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All the Way with Gauss-Bonnet
and the Sociology of Mathematics

Daniel Henry Gottlieb

I was stimulated to write this story by the discussion in The American Mathemati-
cal Monthly between Peter Hilton and Jean Pederson on the one hand and Branko
Griinbaum and G. C. Shephard on the other hand [HP] [GS]. The discussion as
well as my story involves the Euler-Poincaré Number, alias the Euler Characteris-
tic. The discussion centers on whether the Euler-Poincaré’ Number should be
discussed in a historical way without mentioning the vast and dramatic generaliza-
tion and depth of understanding that this most interesting invariant has acquired
in this century.

My position in this discussion is that Topology should not be viewed as an
advanced subject whose theorems and concepts should be avoided until graduate
school. Rather it is the study of continuity, and thus underlies the most basic
geometric results. In this paper I show how the basic concept of angle leads
naturally to the basic topological ideas of degree of mapping and of the Euler-
Poincaré Number.

My story spans the history of mathematics. It concerns what may be the most
widely known non-obvious theorem of mathematics and it contains the same
stunning generalization that characterizes the recent history of the Euler-Poincaré
number. In fact, it concerns one of the most important and earliest of the
applications of the Euler-Poincaré number. It shows the fickleness of mathematical
fame, it shows the unreasonable power of unreasonable points of view, and it
shows how easy it is for mathematicians to miss and forget beautiful and important
theorems as well as simple and revealing points of view.

This is a history of the Gauss-Bonnet theorem as I see it. I am not a
mathematical historian. I quote only secondary sources or first hand papers that I
quickly scanned, and I did not conduct any thorough interviews. Nonetheless, I am
writing this history because I have contributed the last sentence to it (for the
moment).

I especially want to acknowledge the help of Hans Samelson. His scholarship
greatly altered the thrust of earlier versions of this paper. He discovered Satz VI.
He informed me of many points in this history; about Gauss’ work, Descartes work,
and  Hopf’s work. And he was a student of Hopf who generalized the Gauss-
Bonnet theorem himself:

THE NORMAL MAP. What is the most widely known, not immediately obvious,
mathematical theorem? I contend that is the following: The sum of the interior
angles of a triangle equals w. The ordinary person might admit lightly that he
doesn’t quite remember the Pythagorean theorem, but if he does not know the sum
of the angles equals 180 degrees, he brands himself as uneducated. I will call this
theorem the 180 degree theorem.
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This 180 degree theorem was proved in the time of Thales. It has undergone a
remarkable generalization through the ages, culminating in the Gauss-Bonnet
Theorem as I give it here. The first generalization involves the concept of exterior
angle. Exterior angles contain the same mathematical information as interior
angles because (see Figure 1) they are related by a simple equation: a + 8 = 7,
where « is an interior angle and B is the corresponding exterior angle. Now the
sum of the exterior angles of a polygon equals 2. This immediately implies the 180
degree theorem by the preceding equation.

Figure 1

What is the angle between two straight lines intersecting at a point O? Let S!
be the unit circle centered at O. Then the length of the arc of S' cut off by the
lines (see Figure 2) is the angle between the lines. We regard angle as a property
of a subset of the unit circle rather than as a number. This point of view is closer to
the original Greek point of view. Regarding angle as a number is a more modern
point of view.

Figure 2

This Greek point of view is susceptible to immediate generalization. Just as
angle is the length, or 1-volume, of a region of the unit circle in two space, we can
think of the area, or 2-volume, of a region on the unit sphere in three space,
denoted by S?, as a representation of angle in three space. In general, angle in
n-space can be thought of as the (n — 1)-volume of a region on the unit sphere
S$"~! in n-space.
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Now consider a plane curve o connecting point A to point B (Figure 3).
Consider the unit vectors tangent to o at 4 and B. Translate these vectors to the
origin, keeping the initial and translated vectors parallel. Then the arc on S! cut
off by the two translated vectors represents the angle the curve has turned
through.

Figure 3

One thing that topologists have learned in developing Topology is that it almost
always pays to convert things into functions or mappings. This procedure has
spread throughout all of mathematics in the last half of this century. So in the case
at hand, define a mapping from o to the unit circle S* as follows: At each point P
on o, construct the unit tangent vector to o at P, then parallel translate it to the
origin; its end lies on the unit circle. Call this the tangent map.

Now let B approach A along o. If we divide the angle between the tangent at
B and the tangent at A4 by the length along o from A4 to B, we have a quantity
that approaches a limit if o is smooth enough. This number is the curvature of o
at A. This is the same as saying that the curvature at A is the reciprocal of the
ratio at A of the length of an infinitesimal arc on o to the length of its image on
A

Now let us approximate a polygon by a smooth simple closed curve. Then the
rate of change of the tangent (the curvature of the curve) corresponds to the
exterior angle, and the total turning of the tangent (the total curvature of the closed
curve) corresponds to the sum of the exterior angles. Now for simple closed curves,
the tangent turns through 27 as it completes a tour of the closed non-self
intersecting curve. That is, the total curvature is 2. This then implies the exterior
angles sum to 27 by continuity. This approximation of polygons by smooth curves
is an argument known to the Greeks. So we have greatly generalized the original
180 degree theorem about the triangle by the theorem that the total curvature of a
simple closed curve is 2.

Instead of the tangents, we could consider the normals to o. The normal varies
exactly as the tangent does as a point moves along o, so we could define the
curvature of o using normals instead of tangents. Thus we replace the tangent
map with the normal map from o to S'. The advantage of using normals instead
of tangents is that we can generalize curvature to surfaces in three space, for on
surfaces in three-space, the normal direction is well-defined whereas there is no
unique tangent direction.

We formalize this concept by introducing the idea of the Gauss map, also called
the normal map. To each point on a smooth surface in three-space one can assign
a unique unit normal vector pointing outside. This mapping maps the surface to
the unit sphere. It is given by sending each point to its normal vector and then
parallel transporting the unit vector through space so that the beginning of the
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Figure 4

vector is at the center of the unit sphere and then taking the point on the unit
sphere that corresponds to the tip of the transported unit vector (see Figure 4).

The same idea gives the normal map in dimension two from a closed curve to
the unit circle, and from a smooth closed (n — 1) dimensional manifold M
embedded in n-dimensional Euclidean space R" to the unit sphere S"~!. We let
y:M — §""! denote the normal map.

CURVATURE. Now we can define the concept of normal curvature at a point m of
M in R". Let R be a small region around m in M. Let y(R) denote the image in
$"~! of R. Then the normal curvature at m, denoted K(m), is the limit as R tends
to m of the (n — 1) volume of y(R) divided by the (n — 1) volume of R. This is
given a positive sign if y preserves the orientation at m and a negative sign if vy
reverses the orientation at m. In a suitable coordinate system, K(m) is the
Jacobian of y at m.

Just as the reciprocal ratio of infinitesimal length at x on a curve to the length
at the image y(x) is the definition of curvature of a curve in the plane at x, so is
the reciprocal ratio of infinitesimal areas from x to y(x) the curvature of a surface
at x in space. One would think that the same name would hold for the higher
dimensional examples of ratios of infinitesimal volumes, but for historical reasons
this did not happen. For the purposes of this paper I will call this number the
normal curvature of M at x in R".

Let us pause and consider the reason that normal curvature, the natural
generalization of angle, is not called curvature in dimensions higher than 2. It is
because in dimension two, the normal curvature depends not on how the surface
sits in R3, but on the intrinsic geometry of the surface. That is, the curvature can
be calculated by considering only the surface and not the ambient space. This is
the famous Theorema Egregium of Gauss. So for higher dimension, curvature
means the Riemann curvature tensor. This is based on the two dimensional
curvature and does not agree at all with the normal curvature in higher dimensions
and does not even make sense for dimension 1 curves. This curvature tensor plays
an important role in differential geometry and physics, but it does not replace the
normal curvature the way interior angles are replaced by exterior angles. Outside
of dimension 2 they are very different concepts. This issue of intrinsic vs. extrinsic
will play a key role in my story.

Now consider a compact (n — 1)-dimensional manifold M in R", and assume
that M has no boundary. Now M divides R" into two pieces, the interior and the
exterior. Let N denote the interior of M, which is a manifold with boundary M.
Now if we integrate the normal curvature K over M, we get [KdM, the analogue
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of the sum of the exterior angles. Call this the Total Curvature or the old fashioned
Curvatura Integra of M in R". Now we can state our version of the Gauss-Bonnet
theorem. Here the Euler-Poincaré number of N is x(N).

Gauss-Bonnet Theorem. [KdM = x(N) X (the volume of S"~)

NORMAL DEGREE. The unit volume of the (n — 1)-sphere is 27 for the 1-sphere
and 47 for the 2-sphere and it changes form for each dimension. Thus we define
the degree of y by the Curvatura Integra divided by the volume of the unit sphere
corresponding to the dimension of M. The degree of vy is denoted by deg(y) and is
called the normal degree. The normal degree turns out to be an integer. In fact, this
is a special case of the concept of degree of a mapping, an integer that plays a
major role in Topology. In this notation we can write the Gauss-Bonnet theorem as
the

Gauss-Bonnet-Hopf Theorem. deg(y) = x(N).

The Euler-Poincaré number is the earliest invariant of Algebraic Topology. It is
a vast generalization of a formula involving convex polyhedra due to Euler. There
is evidence that Descartes knew about this formula a century before Euler, [S,] or
[St].

The degree of a map can be traced back to Kronecker and was well understood
by L. E. J. Brouwer around 1913. The integral definition given here for the Gauss
map can be generalized to maps between oriented closed manifolds of the same
dimension. The most general definitions of the degree of a mapping and of the
Euler-Poincaré number require Homology Theory. But both these concepts were
discovered before homology was well understood and they can be used very
effectively without knowledge of homology.

For a two dimensional surface N that can be divided up nicely by triangles that
fit nicely together to form what we call a triangulation (as in Figure 5), the
Euler-Poincaré number satisfies

x(N)=v-e+f
where v is the number of vertices, e is the number of edges, and f is the number
of triangles in the triangulation.
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Given this, it is a simple matter to show that if N is bounded by a convex
polygon, then y(N) = 1. Hence deg(y) = 1 by the Gauss-Bonnet-Hopf theorem
so [KdM = 2mr, where K denotes the curvature of the curve in the plane. As we
have said, this gives the 180 degree theorem.

Thus we have a tremendous generalization of the sum of angles concept valid
for every dimension and given by a simple formula. We continue with the
remarkable history of this result.

THE NINETEENTH CENTURY. The Gauss-Bonnet Theorem is so interesting
that various authors could not resist including parts of its history in their textbooks.
For example, Spivak [Sp] and Stillwell [St] give accounts of its early history.

Consider a geodesic triangle T on a surface in three space. The edges of the
triangle are geodesics. Geodesics are what passes for straight lines on the surface;
they are paths of shortest length on the surface. Let a, B, v denote the interior
angles of the triangle (Figure 6). Then if we integrate the curvature K over the
triangle T, we get the Gauss-Bonnet Formula:

Gauss-Bonnet Formula for the geodesic triangle. (KdT =a+ B+ vy— 7

Figure 6

This formula immediately gives interesting corollaries:

If the triangle T is a plane triangle, then the geodesics are straight lines and K
is identically equal to zero, so @ + B+ y = 7. So the Gauss-Bonnet Formula
implies the 180 degree theorem, but not at all in the same way that the Gauss-
Bonnet-Hopf Theorem implies the 180 degree theorem.

If we divide the angular excess a + 3+ y — 7 by the area of T, we get a
number that is calculated intrinsically on the surface. As we let T shrink down to a
point m, the ratio approaches the curvature K(m) at m. Hence K is an intrinsic
concept of the surface. This is Gauss’ famous Theorema Egregium, but his
published proof is not the argument just given. In an earlier unpublished
manuscript, he gave this argument right after his proof of the Theorema Egregium.

If we triangulate a closed surface M with geodesic triangles, we get a Gauss-
Bonnet formula for each triangle. If we add these equations up, we get on the left
side the total curvature (also called the Curvatura Integra): [KdT. On the right side
we can rearrange the angles cleverly and end up with 47 X x(M)/2.
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This agrees with what we named the Gauss-Bonnet Theorem, because for
surfaces y(M) = 2 X x(N), where N is the part of space interior to the closed
surface M. In fact, it is true that y(M) = 2 X y(N) for all even dimensional M.
For odd dimensional closed manifolds M, however, x(M) = 0. These elementary
topological facts along with ‘intrinsic vs. non-intrinsic’ play a key role in this story.

Gauss wrote down the preceding version of the ‘Gauss-Bonnet Formula for the
geodesic triangle’ in an unpublished manuscript in 1825. In 1827, he published a
book giving a differential formula, which if integrated would have given the
generalization that Bonnet got of the Gauss-Bonnet formula; I was informed of
this by Samelson.

In 1848, O. Bonnet extended the Gauss-Bonnet formula for a triangle to smooth
closed curves on the surface. Here the sum of the angles is essentially replaced by
the integral of the geodesic curvature. This generalized formula acquired the name
Gauss-Bonnet sometime later. Probably Blaschke was the first to use the name in a
textbook in the early 1920’s.

If the geodesic triangles triangulate a closed surface S that is topologically a
sphere, then Euler’s Formula

v—e+f=2

gives the first global Gauss-Bonnet theorem: [KdS = 4.

A lost manuscript of Descartes copied in Leibniz’ hand was discovered some
years later and published in the Comptes Rendus in 1860. A note by Bertrand
immediately following Descartes’ article points out its relationship to the global
theorem. Bertrand notes that Descartes seems to get the polyhedral version of the
global Gauss-Bonnet Theorem. He attributes the global theorem to Gauss. See
[S,] for an interesting account of this manuscript. However, we know that nobody
understood the Euler-Poincaré Number at that time, and the result really held
only for a surface diffeomorphic to a sphere. A good account of the difficulty
involved with the development of the Euler-Poincaré Number is found in [La].
Indeed, the Hilton et al. discussion would fit right into the dialogues that Lakatos
used to present his thesis.

Walter Dyck seems to be the first to realize that the Gauss-Bonnet Theorem
should hold for more that just spherical surfaces. He did this in 1888. According to
Hirsch [Hi], Dyck was the first to connect the degree with the Euler-Poincaré
number and thus prove “what is wrongly called the Gauss-Bonnet Theorem”.

An examination of Dyck’s paper reveals pictures that are reminiscent of stan-
dard figures in Morse Theory, developed 50 years later. Dyck was a real pioneer,
but he, like Descartes, was ahead of his time. Samelson tells me that he cannot
find a statement of the global Gauss-Bonnet theorem in Gauss’ works. So it
appears that the global Gauss-Bonnet theorem should be called the Descartes-Dyck
theorem.

Actually, part of this story shows that the name of a theorem is not really for an
attribution. It is very convenient to have a name for important theorems, and the
main point is that people should know approximately what theorem is meant by
the name rather than who gets the credit. Still, one can reflect that Bonnet’s name
is famous and Dyck’s is virtually unknown these days.

HOPF TO CHERN. Dyck worked at a time when two basic ideas—degree of a
map and the Euler-Poincaré number—were not clearly understood. By 1925, these
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concepts were well-defined and were found to be useful. This was due in no small
measure to Heinz Hopf.

Hopf made the biggest advance in [H,]. He essentially proved that deg(y) =
x(M) /2 for closed hypersurfaces of even dimension. The factor 1/2 is explained
by the fact that y(N) = xy(M)/2 whenever N is a compact odd-dimensional
manifold with boundary M. Since y(M) = 0 for closed odd-dimensional mani-
folds, the theorem as stated by Hopf did not seem to generalize to the odd
dimensional case, and in particular did not generalize the 180 degree theorem,
which as we saw is generalized by the Gauss-Bonnet Formula.

Since the curvature of a surface is intrinsic in dimension 2, Hopf asked for
intrinsic proofs and generalizations of his result [H,]. He did this repeatedly and
interested several mathematicians in the question. The story is told in [Gr].

Using Hermann Weyl’s theory of tubes, two mathematicians independently
answered Hopf’s question in 1940. Allendoerfer [Al] and Fenchel [Fe] discovered
that deg(y) of the boundary of a tubular neighborhood of a closed 2n dimensional
manifold embedded in a 2r dimensional Euclidean Space is equal to the integral
of a 2n form constructed out of the components of the Riemannian curvature
tensor and combined together as a Pfaffian. All this is too complicated to describe
here. Since the tubular neighborhood has the same Euler-Poincaré Number as the
embedded manifold, they got a formula for the Euler-Poincaré Number in terms of
the Riemannian curvature of an embedded even dimensional manifold. This
remarkable formula held for every Riemannian manifold because every Rieman-
nian manifold can be isometrically embedded in some Euclidean space. However,
this last result was not known until the 1950’s, when it was proved by Nash.

Although the Allendoerfer-Fenchel Formula held only for an embedded mani-
fold, it was obviously independent of the embedding and begged for an intrinsic
proof. S. S. Chern provided one in 1944 [Ch]. This proof was so well received that
the Allendoerfer-Fenchel Formula is frequently called the Gauss-Bonnet-Chern
Formula or the Gauss-Bonnet-Chern Theorem. In fact, one of the goals of Gray’s
book [Gr] was to prevent the interesting methods of the Tube proof from being
totally submerged by the powerful ideas of Chern’s proof.

SATZ V1. Now we come to the most interesting part of the story. In 1956, Hopf
gave lectures on global differential geometry at Stanford University. These lectures
were honored by being published as volume number 1000 of Springer-Verlag’s
Lecture Notes In Mathematics in 1983 [H,]. On pages 117-118, Hopf describes his
version of the Gauss-Bonnet theorem for even dimensions. He does not mention
the part that holds for odd dimensions. Because of this and various conversations,
I wrote the following three paragraphs.

It is clear that at that time Hopf did not know that the Gauss-Bonnet
theorem held for all dimensions and thus was a generalization of the 180
degree theorem. Or else he knew it, but was embarassed to state it. Hopf
certainly knew all the ingredients for the proof in all dimensions for many
years, and the proof is of the same order of difficulty as his even dimensional
proof. Had he known the version that held for all dimensions it seems likely
he would not have asked for intrinsic proofs, since there are none in odd
dimensions. So two very fruitful lines of research probably would not have
been undertaken.

Yet the Gauss-Bonnet-Hopf theorem was known to several topologists
around the mid fifties, among them Milnor and Lashof. Nobody seems to
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know who it was who first stated the theorem. At the time there were
sophisticated generalizations and studies of deg(y), for example [Ke] and
[Mi]. Just recently Bredon, in his textbook [Br], stated and proved the result
as “Theorem 12.11 (Lefschetz)”. He proves it as a corollary of the Lefschetz
fixed point theorem.

Finally, in 1960, the Gauss-Bonnet-Hopf theorem was stated in the litera-
ture, but in an even more generalized form by Samelson [S,] and Haefliger
[Ha]: Let N be a compact n-dimensional manifold with boundary M and let
f: N — R" be an immersion. Then the Gauss map y: M — S”~! can still be
defined and deg(y) = x(N).

After those words were written I received a letter from Hans Samelson. I had
asked Samelson if he knew who had first discovered the Gauss-Bonnet-Hopf
Theorem. After all, he had generalized it in [S,]. In addition, he is a scholar about
the Gauss-Bonnet Theorem, and he was a student of Heinz Hopf!

He thought it was Morse who first stated it. He could not find the reference, but
on a hunch he looked at Hopf’s 1927 paper [H,]. There on page 248, Satz VI, the
Gauss-Bonnet-Hopf theorem is clearly stated for all dimensions!

It is a testament to Hepf’s genius that even though he knew Satz VI for all
dimensions, the fact that the even dimensional case was true for immersions,
instead of merely embeddings (concepts not well understood then), must have led
him to conjecture that there was an intrinsic proof in the even dimensional case.

A differentiable map between two manifolds of the same dimension is an
immersion if the Jacobian of the map is not zero anywhere. It is an embedding if in
addition the map is one-to-one. Thus, immersions are one-to-one in small neigh-
borhoods of any point, whereas embeddings are globally one-to-one. This distinc-
tion generalizes to any mappings.

Now Satz VI, that is, the Gauss-Bonnet-Hopf theorem, was proved only for
embeddings, whereas Hopf knew from [H,], that for M an even dimensional
manifold, deg(y) = x(M)/2 was true if M is immersed in Euclidean space of
codimension one, i.e., the dimension of the Euclidean space is one higher than the
dimension of M. By the way, since locally M is embedded in Euclidean space,
there is a normal direction and so the Gauss map v is still defined.

The distinction between the odd and even dimensional cases can be explained
to anyone. A circle can be immersed in a plane with arbitrary normal degree, but a

normal degree = 0

normal degree = 2

\

U wmal degree = -1
normal degree = 1

Figure 7
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two-sphere can be immersed in three-space only with normal degree equal to one.

So Hopf’s proof in [H,] was not rendered superfluous by his proof of Satz VI,
and he recognized the presence of intrinsicness in the difference. Thus he
stimulated the Geometers with [H;] to seek an intrinsic proof of the even
dimensional Gauss-Bonnet-Hopf theorem. He also asked questions about the
possible normal degrees of immersion for odd dimensional M. This stimulated
Milnor’s beautiful paper [Mi], and then [BK], wherein it is shown that the normal
degree can take on the value of any odd integer.

THE UNASKED FOR ANSWER. In hindsight, we see that Hopf’s question
amounted to: Find a formula giving x(M) in terms of the curvature tensor for
even dimensional closed Riemannian manifolds. The more reasonable question
should have been: Find a formula giving deg(y) for all dimensions. Nobody asked
this question. An answer has been found, however. It is what I will call the
Topological Gauss-Bonnet Theorem to distinguish it from the Gauss-Bonnet-Chern
Theorem.

This theorem immediately gives a proof of Satz VI as well as a proof for the
immersion portion of the even dimensional part proved in [H,]. The proof of this
theorem requires nothing that was unknown in 1929. It is completely extrinsic. If
Hopf had discovered this proof, it is unlikely he would have asked for an intrinsic
proof of [H,], and so some very important mathematics would not have been
discovered so quickly. For the Allendoerfer-Fenchel Formula, now known as the
Gauss-Bonnet-Chern Theorem, could not have been discovered by accident. It is
too complicated. Very talented mathematicians were looking for it explicitly. On
the other hand, the Topological Gauss-Bonnet Theorem is simple enough that it
could have been discovered by accident. And it was!

Topological Gauss-Bonnet Theorem. Let f: N — R" be a map whose Jacobian is
nonzero on the oriented boundary M of a compact n-manifold N. Then if x is the
projection of R" to some x-axis and V(x o f) is the gradient vector field of the
composition of maps (x o ) and Ind is its index, we have

deg(y) = x(N) — Ind(V(x-f))

The fact that f has nonzero Jacobian on the boundary M of course means that
f is an immersion on M. Since the composition (x ° f) is a map from N to the real
line R, the gradient can be defined as in advanced calculus and gives a vector field
on N. The index of a vector field, which is a new term in this paper, is another
topological invariant that predates the start of Algebraic Topology. It was defined
for vector fields in two dimensions by Poincaré in the late nineteenth century.
Hopf generalized the index of a vector field for any dimensional manifold, and
useg the concept in his proofs of the Gauss-Bonnet-Hopf Theorem in [H,] and
[H,]

The index of a vector field V is an integer. It is closely related to the degree of a
map, yet it was defined earlier than that concept. In contrast to the degree of a
map, the best definition of index does not necessarily need homology theory. In
fact, it can be defined by means of a simple identity.

In 1929, Marston Morse [Mo] discovered a beautiful equation involving the
index of a vector field ¥ on a compact manifold N with boundary M; I call
Morse’s equation the Law of Vector Fields.
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The Law of Vector Fields. Let V be a vector field defined on N, and suppose V is not
zero on the boundary M. Then IndV + Ind _V = y(N), where d_V is a vector field
induced by V and defined on that part of the boundary M where V points inside.

The vector field d_V is induced by V' by considering the component vector
field of V' that is tangent to the boundary. Since ¢_V is defined on a one
dimension lower space, part of the boundary M of N, an inductive scheme of
calculating the index suggests itself. In fact, the Law of Vector fields is literally a
self contained definition of the Index of vector fields by induction [gS]. This is
elementary, but tricky, topology. Nonetheless, the whole theory of Ind(}V) spins out
from this simple ‘A plus B equals C’ equation. This equation is the key to the last
part of the story.

Among the facts that follow easily from the Law of Vector Fields are two well
known properties of the index, which combine with the Topological Gauss-Bonnet
Theorem to give all the previous global results labled Gauss-Bonnet:

If V is a vector field with no zeros, then Ind V' = 0.

If V is a vector field on an odd dimensional manifold, then Ind(— V) = —Ind(}V)
where —V is the vector field in which every vector of V is reversed.

The Gauss-Bonnet-Hopf Theorem follows immediately from the first property,
since if f is an embedding, the vector field V(x o f) is just Vx, that is, a constant
vector field parallel to the x-axis restricted to N. This has no zeros, so applying the
Topological Gauss-Bonnet with the index zero yields the Gauss-Bonnet-Hopf
Theorem. In fact, if f is an immersion, the vector field V(x ° f) still has no zeros
(because x o f has no critical points). So we get Samelson and Haefliger’s general-
ization of Gauss-Bonnet-Hopf from embeddings to immersions.

On the other hand, Hopf’s first version in [H,], that for even dimensional M
immersed in R"*! we have deg(y) = x(M)/2, follows from the second property.
If we choose the x-axis in the Topological Gauss-Bonnet Theorem to run in the
opposite direction, we reverse the direction of the gradient. The other two terms in
the Topological Gauss-Bonnet Theorem certainly do not care which way the x-axis
is going. So we must have Ind(V(x e f)) = 0. Thus deg(y) = x(N) = xy(M)/2.
The last equality follows because the Euler-Poincaré number for an even dimen-
sional boundary is twice the Euler-Poincaré number of its bounded manifold.

There is one point that remains to be clarified. Does every orientable M that
can be immersed in a codimension 1 Euclidean space bound an N so that the
immersion can be extended to an f? The answer is yes. But I must admit that my
way of proving this fact is immediate from a famous result of Thom’s involving
cobordism theory and Stiefel-Whitney numbers, which was not available until the
1950’s.

THE ACCIDENTAL DISCOVERY. The Law of Vector Fields was discovered by
Morse in 1929 [Mo]. In an interesting parallel with Satz VI, Morse rarely referred
to the result or exploited its potential. Maybe it was because he was inventing
Morse theory and may have thought unconsciously, as many topologist have, that
all vector fields come from gradient vector fields. At any rate, this result was not
used much and was virtually forgotten. When I rediscovered it in the 1980’s, it took
almost a year of questioning before someone told me about [Mo].

Ten years ago I shared the common misconception about how mathematics is
created. I did not know the lessons of this story or of history. So I was shocked to
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find that most topologists were unaware of what I regarded as an elementary
relationship satisfied by two classical topological concepts: index and Euler-Poin-
caré number. So I thought, perhaps, there might be some interesting unknown
consequences of the Law of Vector Fields.

I thought of a simple scheme to try to exploit the Law of Vector Fields. I looked
at interesting vector fields and plugged them into the equation. I had some success
with various choices. When I plugged in what I called pullback vector fields, which
generalize gradient vector fields, I got an equation involving the normal degree
and the Euler-Poincaré number [G,] [G,]. It took a while before it occurred to me
that I had generalized the Gauss-Bonnet Theorem. A simplified version of that
result is the Topological Gauss-Bonnet Theorem as stated above. The only
simplification is that I stated the result here for gradients since it is a concept
familiar from advanced calculus. In fact, pullback vector fields may even be easier
than gradients.

CONCLUSIONS. Mandelbrot, in proposing the name “fractals”, complained that
mathematicians do not give names to concepts and results. He was right. In the
deepest sense, this story really revolves about the naming of theorems and of
curvature.

But it also demonstrates that several of the bromides we have grown up with are
seriously flawed: That great men do not overlook simple points. That there are no
great results found in using old methods. That you can’t discover something good
unless you have asked the right questions. That mathematics progresses mostly by
the work of a few great mathematicians; this particular misconception is called the
Matthew Effect by historians of Science. It seems to me that what happened with
the Gauss-Bonnet Theorem happened very frequently with the best of our mathe-
matical ideas. Nobody seems to know who invented “Cartesian Coordinates”, or
who first thought about higher dimensional spaces. Great mathematicians are
quoted denigrating ideas that blossomed and dominated mathematics. From our
present vantage point, these ideas seem trivial, but our greatest predessesors had
trouble grasping them. What seems to be trivial now was once the most difficult
part of mathematics: infinity, velocity and acceleration, arbitrary axioms, abstract
groups, functions.

Finally, the story shows how mathematical challenges can have a great and good
effect on the development of mathematics, even if the challenges were based on
faulty points of view.

As an application of this last lesson I will issue a mathematical-historical
challenge. Let us agree that a theorem generalizes a second theorem if the second
has a short proof in which the first plays the predominate part. Then I propose the
Historical Fame Score of any Theorem: The HFS is the product of three numbers
H, F, and S.

H is the percent of the history of Mathematics covered between the time the
first interesting special case was proved and its generalizing theorem was proved.
The beginning of the History of Mathematics will be taken to be 300 BC in honor
of Euclid and the unavailability of precise dates before that time.

F is the percent of mathematicians who know the most famous special case of
the generalizing theorem.

S is the percent of results closely related to the subject matter of the generaliz-
ing theorem that receive new proofs, or new insights, or new corollaries from the
generalizing theorem.

468 GAUSS-BONNET [June—July



The maximum score is one million. I estimate that the Topological Gauss-
Bonnet Theorem receives the maximum score. The challenge is to find generaliza-
tions with comparable scores.
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