V (m, 1)
are homotopic vector fields. Suppose that T is an open set on N × I and V is a
continuous vector field defined on T so that V is tangent to the slices N × t. Then
we say that V is a continuous otopy and that V0 and V1 are otopic. Note that V0

or V1 are vector fields defined only on the open sets in M given by the intersection
of T with M × i for i = 0 or 1. Thus V0 or V1 can be “empty” vector fields. Also
note that “otopy” gives an equivalence relation on the set of vector fields defined
on open sets in N . This follows just as in the homotopy case. But it is a trivial
equivalence relation, since every vector field is homotopic to the zero vector field
and every vector field field defined on an open set is otopic to the empty vector
field.

Definition of proper continuous otopy. If U is an open set in a manifold with
boundary we will adopt the convention that the Frontier of U includes that part of
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the boundary ∂M of M which lies in U , as well as the usual frontier. The capital F
will distinguish these two different notions of Frontier and frontier. We say that V
defined on an open set U in N is a proper vector field on the domain U if the zeros
of V form a compact set in U and if V extends continuously to a vector field on
U with no zeros on the Frontier of U . Thus if V is defined on a compact manifold
M with boundary ∂M , we say V is proper if there are no zeros on ∂M . A proper
otopy with domain T is an otopy V defined on the open set T with a compact set
of zeros whose restriction to any slice is a proper vector field. A proper homotopy
is an proper otopy V defined on all of N × I.

Now the index for proper continuous vector fields on a compact manifold with or
without boundary, as well as the index for proper continuous vector fields defined
on an open set U , were defined in [BG]. If V is a continuous proper vector field
defined on a compact manifold M with boundary ∂M and Euler-Poincare number
χ(M), then ∂−V is also proper and the index satisfies

IndV = χ(M)− Ind(∂−V )

Now we consider any arbitrary, possibly discontinuous, vector field V on N . We
assume we are in a smooth manifold N . A vector field is an assignment of tangent
vectors to some, not necessarily all, of the points of N . We make no assumptions
about continuity. We consider the set of defects of a vector field V in N , that is
the set D which is the closure of the set of all zeros, discontinuities and undefined
points of V . That is we consider a defect to be a point of N at which V is either
not defined, or is discontinuous, or is the zero vector, or which contains one of those
points in every neighborhood.

We extend the notion of proper to arbitrary tangent vector fields by replacing
the word zero by defect.

Definition of discontinuous proper otopy. We say that V is a proper vector
field on an open set U if the defects of V in U form a compact set and if V can
be extended to U so that there are no defects on the Frontier of U . Thus for N a
compact manifold with boundary we say that V is a proper vector field if there are
no defects on the boundary. A proper otopy W with domain T is an otopy in N × I
whose defects form a compact set and whose restriction to every slice is a proper
vector field for that slice. A globally defined otopy is still called a homotopy. We
will modify the word homotopy to discontinuous homotopy if needed.

Remarks. 1. As before, the concept of proper discontinuous otopy is an equiva-
lence relation on the locally defined vector fields of N . It is a simple exercise of
pointset topology to show that every discontinuous vector field is otopic to a con-
tinuous vector field. Also, if two continuous locally defined vector fields are otopic,
they are continuously otopic. So the extension of index theory from continuous to
discontinuous vector fields is not mathematically challenging. But discontinuous
vector fields arise very naturally in mathematics and physics and now the results
of index theory can be applied to them without any mental anguish.

2. In order to avoid confusion between points at which the vector field V is unde-
fined inside the open set U and outside the open set U we can restrict our attention
without loss of generality to vector fields which are defined everywhere on U , but
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are not necessarily continuous. Any vector field on U which is not defined at some
points in U can be replaced by the same vector field returning the zero vector at
those undefined places. In fact, for those readers who are uncomfortable with the
notion of discontinuous vector fields, Remark 1 offers a way to proceed by thinking
of only continuous vector fields.

3. Note that a defect of an otopy need not be a defect of the vector field defined
on the slice. For example, consider the unit vector field pointing to the right on
the real line and otopy it to the unit vector field pointing to the left by letting the
field reverse direction when t = 1. The vector field at t = 1 has no defects thought
of as a vector field on the real line, but the otopy defects are located at all the
points of the t = 1 slice. Thus this otopy is not proper since the set of defects is not
compact. Replacing the line by a closed interval, the above example has a compact
set of defects, but it still is not a proper otopy because defects are on the Frontier
of the t = 1 slice. If we replace the real line by a circle in our example, we again
get defects on the top circle, but they form a compact set and there is no Frontier,
so we consider this as a proper otopy, indeed a proper discontinuous homotopy.

The advanced definition of index. If V is a proper discontinuous vector field
defined on a compact M with boundary, then ∂−V is continuously defined on ∂−M .
So Ind(∂−V ) is defined. Then Ind(V ) is defined by IndV = χ(M) − Ind(∂−V ). If
V is a proper discontinuous vector field “defined” on the open domain U , we can
find a compact manifold M which contains the compact set of defects of V and
has none on ∂M . Then IndUV := IndMV where IndM (V ) means the index of V
restricted to M .

If V is not a proper vector field on U , then we define IndU (V ) := ∞ . We
introduce ∞ to avoid saying that the index is undefined, since there is information
when V is not proper.

Now let P be a connected component of the set of defects D of a vector field V
on N . We will define the local index of P , which we denote by ind(P ), as follows:
Let U be an open set containing P and no other defects, so that V is proper on U .
Then ind(P ) := IndU (V ). If there is no such U , but P is contained in an open set
on which V is proper, then ind(P ) := −∞. If there is no open set U containing P
on which V is proper, then ind(P ) :=∞.

The relationship between IndU (V ) and ind(P ) is very striking. If all the indices
involved are finite, then

IndU (V ) =
∑

ind(P ), where the sum is over all connected components P of D.

D. Guides.

1. The intuitive picture. Consider the defects of a vector field as “topological
particles” Pi endowed with a “charge” denoted ind(Pi). These Pi move and interact
as the vector field evolves in time (that is under otopy and homotopy). These
“charges” are preserved under collisions just as electric charge is. See (1), the
conservation law. Then for a region of space U or M , we have IndU (V ) =

∑
ind(Pi)

for Pi contained in U , ((8), the summation equation). The list of properties 1–14
in Section 5 can then be used to calculate the index. Particularly useful is the Law
of Vector Fields, (2). The classification of otopy by index means that any set of
defects Pi can be transformed to any other set of Pj ’s if and only if the sum of
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the indices of the Pi is equal to sum of the indices of the Pj . Note that ind(Pi) in
dimension one can only take on the values, −1, 0, 1,∞,−∞. In higher dimensions
ind(Pi) can be any integer and∞ and −∞. The value −∞ will most probably not
appear in a physical application.

2. The elementary definition. This is the only modern complete account of
indices that the authors are aware of. In Section 1 are listed 6 lemmas. The
IndM (V ) and IndU (V ) are assumed to be defined in dimension n − 1 and satisfy
the 6 lemmas. Then for M a compact manifold we define IndM (V ) := χ(M) −
Ind∂−M (∂−V ). In Section 2 we show that this is well-defined. Then for U an
open set, we define in Section 3 IndU (V ) := IndM (V ) where M ⊂ U contains the
defects of V in U . In Section 2 and Section 3 we prove the lemmas in Section 1 for
dimension n. The most subtle property to prove is the “existence of defects” (7).
The lemmas for dimension 1 are proved in Section 1. After IndM (V ) and IndU (V )
are established, we define in Section 4 the local index for a “topological particle”,
that is a connected component P of the set of defects of V , then ind(P ) := IndU (V )
where U is an open set containing P and no other defects. The two cases where
such a U cannot exist are given by ind(P ) = ±∞. In the rest of the paper IndU
and IndM will frequently be shortened to Ind.

The prerequisites for this development of index are elementary topology and
differential topology. The only “sophisticated” results used are: The Tietze Exten-
sion Theorem; the existence of triangulations for smooth manifolds; transversality;
smooth approximation to continuous cross-sections; the additivity of the Euler-
Poincare number. Most of these can be found in [GP].

In Section 5 all the key properties of the index are listed. Properties (1) to (8)
are basically proved in the earlier sections. Properties (9) and (10), the product
and sign rules, are proved as simple consequences of properties (1) to (8). Property
(11) requires knowledge of the degree of a map. It is this result which shows that
the index defined this way agrees with the other definitions as in [BG] or [M]. It
should be mentioned that property (11) could stand as a definition of the degree,
and presumably most of the properties of degree could be proved from properties
(1) to (11). The main point is this: The index is independent of degree, and also
intersection number, fixed point index, and coincidence number. Properties (12),
(13), (14) are proved elsewhere. The proofs employ the previous properties and
sophisticated algebraic topology. Each one is a generalization of a famous theorem.

3. The advanced definition. For the Expert who knows homotopy theory and
differential topology well, [BG] will be accessible. The concept of otopy was in-
troduced in that paper, and the invariance of index under otopy was established.
(Although otopy was first published there, its actual discovery came from the un-
derlying motivation of this paper: To define the index by means of the Law of
Vector Fields.) One should read the definition in Subsection C in the Introduction
to extend the definition of the index for discontinuous vector fields. Then to prove
the classification theorems, (3) and (4), use the properties of [BG] where needed
and the otopy extension property, which is proved in Section 2.

4. An advantage for the elementary definition. The elementary definition
is based directly on the vector field, unlike the other definitions. In [BG] a map is
constructed and the degree of the map is the index. In Hopf’s definition the vector
field must be deformed until there are only a finite set of zeros. G. Samaranayake
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makes use of this advantage in her thesis [S]. She has a computer program which
estimates the index of a zero using the Law of Vector Fields, (2). It works well
because she does not need to prepare the vector field in any substantial way. Using
this program she can search for zeros of a static coulomb electric field generated
with a finite number of electrons and protons whose index is not −1, 0, or 1.
Placing protons at the vertices of the Platonic solids: tetrahedron, octahedron,
cube, icosahedron, and dodecahedron, she estimates the index of the central zero
to be –3, –5, 5, –11, and 11 respectively.

1. The Definition for One-dimensional Manifolds

First we describe the organization of the definition of index and the way we
will show it is well-defined. In most situations M will denote a compact smooth
manifold with boundary ∂M which is possibly empty. N will usually denote an
arbitrary smooth manifold with or without boundary, and U will denote an open
set in N or M . We usually consider vector fields V as globally defined over M or
locally defined over N . If V is locally defined it is associated to an open set U in
N on which it is globally defined. We say U is the domain of V .

The inductive definition of index. Let φ denote the empty domain. Define
Indφ(V ) := 0. If M is a compact connected manifold and V is globally defined on
M with no zeros on ∂M , then define IndM (V ) by

(∗) IndM (V ) := χ(M)− IndU (∂−V ) where U = ∂−M.

Let M be a smooth manifold with a globally defined V . Then IndM (V ) :=
sum of indices on each path component. Let V be a proper vector field on the
open set U in N . Define IndU (V ) := IndM (V ) where M is a compact manifold in
U containing the defects of V .

remark. It will be clear that by Lemma 1.6, the equation (∗) will hold for non-
connected manifolds also. We shall refer below to (∗) without the connectedness
hypothesis.

We begin the induction at dimension −1, the empty manifold. Here the index
is zero. For dimension 0, the connected manifold is a point and the vector field
V consists of the zero vector. Applying (∗) we see that IndM (V ) equals 1. Thus
IndU (V ) equals the number of points in U .

In dimension 1 there are two compact connected manifolds: The circle and the
closed interval. Let V be a vector field globally defined on a circle M . Then
IndM (V ) = 0 follows from (∗). Note that if V were the zero vector field, it is
proper when N is a circle. This contrasts to the fact that a zero vector field can
never be proper on an M or a U with non empty Frontier.

Let M be a closed interval and let V be a proper vector field. Then IndM (V ) =
1−(number of points on the boundary where V points inside). Thus IndM (V ) can
take on the values 1, 0, −1.

Let M be a general compact 1-dimensional manifold with a globally defined
V . Then M is a finite union of closed intervals and circles and IndM (V ) :=
sum of indices on each path component.

So we have a definition for IndM (V ) which is obviously well-defined in one dimen-
sion. It will be necessary, however, to prove that IndM (V ) is well-defined beginning
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with dimension 2 for each step of the induction. We must show in dimension 1 al-
ready that IndU is well-defined. We prove three lemmas about the M case and
then after Lemma 1.3 we can show that IndU (V ) is well-defined. We state the
lemmas in this Section for general manifolds. The proofs will be for dimension one.
Frequently Ind will stand for either IndM or IndU .

Lemma 1.1. Two vector fields V and V ′ globally defined on M are properly ho-
motopic if and only if

Ind(∂−V ) = Ind(∂−V
′) on each component of the boundary.

Proof. We may assume thatM is connected. If M is a circle, every globally defined
V is properly otopic to any other globally defined V ′. On the other hand, there is
no path component of the circle’s empty boundary. So the result is trivially true for
the circle. Next assume that M is a closed interval. Let W be a vector field so that
W (m) = V (m)/‖V (m)‖ for m on the boundary of M . Assume that W (m) = 0
outside a collar of the boundary, and assume that W continuously decreases in size
from the unit vectors on the boundary to the zero vectors at the other end of the
collar. Then we define the homotopy tV + (1 − t)W . This is a proper homotopy,
since at any point m on the boundary V (m) and W (m) both point either inside
or outside so no zero can arise on the boundary. Now both V and V ′ are properly
homotopic to W , hence they are properly homotopic to each other. �

remark. Note that if V and V ′ are continuous vector fields, there is a continuous
proper homotopy between them. If they are smooth, then there is a smooth proper
homotopy between them. Also note that for a vector field V globally defined on an
interval, there are only four proper homotopy classes. In higher dimensions there
are infinitely many proper homotopy classes. The corresponding result in higher
dimensions is Theorem 2.2.

Lemma 1.2. If M is a compact manifold diffeomorphic to M ′ and the vector field
related to V by the diffeomorphism f is denoted by V ∗, then

IndM (V ) = IndM ′(V
∗)

Proof. Pointing inside is preserved under diffeomorphism. �

Lemma 1.3. If V has no defects, then Ind(V ) = 0.

Proof. We may assume that M is connected. Let M be an interval. Since V has
no defects on this interval, V must point outside on one end and inside on the other.
Thus Ind(V ) = 1 − 1 = 0 on this interval. For M a circle the globally defined V
must always have index zero. �

Now we can show that IndU (V ) is well-defined. If M and M ′ are two compact
manifolds containing the defects, and contained in U , there is a compact manifold
M ′′ also contained in U and containing both M and M ′. The vector field V
restricted to M ′′ − int(M) is a nowhere zero vector field, and the previous lemma
and the fact that the index is additive proves that IndU (V ) is well-defined for those
vector fields for which the defects sit inside a compact manifold with boundary.
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Lemma 1.4. Given a connected N , two proper locally defined (continuous) vector
fields are properly otopic (by a continuous otopy) if and only if they have the same
index. For every integer n there is a vector field whose index equals that integer
(provided N has positive dimension).

Proof. Suppose we have a proper otopy W with domain T on N×I. Let Vt denote
W restricted to N × t. We show that there is some interval about t such that Vs
has the same index for all s in the interval. Since the set of defects of the otopy is
compact we can find a compact manifold M so that M×J , for some closed interval
J , lies in T and contains the defects inside ∂M × J . Thus the proper homotopy Vt
on M×J preserves the index on M , and hence the proper otopy on N×J preserves
the index on N as t runs over J . Thus we have a finite sequence of vector fields
each having the same index as the previous vector field. Hence the first and last
vector fields have equal indices.

Conversely, for any integer n, let Wn be the vector field consisting of |n| vector
fields defined on disjoint open intervals in N , each one of index 1 if n > 0 and of
index −1 if n < 0. Thus Ind(Wn) = n. Now if V has index n, we must show that
V is properly homotopic to Wn. Now the domain of V consists of open connected
intervals, and only a finite number of them contain defects. Each of these intervals
has index equal to 1, −1, or 0. Now V is properly otopic to the same vector field
V whose domain is restricted to only those intervals which have nonzero indices.
Now if two adjacent intervals have different indices, there is a proper otopy which
leaves the rest of the vector field fixed, and removes the two intervals of opposite
indices. After a finite number of steps we are left with either an empty vector field,
if n = 0, or a Wn. The empty vector field is W0. Thus V is properly otopic to
Wn. �

Lemma 1.5. IndU (V ) on N is invariant under diffeomorphism.

Proof. Immediate from Lemma 1.2 and the definition of index for locally defined
vector fields. �

Lemma 1.6. Let V be a vector field over a domain U and suppose that U is the
disjoint union of U1 and U2. Then if V1 and V2 denote V restricted to U1 and U2

respectively, we have

Ind(V ) = Ind(V1) + Ind(V2).

�

2. The Index Defined for Compact n-Manifolds

The otopy extension property. Let V be a continuous vector field on a closed
manifold N . Let U be an open set in N . Any continuous proper otopy of V on the
domain U can be extended to a continuous homotopy of V on all of N . In fact,
if V and W are continuous vector fields with a proper continuous otopy between
restrictions of them to open sets, then the otopy can be extended to a continuous
homotopy of V to W .
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Proof. The continuous proper otopy implies there is a continuous vector field W
on an open set T in N × I which extends to the closure of T with no zeros on
the Frontier and which is V when restricted to N × 0. This vector field W can
be thought of as a cross-section to the tangent bundle over N × I defined over a
closed subset. It is well known that cross-sections can be extended from closed sets
to continuous cross-sections over the whole manifold. �

We assume that the index is defined for (n−1)-manifolds and that all the lemmas
of Section 1 hold.

First we consider the case of connected compact manifolds M We suppose that
V is a globally defined proper vector field on such a manifold M . We choose a
vector field N on the boundary ∂M which points outside of M . Every vector v at
a point m on ∂M can be uniquely written as v = t + kN(m) where t is a vector
tangent to ∂M and k is some real number. We say t is the projection of v tangent
to ∂M . Then ∂V is the vector field obtained by projecting V tangent to ∂M . Now
we define ∂−V by restricting ∂V to ∂−M , the set of points such that V is pointing
inward. Then we define

(∗) IndM (V ) = χ(M)− IndU (∂−V ) where U = ∂−M.

Lemma 2.1. IndM (V ) is well-defined.

Proof. We assume already defined the index on (n − 1)-dimensional manifolds
with open domains for proper vector fields. Note that ∂−V is proper on ∂M if V is
proper on M , because the Frontier of ∂−M is a subset of ∂0M , the subset where V
is tangent to ∂M . So a defect of ∂−V on the Frontier must come from a defect of V
on ∂M . Hence IndU (∂−V ) is defined. Now the vector field ∂−V obviously depends
upon the outward pointing N . If we had another outward pointing vector field N ′

we would project down to a different ∂−V , call it W . Now the homotopy of vector
fields Nt = tN + (t− 1)N ′ always points outside of M for every t. Hence it induces
a homotopy from ∂−V to W and this homotopy is proper. Thus Ind(∂−V ) =
Ind(W ) by Lemma 1.1. Hence IndM (V ) is well-defined for connected manifolds
with boundary. If M has empty boundary, then IndM (V ) = χ(M) by (∗). Hence
IndM (V ) is well-defined for all connected manifolds, and hence is well-defined for
all N -manifolds. �

remark. The above lemma is also true in the case where the normal vector field
N is not defined on a closed set of ∂M which is disjoint from the Frontier of ∂−M .
Then ∂V is not everywhere defined, but ∂−V is still proper. A homotopy between
N and N ′, as in the lemma, still induces a proper otopy between ∂−V and W ,
so the Ind(V ) is still well-defined in this case also. This case arises when M is
embedded as a co-dimension zero manifold in such a way that it has corners. Then
the natural outward pointing normal in this situation is not defined on the corners.
But we still have the index defined if none of the corners is on the Frontier of ∂−M .
This point arises in Theorem 2.6.

Now our goal is to prove that non-zero vector fields have index equal to zero on
compact manifolds with boundary.
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Theorem 2.2. On M the globally defined vector field V is properly homotopic to
W if and only if

Ind(∂−V ) = Ind(∂−W )

for every connected component of ∂M . So as a corollary in the case that ∂M is
connected, we have that V is properly homotopic to W if and only if Ind(V ) =
Ind(W ).

If V and W are both continuous, then “homotopic” can be replaced by “contin-
uously homotopic” in the statements above.

Proof. We may assume that M is connected. If M has empty boundary, the
theorem is true since every globally defined vector field is properly otopic to any
other globally defined vector field. So assume that M has non-empty boundary.
The theorem is true for manifolds one dimension lower by Lemma 1.1. A proper
homotopy of V to W induces a proper otopy from ∂−V to ∂−W in the manifold
∂M . Hence Ind(∂−V ) = Ind(∂−W ). Hence Ind(V ) = Ind(W ) from (∗).

Conversely, we can find a smooth collar ∂M × I of the boundary so that V
restricted to this collar has no defects. Then we homotopy V to V ′ where V ′ is
defined by V ′(m, t) = tV (m) for a point in the collar and V ′ = 0 outside the collar.
Now since Ind(∂−V ) = Ind(∂−W ) for each connected component of the boundary,
we can find a proper otopy from ∂−V to ∂−W . Now this otopy can be extended to
a homotopy of ∂V to ∂W by the otopy extension property. This homotopy in turn
can be used to define a proper homotopy from V ′ to W ′. Here we assume W ′ has
the same definition relative to W as V ′ has to V . Thus W is properly homotopic
to V . �

Lemma 2.3. Suppose V is a proper vector field on a compact manifold M . Let
∂M × I be a collar of the boundary so small so that V has no defects on the collar.
Then V restricted to M minus the open collar ∂M × (0, 1] has the same index as
V .

Proof. Let ∂Vt denote the projection of V tangent to the submanifold ∂M × t for
every t in I. Let W be the vector field on the collar defined by W (m, t) = ∂−Vt if
(m, t) is a point in ∂−M×t. ThenW can be regarded as a proper otopy, proper since
V has no defects on the collar. Thus Ind(∂−V ) = Ind(∂−V0) and hence Ind(V ) =
χ(M)−Ind(∂−V ) equals the index of V restricted to M ′ = M−open collar, because
the indices of the ∂− vector fields are the same on their respective boundaries and
χ(M) = χ(M ′). �

Lemma 2.4. Let V be a proper continuous vector field on M . Suppose that ∂−V
is properly otopic to some locally defined vector field W on ∂M . Then there is a
proper homotopy of V to a proper continuous vector field X so that ∂−X = W and
the zeros of each stage of the homotopy Vt are equal.

Proof. Use the otopy extension property to find a homotopy Ht from ∂V to a
vector field on ∂M , which we shall call ∂X . Let n(m, t) be a continuous real valued
function on ∂M × I which is positive on the open set T of the otopy between ∂−V
and W , zero on the Frontier of T , and negative in the complement of the closure of
T , and so that n(m, 1) = n(m) where V (m) = n(m)N(m) + ∂V (m) defines n(m).
Such a function exists by the Tietze extension theorem. Using n(m, t), we define
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a vector field X ′ on ∂M × I by X ′(m, t) = n(m, t)N(m) + Ht(m). We adjoin the
collar to M as an external collar and extend the vector field V by X ′ to get the
continuous vector field X . Now M with the external collar is diffeomorphic to M .
Under this diffeomorphism X becomes a vector field which we still denote by X .
We may assume this diffeomorphism was so chosen that X = V outside of a small
internal collar. Then the homotopy tX + (1− t)V is the required homotopy which
does not change the zeros of V . �

Lemma 2.5. If V is a vector field with no defects on an n-ball B, then IndB(V ) =
0.

Proof. For the standard n-ball of radius 1 and center at the origin, we define the
homotopy Wt(r) = V (tr). This homotopy introduces no zeros and shows that V is
homotopic to the constant vector field. The constant vector field has index equal
to zero, as can be seen by using (∗). If we have a ball diffeomorphic to the standard
ball, then the index of the vector field under the diffeomorphism is preserved by
Lemma 1.2, and hence it has the zero index. If the ball is embedded with corners so
that the corners are not on the Frontier of the set of inward pointing vectors of V ,
then the index is defined and by Lemma 2.3 it is equal to the index of V restricted
to a smooth ball slightly inside the original ball. This index is zero. �

Theorem 2.6. If V is a vector field with no defects on a compact manifold M ,
then IndM (V ) = 0.

Proof. Now M can be triangulated and suppose we have proved the theorem for
manifolds triangulated by k − 1 n-simplices. The previous lemma proves the case
k = 1. We divide M by a manifold L of one lower dimension into manifolds M1 and
M2 each covered by fewer than k n-simplices so that the theorem holds for them.

We arrange it so that L is orthogonal to ∂M . We use Lemma 2.4 to homotopy V
to a vector field with no defects so that the new V is pointing outside orthogonally
to ∂M at L ∩ ∂M . Then a simple counting argument shows that IndM (V ) = 0
since the restrictions of V to M1 and M2 have index zero. This argument works if
M has no corners. If M has corners we find a collar of M which gives a smooth
embedding of ∂M × t for all t but the last t = 1. Then by Lemma 2.3 above, we
find that V , restricted to the manifold bounded by ∂M × t for t close enough to 1,
has the same index as V . That is zero.

The counting argument follows. By induction, Ind(V |M1) = Ind(V |M2) = 0.
Thus Ind(∂−V1) = χ(M1) and Ind(∂−V2) = χ(M2). Now we have the following
equation Ind(∂−V ) = Ind(∂−V1) + Ind(∂−V2)− Ind(W ) where W is the projection
of V on the common part of the boundary of M1 and M2, that is L. This follows
from repeated applications of Lemma 1.6. Now Ind(W ) = χ(L) since W points
outwards at the boundary of L. Hence

Ind(∂−V ) = Ind(∂−V1) + Ind(∂−V2)− Ind(W ) = χ(M1) + χ(M2)− χ(L) = χ(M).

Hence IndM (V ) = 0 from (∗). �



142 Gottlieb and Samaranayake

3. The Index for Locally Defined Vector Fields

Let N be an n-manifold and let V be a proper vector field on N with domain U .
Then the set of defects of V in U is compact. Thus we can find a compact manifold
M which contains the defects of V . We define

(∗∗) IndU (V ) := IndM (V ).

Lemma 3.1. IndU (V ) is well-defined.

Proof. If M and M ′ are two compact manifolds containing the defects, there is a
compact manifold M ′′ containing both M and M ′. The vector field V restricted
to M ′′ − int(M) is a nowhere zero vector field. Then Theorem 2.6 implies that the
index of V restricted to M ′′− int(M) is zero. Now the index of V restricted to M ′′

equals the index of V restricted to M by the following lemma. �

Lemma 3.2. Suppose M is the union of two manifolds M1 and M2 where the three
manifolds are compact manifolds so that the intersection of M1 and M2 consist of
part of the boundary of M1 and is disjoint from the boundary of M . Suppose that
V is a proper vector field defined on M which has no defects on the boundaries of
M1 and M2. Then IndM (V ) = IndM1(V1) + IndM2(V2) where Vi = V |Mi.

Proof.

Ind(V ) = χ(M)− Ind(∂−V )

= χ(M)− (Ind(∂−V1) + Ind(∂−V2)− Ind(∂−V1|L)− Ind(∂−V2|L))

by Lemma 1.6 where L = M1 ∩M2. Now

Ind(∂−V1|L) + Ind(∂−V2|L) = Ind(∂−V1|L) + Ind(∂+V1) = χ(L).

Thus

Ind(V ) = χ(M1) + χ(M2)− Ind(∂−V1)− Ind(∂−V2) = Ind(V1) + Ind(V2),

as was to be proved. �

Lemma 3.3. Let V be a proper vector field with domain U . Suppose U is the union
of two open sets U1 and U2 such that the restriction of V to each of them and to
U1 ∩ U2 is a proper vector field denoted V1 and V2 and V12 respectively. Then

(∗∗∗) IndU (V ) = IndU1(V1) + IndU2(V2)− IndU12(V12).

Proof. We choose disjoint compact manifolds M1, M2, and M12 containing the
zeros of V which lie in U1−U12 and U2−U12 and U12 respectively. Then the index
of V is equal to the index of V restricted to the union of M1, M2, and M12. But
the index of V1 is the index of V restricted to M1 and M12, and the index of V2 is
the index of V restricted to M2 and M12, and the index of V12 is the index of V
restricted to M12. Hence counting the index gives the equation (∗∗∗). �
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Corollary 3.4. The index of a vector field V on a closed manifold M whose domain
is the whole of M is equal to χ(M).

Proof. This is true by (∗) a priori. We note that Lemma 3.1 implies that any
other way to calculate the index of V will give the same answer. We illustrate,
using Lemma 3.2 twice: Let V be a vector field which is non-zero on a small n-ball
B about a point. Now let V1 be V on the n-ball and let V2 be V on the complement.
Then Ind(V1) = 0, so Ind(∂−V1) = 1. Now Ind(∂−V2) = (−1)n−1. So

Ind(V2) = χ(M −B)− (−1)n−1 = χ(M)− (−1)n − (−1)n−1 = χ(M).

Hence Ind(V ) = Ind(V1) + Ind(V2) = 0 + χ(M). �

Theorem 3.5. Given a connected manifold N , two locally defined (continuous)
proper vector fields are properly otopic (by a continuous otopy) if and only if they
have the same index. For every integer n there is a vector field whose index equals
that integer (provided N has positive dimension).

Proof. Suppose we have a proper otopy W with domain T on N×I. Let Vt denote
W restricted to N × t. We show that there is some interval about t such that Vs
has the same index for all s in the interval. Since the set of defects of the otopy is
compact we can find a compact manifold M so that M×J , for some closed interval
J , lies in T and contains the defects so that the defects avoid ∂M × J . Thus by
Theorem 2.2, the proper homotopy Vt on M × J preserves the index on M , and
hence the proper otopy on N × J preserves the index on N as t runs over J . Thus
we have a finite sequence of vector fields each having the same index as the previous
vector field. Hence the first and last vector fields have equal indices.

Conversely, for any integer k, let Wk be the locally defined vector field consisting
of |k| vector fields defined on disjoint open balls in N , each one of index 1 if k > 0
or of index −1 if k < 0. Thus Ind(Wk) = k. Now if V has index k, we must show
that V is properly otopic to Wk. Now the defects of V form a compact set which is
contained in a compact manifold with boundary M so that V is proper and has no
defects on the boundary. We may proper otopy V first to a continuous vector field,
and then to a smooth vector field. Then we consider V as a cross-section to the
tangent bundle of M . Using the transversality theorem, we can smoothly homotopy
the cross-section so that it is transversal to the zero section of the tangent bundle
keeping the cross-section fixed over the boundary. The dimensions are such that
the intersection consists of a finite number of points. Thus we proper otopy V to
a vector field with only a finite number of zeros. Now we put small open balls
around each of these zeros. The index of the vector field on the ball around each
of these zeros is either 1 or −1. Classically this follows from transversality, but we
do not need that fact. We may find a diffeomorphic n-ball which contains exactly
|k| zeros so that around these zeros the vector field restricts to Wk. The two vector
fields have the same index on the n-ball and thus are properly homotopic, since
from (∗) the index on the boundary of the inward pointing ∂− vector fields is the
same, and so by induction they are properly otopic, hence by the otopy extension
property the ∂ vector fields are homotopic. This homotopy can be extended to a
homotopy of the two vector fields originally on the n-ball. Then using the sequence
of homotopies and otopies, we can piece together a proper otopy of V to Wk. �



144 Gottlieb and Samaranayake

remark. Note that this proof is more complicated than it need be because it does
not use the concept of degree of a map or of intersection number.

Corollary 3.6. The proper homotopy classes of continuous proper vector fields on
a compact manifold with connected non-empty boundary is in one-to-one correspon-
dence with the integers via the index. Of course, the manifold must have dimension
greater than one for this to hold. �
Lemma 3.7. The index of a locally defined vector field on a manifold N is invari-
ant under diffeomorphism. �

4. The Index of a Defect

Let V be a vector field on an manifold N . Let D be the set of defects of V .
Then D breaks up into a set of connected components Di. If a component Di is
compact and is an open set in the subspace topology of D, we can define an index
denoted ind(Di). Note the lower case ‘i’ here as opposed to the upper case ‘I’ in the
definition of the global and local indices. We call ind(Di) the index of the defect
(or zero) Di.

Definition. If the defect set D is connected, compact and isolated, then we can
find a open set U of N containing D and no other defects of V . Then we define the
index of D by

(∗∗∗∗) ind(D) := IndU (V ).

If D is not isolated, then every open set containing D must contain another defect
of V . In this case we say ind(D) := −∞. If D is not compact, we say ind(D) :=∞.

Now if the set of defects of V on N consists of a finite number of compact Di,
then IndN (V ) =

∑
i ind(Di). However it is possible that V is a proper vector field

and there are an infinite number of Di. Then at least one of the Di is not isolated
in D. But the index of V is still defined. A one dimensional example occurs when
M is the interval [−1, 1] and the vector field V is defined by V (x) = x sin(1/x) for
x 6= 0 and V (0) = 0. Then 0 is a connected component of the defects which is not
open in the set of defects of V . Thus ind(0) := −∞, whereas IndM (V ) = 1.

If we have an otopy Vt, we imagine the components of the defects Dt as changing
under time. We can say that Dti at time t transforms without topological radiation
into Dsj at time s if there is a compact connected component T of the defects of
the otopy from time t to time s so that T intersects N × t in exactly Dti and T
intersects N × s exactly at Dsi. The index of Dti is the same as the index of Dsj

if T is compact. In other words if a finite number of “particles” Di at time t are
transformed into a finite number of particles Cj at time s by a compact T , the sum
of the indices are conserved.

(1) Conservation Law. ∑
ind(Ci) =

∑
ind(Dj).

Thus the idea of otopy allows us to make precise the concept of defects moving
with time and changing with time and undergoing collisions. The index is conserved
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under these collisions as long as the “world line” T of the component is compact.
That is, as long as there are is no “topological radiation”, that is as long as the
relevant component in the otopy is compact.

As we mentioned in Subsection A of the Introduction, the concept of otopy can
be thought of as a space-like vector field in a space time. So if a physicist wants to
model something by defects of a vector field, there is a conservation law preserving
an invariant of General Relativity which automatically comes along with the model.

5. Properties of the Index

(2) Law of Vector Fields.

Ind(V ) + Ind ∂−V = χ(M).

This is in fact the equation (∗) which defines the index. We remark here that
any theory of index in which the Law of Vector Fields holds must agree with our
definition.

(3) Classification of proper otopy by the index. Let N be a connected
manifold. V is properly otopic to W if and only if Ind V = Ind W . If V and W
are continuous vector fields, then the otopy can be continuous. For any integer n
there is a continuous vector field W so that n = Ind W .

(4) Classification of proper homotopy. Suppose M is a compact connected
manifold with non-empty connected boundary ∂M , and suppose V and W are con-
tinuous globally defined proper vector fields on M . Then V is properly homotopic
to W if and only if Ind V = Ind W . For any integer n there is a continuous proper
vector field W so that n = Ind W , provided the dimension of M is greater than
one.

In general forM compact, V is proper homotopic toW if and only if Ind (∂−V ) =
Ind (∂−W ) on every connected component of ∂M .

(5) Poincare-Hopf Theorem. If M is a closed compact manifold and V is a
vector field whose domain is all of M , then Ind V = χ(M).

Proofs. Property (3) is Theorem 3.5. Property (5) is Corollary 3.6. Property
(4) follows from Theorem 2.2 and Lemma 1.4, along with the Otopy Extension
Property. �

(6) Additivity. Let A and B be open sets and let V be a proper vector field on
A ∪ B so that V |A and V |B are also proper. Then Ind(V |A ∪ B) = Ind(V |A) +
Ind(V |B)− Ind(V |A ∩B).

Proof. Lemma 3.3. �

(7) Existence of defects. If Ind V 6= 0 then V has a defect.

Proof. Theorem 2.6 for compact manifolds with boundary. �

(8) Summation equation. Suppose V is a proper vector field and the set of
defects consists of a finite number of connected components Di. Then Ind V =∑
i

ind(Di).
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Proof. This follows from the definition of Ind(Di) and (3). �

(9) Product rule. Let V and W be proper vector fields on A and B respectively.
Let V ×W be a vector field on A×B defined by V ×W (s, t) = (V (s),W (t)). Then
Ind(V ×W ) = (Ind V ) · (Ind W ).

Proof. We can assume that A and B are open sets in their respective manifolds.
Then V is otopic to Vn where Vn is restricted to a finite set of open sets in A
homeomorphic to the interior of Jk when k = dim A and J = [−1, 1], so that
Vn(t1, . . . , tk) = (±t1, t2, . . . , tk) where the +t1 is taken if Ind V is positive and −t1
is taken if Ind V is negative. The index of the Vn|Jk is ±1 respectively by (2). So
Ind (V ×W ) = Ind(Vn ×Wn) =

∑
i,j

Ind(Vn|Jki ) × (Wn|J`j ). Now it is easy to see

that Ind((Vn|Jki )× (Wn|J`j )) = Ind(Vn|Jki ) · Ind(Wn|Jkj ). �

(10) Sign rule.

(−1)nInd(V ) = Ind(−V ) where n = dim M .

Proof. The theorem is true for n = 1. Assume it is true for (n − 1)-manifolds.
Now using (2) we have

Ind(−V ) = χ(M)− Ind(∂−(−V )) by (2)

= χ(M)− Ind(−∂+V ) by definition of ∂−V and ∂+V

= χ(M)− (−1)n−1Ind(∂+(V )) by induction

= χ(M) + (−1)n(χ(∂M)− Ind(∂−V ))

since

χ(∂M) = Ind(∂−V ) + Ind(∂+V ).

If n is even then

Ind(−V ) = χ(M) + (0 − Ind(∂−V )) = Ind V by (2).

If n is odd then

Ind(−V ) = χ(M)− (2χ(M)− Ind(∂−V ))

= −(χ(M)− Ind(∂−V )) = −Ind V by (2).

�

(11) Index defines degree. Suppose M is a compact sub-manifold of Rn of
codimension 0. Let f : M → Rn be a map so that f(∂M) does not contain the
origin. Define a proper vector field V f on M by V f (m) = f(m). Then Ind V f =

deg f ′, where f ′ : ∂M → Sn−1 is given by f ′(m) = f(m)
‖f(m)‖ .
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Proof. We homotopy f if necessary so that ~0 is a regular value. Then f−1(~0)
is a finite set of points. There is a neighborhood of f−1(0) of small balls so that
f : ∂(ball)→ Rn− 0 ∼= Sn−1. Now, in each of these small balls, f has either degree
1 or −1. If degree equals 1, then f |∂(ball) is homotopic to the identity. If degree
= −1, then f |∂(ball) is homotopic to reflection about the equator. In these cases
Ind(V f |ball) = ±1 = deg f |∂(ball). Now

Ind(V f ) =
∑

Ind V f |(balls) by proper otopy

=
∑

deg f |∂(balls) = deg f ′.

�

(12) Brouwer Fixed Point Theorem. Suppose f : M → Rn where M ⊂ Rn is
a codimension zero compact manifold. Define Vf (m) = m− f(m). Then Ind Vf =
fixed point index of f (assuming no fixed points on ∂M).

Proof. The fixed point index is defined to be the degree of the map m→ m−f(m)
‖m−f(m)‖

from ∂M → Sn−1. Hence by (11) we have the result. �

(13) Gauss-Bonnet Theorem. Let f : M → N where M and N are Riemannian
manifolds and f is a smooth map. Let V be a vector field on M . Define the pullback
vector field f∗(V ) by

〈f∗V (m), ~vm〉 = 〈V (f(m)), f∗(~vm)〉.

Then if f : Mn → Rn so that f∗|∂M has maximal rank and f(∂M) contains no
zeros of V , then

Ind f∗V =
∑

viwi + (χ(M)− deg N̂)

where vi = Ind(xi) where xi is the ith zero of V , wi is the winding number of f |∂M
about xi, and N̂ : ∂M → Sn−1 is the normal (or Gauss) map.

Proof. In paper [G5]. �

(14) Transfer Theorem. Let F
i−→ E

p−→ B be a smooth fibre bundle with F a
compact manifold and B a closed manifold. Let V be a proper vector field on E
with vectors tangent to the fibres. Then there is an S-map τ : B+ → E+ so that
in ordinary homology p∗ ◦ τ∗ (cohomology τ∗ ◦ p∗) is multiplication by the index of
V restricted to a fibre, Ind(V |F ).

Proof. In paper [BG]. �
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