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For a smooth fibre bundle F
i−→ E

p−→ B where F is a compact manifold
with or without boundary, a vertical vector field V gives rise to a transfer τ

V
as

an S-map. Our goal is to show these transfers satisfy an equation analogous to
one that the index of vector fields satisfy. This equation gives results involving

equivariant vector fields as well as a characterization of those transfers defined

by vector fields in terms of the ordinary Euler-Poincare transfers.

1. Introduction

Let F
i−→ E

p−→ B be a smooth fibre bundle with F a compact

manifold with boundary ∂F and B a closed manifold. Let V be

a vector field defined on an open set of E which is tangent to the

fibres. We assume that V has no zeros on ∂E = Ė. We will call

such vector fields vertical vector fields.

We define an S-map τV : B+ → E+ associated with V . This

transfer τV has the usual properties:

a) If V is homotopic to a vertical vector field V ′ by a homotopy of

vertical vector fields, so in particular no zeros appear on ∂E, then

τV ′ is homotopic to τV .

b) τ∗V (p∗α ∪ β) = α ∪ τ∗V (β) for cohomology theories h∗ with cup

products.

c) For ordinary homology or cohomology, p∗ ◦ τV∗ and τ∗V ◦ p∗ is

multiplication by the index of V restricted to a fibre F , denoted

Ind(V |F ).

The main result of this paper is the analogue of the following

equation for indices of vector fields, which we call the Law of Vector

Fields.

(1) IndV + Ind ∂−V = χ(M)
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Here M is a compact manifold and ∂−V is the vector field V

restricted to ∂−M , that open set of the boundary where V points

inward and then projected down tangent to the boundary.

The analogous equation for transfers is

(2) τV + i ◦ τ∂ V
= τ

where τ∂ V
is a transfer B+ → Ė+ based on ∂−V and i : Ė ↪→ E

is the inclusion. The τ on the right hand side is the usual Euler-

Poincare transfer of the fibre bundle, [1] or [2].

We use these transfers in Section 9 to show for a fibre bundle

F
i−→ E

p−→ B where V is a vertical vector field, that

(3) 0 = Ind(V |F )ω∗ : {X,ΩB} → {X,F}

is trivial. Here we assume that X is a finite complex, ΩB
ω−→ F is

the transgression map induced by the fibre bundle, {X, Y } denotes

the group of stable homotopy classes from X to Y .

Vertical vector fields can be constructed from equivariant vec-

tor fields on a manifold with a group action. Thus if V is aG-vector

field on a manifoldM , then the trace of the action (G,M), denoted

by tr(G,M) and defined in [3], must divide IndV . In symbols,

(4) tr(G,M)| Ind(V ).

Relation (4) and its numerous consequences are examined in

Section 8.

This paper employs the techniques first published in [1]. The

techniques in that paper gave rise to a transfer associated to vec-

tor fields which point outward on the boundary. Rudzinski, [10],

examined the situation when the vector field was equivariant, and

defined transfers in that case. When the zeros of the equivariant

vector field are isolated, the transfer reduces to that of the covering

bundle given by the equivariant zeros.
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In this paper we consider non-equivariant vector fields. In our

approach we come closer to the way Dold constructs his fixed point

transfer, [7]. Dold uses fibre preserving “compactly fixed” maps

defined on open sets of the total spaces. Since Dold is assuming

ENR’s, his maps can be converted to vertical vector fields by a

construction like V (e) = e− f(e). On the other hand, the vertical

vector fields give rise to fibre preserving maps.

So Dold’s fibre preserving map approach and our vertical vec-

tor field approach to transfers seem to be covering the same

ground. Dold’s approach can be applied to more general situa-

tions than ours. We need smooth manifolds so that we can talk

about vector fields and tangent bundles. On the other hand, we

define the transfer more directly than in Dold’s paper.

Dold gives in [4,5,6,7], and a survey [8], a treatment of the

fixed point index which steadily generalizes to give the fixed point

transfer. In this paper, we define the vector field index by means

of an S-map and steadily generalize until we get the vector field

transfer, so we follow Dold’s point of view.

The fixed point index and the vector field index have an enig-

matic relationship. Each can be defined in terms of the other (ex-

cept for the greater generality of the fixed point index setting). On

the other hand, some principal properties appear different. Maps

compose, and the fact that the fixed point index is invariant un-

der the change of order of composition is a fundamental property

which does not have an obvious analogue for vector fields. Con-

versely, the immensely useful fact that Ind(−V ) = (−1)n Ind(V )

does not have an obvious analogue for the fixed point index.

2. The index of a global vector field

2.1. Definition of τV

Let F be a compact manifold with boundary Ḟ . Let V be a

vector field so that V |Ḟ has no zeros. Then we define an element

{τV } in the stable homotopy group {S0, F+} as follows. Here X+

means X union with a disjoint base point.
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First we embed F in RN with the normal bundle ν. We alter

V , if need be, by multiplication by a positive function k(m) so that

for m ∈ Ḟ , the vector k(m)V (m) has length greater than or equal

to 1. Then define τV as the composition

τV : SN
c−→ F ν/Ḟ ν

iV−→ F τ⊕ν = SN ∧ F+

Here F ν is the Thom space of ν; that is the total space of ν

with the subspace of vectors of length greater than or equal to

1 identified to a point. Now F is embedded inside of SN with

tubular neighborhood ν. Then c is the collapsing map. Now τ

denotes the tangent bundle of F , so τ⊕ν is a trivial bundle, hence

the Thom space is SN ∧ F+. Finally iV is the map defined by

iV (
→
vm) = (V (m),

→
vm) where

→
vm ∈ ν. Since ‖V (m)‖ ≥ 1 for

m ∈ Ḟ , we see that iV takes Ḟ ν to the base point of F τ⊕v.

2.2. Properties of τV

a) {τV } is independent of the embedding of F in RN and indepen-

dent of the N in RN .

b) {τV } = {τV ′} if V is homotopic to V ′ by a proper homotopy of

vector fields. That is Vt is a homotopy such that no zero occurs on

Ḟ during the homotopy.

c) {τ−V } = (−1)n{τV } where n = dimF .

d) {τV } = 0 if V has no zeros.

e) Let V ×W be a vector field on A×B. Then τV×W = τV ∧ τW .

Proof. c) This follows since τ−V = r ◦ τV where r : τ ⊕ ν → τ ⊕ ν
sends (u, v) 7→ (−u, v). This gives rise to a map SN ∧ F+ →
SN ∧F+ which changes the sign of the first n coordinates of SN =

Sn ∧ SN−n.

e) It is easy to check that τV×W is represented by

S2N → SN ∧ SN → (Aν/Ȧν) ∧
(
Bµ/Ḃµ

)
iV ∧iW−→ Aτ⊕ν ∧Bτ⊕µ = S2N ∧ (A×B)+
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so τV×W = τV ∧ τW .

2.3. Definition of Index

Let p : SN ∧ F+ → SN be induced by the projection onto the

first factor. Then we have p ◦ τV : SN → SN . Define the index of

V to be

Ind V = deg(p ◦ τV ).

2.4. Properties of index

a) Index is well defined.

b) Index is invariant under proper homotopy.

c) Ind(−V ) = (−1)n Ind(V ).

d) If V has no zeros, then Ind(V ) = 0.

e) If V ×W is a vector field on A×B then

Ind(V ×W ) = (IndV )(IndW ).

Proof. e) p ◦ τV×W = (p1 ∧ p2) ◦ (τV ∧ τW ) = (p1 ◦ τV ) ∧ (p2 ◦ τW )

so deg(p ◦ τV×W ) = deg(p ◦ τV ) · deg(p ◦ τW ).

3. The index of a local vector field

Now we extend our definitions of τV and IndV for V which

are defined locally on open subsets of F . This leads to the index

of such vector fields in the same manner as above.

Definition. A vector field V defined on an open set U of F is

proper if ‖V (m)‖ ≥ a > 0 for some a and all m ∈ U − C where C

is some compact subset of F . (The reason for this definition is that

we can multiply V by a function k(m) > 0 so that ‖k(m)V (m)‖ ≥
1 as m approaches the frontier of U).

Definition An otopy from V to V ′ is a vector field W on F × I
such that W is vector field defined on an open set of F × I so that

every vector W (m, t) is tangent to F ×t and W (m, 0) = V (m) and

W (m, 1) = V ′(m). The otopy is proper if W is a proper vector

field.
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3.1. Definition of τV

τV : SN
c−→ Uν

iV−→ F τ⊕ν = SN ∧ F+

where c collapses SN to F ν/Ḟ ν and then collapses every point

outside of Uν to a point, and iV :
→
vm 7→ (Vm,

→
vm). Note iV is

well defined since ‖V (m)‖ ≥ 1 near the frontier of U . Here Uν is

the one point compactification of ν|U .

3.2. Properties of τV

As before, we obtain the same properties for τV for local proper

vector fields.

a) {τV } is well-defined, that is independent of choices of embed-

ding.

b) {τV } = {τV ′} if V is properly otopic to V ′.

c) {τ−V } = (−1)n{τV }.
d) {τV } = 0 if V has no zeros.

e) τV×W = τV ∧ τW .

f) If W = V restricted to some open set and if V and W are proper

and W has no additional zeros then {τW } = {τV }.
g) If U and V are proper local vector fields defined on disjoint

open subsets, then {τW } = {τU} + {τV } where W is the vector

field consisting of U and V .

Proof. b) Observe that a proper otopy between V and V ′ gives

rise to a homotopy from τV to τV ′ .

g)

τW : SN → F ν/Ḟ ν → OνV ∨OνV
iU∨iV−→ F τ⊕ν = SN ∧ F+

and

τU + τV : SN → SN ∨ SN → OνU ∨OνV
iU∨iV−→ F τ⊕ν = SN ∧ F+
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where OνU is the open set of definition of U and OνV is the open set

for V .

3.3. Definition of Ind V

The index of a local proper vector field is defined to be, as

before, deg(p ◦ τV ).

3.4. Properties of Ind V

a) Ind(V ) is well-defined.

b) Ind(V ) is invariant under proper otopy. (In fact the following

can be shown: Let M be connected. Then V is properly otopic to

W if and only if Ind(V ) = Ind(W ). This in turn implies for

global vector fields on a compact manifold with connected non-

empty boundary, that V is properly homotopic to W if and only if

Ind(V ) = Ind(W ).In both cases there is a vector field whose index

equals any arbitrary integer).

c) Ind(−V ) = (−1)n IndV .

d) If V has no zeros then IndV = 0.

e) If V and W are proper local vector fields on A×B,

then Ind(V ×W ) = Ind(V ) · Ind(W ).

f) IndW = Ind V if W extends V and has no additional zeros.

g) IndW = IndU+IndV if W is defined on two disjoint open sets

on which it restricts to U and V .

Remark. We also define τV for V a vector field defined on a

compact submanifold M of F , with codimension 0. Here τV is the

composition

SN
c−→ F ν/Ḟ ν →Mν/Ṁν iV−→ F τ⊕ν = SN ∧ F.

All the above properties hold for this τV . Only a small modification

of the definition of proper otopy is necessary.
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4. The law of vector fields

Suppose that Mk is a submanifold of Fn with normal bundle

γ. Then τF |M = τM ⊕ γ. Suppose that V ′ is a vector field on

M such that ‖V ′(m)‖ ≥ 1 for m ∈ Ṁ . Define the vector field

W on the tubular neighborhood N corresponding to γ in F by

W (
→
vm) = V ′(m) +

→
vm. Let i : M → F be the inclusion

Lemma 4.1. {τW } = {i ◦ τV ′}.
Proof.

SN −−−−→ Mγ⊕ν/Ṁγ⊕ν
iV ′−−−−→ M τM⊕(γ⊕ν)∥∥∥ ∥∥∥ yi

SN −−−−→ Mγ⊕ν/Ṁγ⊕ν iW−−−−→ F γ⊕ν

This diagram commutes.

Suppose F is a smooth manifold with a proper vector field V .

Let F be F union with a collar C = Ḟ × I and let V ′ be the

vector field on C given by V ′(m, t) = V (m) + tkN(m) where k is

a constant large enough so that at ∂F = Ḟ × {1} the vector field

V ′ points outside. Let V be the vector field on F which restricts

to V ′ on C and to V on F .

Lemma 4.2. τ
V

= τV + τV ′ .

Proof. Apply 3.2 g) for compact manifolds to F and V .

Corollary 4.3. IndV = IndV + IndV ′.

Proof. Compose the right and left sides of the equation in Lemma

4.2 with p and use the definition of index.

We have from Hopf’s theorem, since V is pointing outside on

∂F , and the fact that F is homeomorphic to F , the equation

IndV = χ(F ) = χ(F ).

Definition. Let ∂−V to be a vector field on Ḟ defined on the

open set ∂−Ḟ ⊂ Ḟ where ∂−Ḟ consists of those points in Ḟ such
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that V (m) points inside. Define ∂−V (m) to be projection of V (m)

tangent to F for allm ∈ ∂−F . Thus ∂−V is the end of the sequence

V → V |∂−F
Proj−→ ∂−V.

Then τ∂−V : SN → SN ∧ Ḟ+.

Lemma 4.4. Let i : Ḟ → F . Then i ◦ τ∂−V = τV ′ .

Proof. This follows from Lemma 4.1. Here Ḟ = M and its bound-

ary is empty. We can homotopy V ′ by multliplying by a positive

function so that the new V ′ when restricted to ∂−F × 1
2 is tan-

gent to ∂−F and equal to ∂−V and in a product neighborhood of

∂−F × 1
2 the altered V ′ looks like the normal vector field crossed

with ∂−V .

Theorem 4.5. τ
V

= τV + iτ∂−V .

Corollary 4.6 The Law of Vector Fields χ(F ) = IndV +Ind ∂−V .

Proof. Compose the above equation with Projection.

5. Construction of the global vector field transfer

We assume that F is a smooth compact manifold with bound-

ary Ḟ . We assume that F
i−→ E

π−→ B is a fibre bundle so that

the vector bundle of tangents along the fibre, denoted by α, can

be defined. In particular, this occurs when B is a smooth manifold

and π is a smooth map, so E itself is a smooth manifold. Another

case when α exists is when the structure group of the bundle is

Diff(F ) and B is a finite CW- complex.

Suppose there exists an embedding

j : E → R
N ×B

with normal bundle ν. The embedding is assumed to be such that

(Proj) ◦ j = π where Proj : RN × B → B is projection on the

second factor.

We can construct such an embedding in the case when E is a

smooth manifold by first embedding E smoothly into RN for some
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R
N . Denote this embedding by j′ : E → R

N . Then the required j

is given by j(e) = (j′(e), p(e)).

Now let Ė = {e ∈ E|e is in the boundary of some fibre}. Then

Ė is a subspace of E and the restriction of π : E → B gives a fibre

bundle Ḟ → Ė → B.

Now we say that V is a vector field along the fibres of E if V

is a cross-section from E to the total space of α, the bundle of

tangents along the fibre. We say V is a proper vector field if V has

no zeros on Ė. For short, we say that V is a vertical vector field if

it is a proper vector field along the fibres.

We define iV : ν → α ⊕ ν to be the vector bundle map
→
v e 7→

(V (e) +
→
v e) where

→
v e is a vector in ν which projects down onto

e ∈ E. Then we extend iV to a map of the Thom spaces iV : Eν →
Eα⊕ν . Now if Eν is constructed by identifying any vector

→
v e ∈ ν

of length ‖→v e‖ ≥ 1 to a point, we may regard iV : Eν/Ėν → Eα⊕β

as a map with domain Eν/Ėν . We may do this since V restricted

to E is nonzero and we may vertically homotopy V until every

vector of V on E has length ≥ 1, so then Ėν is sent to a point and

so iV can be pushed down to the quotient.

We let π̂ : (RN × B)+ → Eν/Ėν be the collapsing map onto

the tubular neighborhood of E in RN ×B, followed by identifying

Ėν to a point. Here B+ denotes the disjoint union of B and a base

point +.

5.1. Definition of τV

The transfer τV is the S-map defined by the following compo-

sition.

τV : SN ∧B+ = (RN ×B)+ π̂−→ Eν/Ėν
iV−→ Eα⊕ν = SN ∧ E+

The last equality follows since α⊕ ν is a trivial bundle.

5.2. Properties of τV .

a) {τV } ∈ {B+, E+}, the stable homotopy class of τV , is inde-

pendent of the choice of embeddings and homotopies used in the

construction.
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b) {τV } = {τV ′} if V is vertically homotopic to V ′.

c) If B′ ⊂ B and E′ = π−1(B′) and V ′ = V |E′ and j : E′ → E

and i : B′ → B are inclusions, then j ◦ τV ′ = τV ◦ i.
d) The fibre bundle F → X × E 1×π−→ X × B with vertical vector

field W = 0× V has a transfer τW = 1 ∧ τV . This follows from

τW : SN ∧X ∧B+ = SN ∧ (X ×B)+ = (RN ×X ×B)+ →
(X ×E)Proj∗ ν/(X × Ė)Proj∗ ν → (X ×E)(Proj∗ α)⊕(Proj∗ ν)

= SN ∧ (X × E)+ = SN ∧X ∧E+

e) The following diagram commutes (where ∆ is the diagonal map).

E
∆

−−−−→ E × E
π×1
−−−−→ B × Eyπ y1×π

B B
∆

−−−−→ B ×B

This gives rise to the commuting diagram

E+
∆

−−−−→ E+ ∧ E+
π∧1
−−−−→ B+ ∧ E+xτV x1∧τV

B+ B+ −−−−→ B+ ∧B+

Thus for cohomology theories with cup products,

τ∗V (π∗(x) ∪ y) = x ∪ τ∗V (y).

6. Local vector field transfers for fibre bundles

Suppose that M is a smooth submanifold of codimension 0

contained in E. Suppose W is a vertical vector field defined on
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M ⊂ E such that W |∂M consists of vectors of length greater than

or equal to 1.

6.1. Definition of τV

τV : SN ∧B+ π̂−→ Eν/Ėν
c−→Mν/Ṁν iV−→Mα⊕µ

= SN ∧M+ Σj−→ SN ∧ E+

where c collapses E to M and Σj is the suspension of the inclusion

M
j
↪→ E.

6.2. Properties of τV

The locally defined transfer for vertical vector fields satisfies

analogous properties possessed by the globally defined transfer

a) {τV } ∈ {B+, E+} is independent of the choice of embedding

and homotopies in the construction of τV

b) {τV } = {τV ′} if V is vertically otopic to V ′.

c) If B′ ⊂ B and E′ = π−1(B′) and V ′ = V |M ∩ E′ and M ∩ E′
is a codimension 0 manifold in E′, then j ◦ τV ′ = τV ◦ i where i

and j are the appropriate inclusions.

d) Analogues of Properties d) and e) of section 5.2 hold. In par-

ticular τ∗V (π∗(x) ∪ y) = x ∪ τ∗V (y) holds.

e) If V is a local vertical vector field defined on disjoint codi-

mension 0 submanifolds M1 and M2 so that ‖V (m)‖ ≥ 1 when

m ∈ ∂(M1 ∪M2), then {τV } = {τV1
} + {τV2

} where V1 = V |M1

and V2 = V |M2.

Proof. e)

τV : SN ∧B+ →
(
Mν

1 /Ṁ
ν
1

)
∨
(
Mν

2 /Ṁ
ν
2

)
→ SN ∧ E+

Theorem 6.1. τ∗V ◦ π∗ : H∗(B) → H∗(B) is multiplication by

Ind(V |F ),

Proof. Let V be a proper vector field defined on an open set of F .

Then τV : F+ → S0 can be regarded as the transfer of the trivial

fibre bundle F
π′−→ ∗. Now τV π

′∗ = Ind(V ). Now suppose that W
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is a vertical vector field on F → E
π−→ B so that W |F = V . Then

by property c), τ∗V ◦ j∗ = i∗ ◦ τ∗W . Hence

τ∗V ◦ j∗ ◦ π∗(1) = i∗ ◦ τW ◦ π∗(1)

so Ind V = τ∗ ◦ π′∗(1) = τ∗V ◦ j∗ ◦ π∗(1) = i∗(τ∗W (1)) so τ∗W (1) =

IndV ∈ H0(B). Now from d), τ∗W (π∗(x)) = τ∗W (π∗(x) ∪ 1) =

(IndV )x.

7. Transfer formula

Let F → E
π−→ B be a vector bundle with F a compact

manifold and V a vertical vector field on E. Then Ė
π−→ B is a

subbundle with fibre Ḟ and inclusion map i : Ė → E. There is a

a vector field ∂−V on Ė formed by taking those vectors of V on

Ė which point inside E and projecting them down so that they

are tangent to Ė. Thus ∂−V is a vertical vector field defined on

an open set of Ė. We choose a manifold with boundary M ⊂ Ė

which contains all the zeros of ∂−V . Then we define a transfer

τ∂−V : B+ → Ė+.

Theorem 7.1. τ = τV +iτ∂−V where τ is the usual Euler-Poincare

transfer.

Corollary 7.2 χ(F ) = IndV1 + Ind ∂−V1 where V1 is the restric-

tion of V to the fibre F .

Proof. Consider τ∗ ◦ π∗ in singular cohomology. Then

τ∗ ◦ π∗ = τ∗V ◦ π∗ + τ∗∂−V ◦ i
∗ ◦ π∗

Now the composition of transfers with projections is multiplication

by the index of the appropriate vector field restricted to the fibre.

So the corollary is true. Note that this is just the vector field law

for the vector field restricted to the fibre F .

To prove the theorem we must add a collar C onto Ė and then

extend V to V over the collar so that at the new boundary V

points outside.
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Let V be a vertical vector field on the fibre bundle F
i−→ E

π−→
B. Here F is a compact smooth manifold. Let

→
N be a unit normal

outward pointing vertical vector field defined on Ė. Let C = Ė×I
be a collar for E so that C = Ė × I → B is a fibre bundle with

fibre ∂F × I. Extend V over C by V ′(e, t) = V (e) + tk
→
N where

k is a constant so large that V (e, 1) is pointing outside. Let V be

the vertical vector field on E ∪C so that V |E = V and V |C = V ′.

Then by Section 2 and Section 3 we see that

{τ
V
} = {τV }+ {τV ′}.

Now τ
V

is the usual Euler-Poincare transfer, and E
π−→ B

and E ∪ C → B are fibre bundle equivalent, so we can identify

τV for E
π−→ B with the τV for E ∪ C → B. Now τV ′ can be

thought of as jτV ′ where τV ′ : B+ → C+ and j : C → E. Now

{τV ′} = {τV ′′} where V ′′ = V |(∂−E) × I where ∂−E is the open

set of Ė where V points inwards. We may adjust the definition of

V ′′ so that V ′′|(∂−E × 1
2 ) is the same as V projected down onto

∂−E. So locally near ∂−E × 1
2

we see that V ′′ can be vertically

homotopied to (∂−V ) × A where A is the vector field on I with

the zero at 1
2 and always pointing outside. So {τV ′′} = {iτ∂−V }.

8. Equivariant vector fields

One way to construct vertical vector fields is to first look for

equivariant vector fields. Let G act on F smoothly, so that G also

acts on the tangent space T (F ). Then V is an equivariant vector

field on F if g∗(V (m)) = V (g(m)). Now we define the universal

fibration with fibre F and group G by

F → EG ×G F
p−→ BG.

Then the equivariant V give rise to a vector field along the fibres

V as follows. Let T (F ) be the total space of the tangent bundle

of F . Then G acts on T (F ) and p : T (F )→ F is a G-map.



BECKER—GOTTLIEB

Since V is equivariant, we may think of V as a G-cross-section

F → T (F ). So we have

α = E ×G T (F )
1×Gp
�

V

EG × F.

where 1×Gp : 〈e,→vm〉G 7→ 〈e,m〉G and V : 〈e,m〉G → 〈e, V (m)〉G.

That is V is a cross-section to 1×G p, so V is a vector field along

the fibres. Note that V |F = V . If V is proper, then V is a vertical

vector field. This V pulls back to a vertical vector field W on

induced bundles. So on each of those pullbacks which in addition

admit a bundle ν so that α ⊕ ν is trivial, there is a transfer τW .

Then p∗ ◦ τW is multiplication by Ind(W |F ). Hence we have the

following theorem, where tr(G,F ) is the trace of the action of G

on F defined in [3].

Theorem 8.1 tr(G,F )| IndV.

Corollary 8.2 a) If G acts freely on F and G is finite, then

|G|
∣∣ IndV

b) If G ∼= (Zp)
n, then the order of the smallest orbit divides

IndV .

c) If G is a connected Lie group and IndV 6= 0, then the

maximal torus is contained in some isotropy subgroup.

Theorem 8.2 Let V be an equivariant vector field on a compact

manifold F with G a compact Lie Group. Then τV = τ − i1τ1 +

i2τ2 − i3τ3 + . . . where τj is the Euler-Poincare transfer for some

sub-bundle and ij are inclusion maps.

Proof. First we can assume by Mostow’s theorem that F has an

equivariant Riemannian metric 〈, 〉. So we have for all g ∈ G

〈g∗
→
v , g∗

→
w〉 = 〈→v ,→w〉.

Now if d(x, y) is the metric arising from the equivariant Rieman-

nian metric 〈, 〉, we have that d is equivariant also. That is, for all

g, x and y,

d(g(x), g(y)) = d(x, y)
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Lemma 8.4 If V is an equivariant vector field, then

a) ∂V is equivariant on ∂F .

b) The unit normal vector field
→
N is equivariant.

Proof. We must show that g∗(
→
N(m)) is a unit vector normal to

∂F at g(m). Now ∂F is a G-subspace of F , so g∗ takes vectors

tangent to ∂F into vectors tangent to ∂F . Hence if
→
vm is tangent

to ∂F at m then 〈→vm,
→
N(m)〉 = 0. But

0 = 〈→vm,
→
N(m)〉 = 〈g∗(

→
vm), g∗

→
N(m)〉.

so g∗(
→
N(m)) is orthogonal to the image of g∗ of vectors tangent to

∂F at m. Since g∗ is an isomorphism, g∗(
→
N(m)) is orthogonal to

all tangent vectors to ∂F at g(m). Also

〈g∗
→
N(m), g∗

→
N(m)〉 = 〈

→
N(m),

→
N(m)〉 = 1

so g∗
→
N(m) is a unit vector. Also g∗

→
N(m) points outside. Hence

g∗
→
N(m) =

→
N(g(m)) by definition. This proves b). We prove a) by

observing that
→
V (m) = ∂

→
V (m) + k

→
N(m).

for some k(m). Then the fact that
→
V and

→
N are equivariant implies

∂
→
V is equivariant also.

Lemma 8.5. ∂−F , ∂+F and ∂0F are G-spaces and the vector

fields ∂−V , ∂+V and ∂0V are equivariant.

Proof. This lemma is a corollary of the previous lemma. Note that

k > 0 when m ∈ ∂+F and k < 0 when m ∈ ∂−F and k = 0 when

m ∈ ∂0F . Thus ∂−F is equivariant since k = 〈
→
V ,
→
N〉. So ∂−V is

equivariant also.

Let D : ∂−F → R be given by D(m) = 〈∂−V (m), ∂−V (m)〉.
Now g(D(m)) = D(g(m)). There is an a ∈ R not zero such that
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D−1(a) is a closed equivariant manifold, and also ∂−V |D−1([a,∞])

has no zeros. Hence

Ind ∂−V = Ind ∂−V |D−1([0, a)).

Now let ∂−E = EG ×G (D−1([a,∞)). Then ∂−E
p−→ B is a

fibre bundle which is a subbundle of E
p−→ B and i : ∂−E → E

is fibre preserving and ∂−V leads to a vector field ∂−V along the

fibre of ∂−E. So Theorem 7.1 states that

τ1 = τ
V

+ iτ
∂−V

where τ1 is the Euler-Poincare transfer for

E
p−→ B. So τ

V
= τ1 − iτ

∂−V
. Now we do the same thing for

∂−E → B by defining ∂−−E. Then

τ
V

= τ1 − i(τ2 − i1τ∂−−V )

We continue this argument until finally ∂−···−V is empty.

9. The evaluation map

Suppose that F → E
p−→ B is a smooth fibre bundle with ver-

tical field V . Suppose that the bundle of tangents along the fibre

F has a finite inverse ν so that α⊕ ν = E ×RN for some N . This

occurs when E is a compact manifold or when the group G of the

fibre bundle acts smoothly on RN with F a G-manifold smoothly

imbedded in RN and the base space B is finite dimensional.

Now we have a transgression map coming from the fibre bundle

ω : ΩB → F . Also let V = V |F . Then

Theorem 9.1. (IndV )ω∗ : {X,ΩB} → {X,F} is trivial for all

finite complexes X .

Here { } denotes the group of stable homotopy classes.

Corollary 9.2. If G is a compact Lie group acting smoothly on

F and ω : G→ F is the orbit map and V is an equivariant vector

field, then (IndV ){ω} = 0.

Proof. We consider the fibre bundle F → EG ×G F → BG with

the vertical vector field V . Then ω : ΩBG ' G
ω−→ F can be
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thought of as the transgression or the orbit map. Thus applying

ω∗ on 1G : G→ G gives (IndV ){ω} = 0.

Proof of the theorem. Compare [2]. We will show the theorem by

considering X as a finite subcomplex of ΩB. Consider the fibre

square
F −−−−→ Fy y
Ẽ −−−−→ Ey yp

S(X) −−−−→
h

B

where Ẽ is the pullback of p over the suspension S(X) of X by the

map h where h is the adjoint of the inclusion h : X ↪→ ΩB. The

vector field V along the fibre pulls back to a vector field Ṽ along

the fibre on Ẽ. Consider the diagram

Ẽ+
c′′

−−−−→ Ẽ Ẽ Ẽ∥∥∥ yj yj yj
Ẽ+

c′

−−−−→ Ẽ/F Ẽ/F
k

−−−−→ S(F )xτṼ τ
Ṽ

x xs S(w)

x
S(X)+ −−−−→

c
S(X) S(X) S(X)

This is a diagram of S-maps. The maps c, c′ and c′′ are the

collapsing maps which take the point + onto the base point of the

respective targets. The map j is the quotient map. Obviously

c′ = jc′′. So the top left square commutes. Now τ
Ṽ

is the transfer

associated to Ṽ and τ
Ṽ

is induced by the transfer on the quotient

space, so of course c′τ
Ṽ

= τ
Ṽ
c. We also denote by ω the map

X → ΩB
ω−→ F . Then S(ω) is the suspension of ω. Note that ω
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is involved with the clutching map

ψ : X × F → F

of the fibration Ẽ
p−→ S(X). The evaluation map ω is the compo-

sition

X × ∗ −−−−→ X × F
h×1
−−−−→ ΩB × F −−−−→ F∥∥∥ y ∥∥∥

X × F
ψ

−−−−→ F F

The map s : S(X) → Ẽ/F is the cross section defined as fol-

lows. S(X)–base point is contractible, hence Ẽ|(S(X)-base point)

is fibre homotopy equivalent to the trivial fibration

(S(X)− base point )× F

Let s(b) = b× ∗ where ∗ ∈ F is the base point of F . This extends

to s : S(X)→ Ẽ/F .

Now k : Ẽ/F → S(F ) is the map which appears from the

Puppe sequence, namely, the collapsing map of the neighborhood

CX × F of F . Then kj is homotopic to a point. Also the left

triangle homotopy commutes, that is S(ω) ∼ ks.
Lemma 9.3. τ

Ṽ
= (IndV )s.

Proof. We may deform Ṽ by a proper homotopy so that Ṽ restricts

to 0×V over F ×CX . We can properly homotopy V so that there

are a finite number of zeros, each one of them of local index ±1.

Then we have as many copies of s as there are zeros of V , those

s corresponding to +1 zeros represent the same homotopy class,

and those associated to the −1 zeros represent the negative of the

homotopy class. Hence τ
Ṽ

= (IndV )s.

Now we prove the theorem

(IndV )S(ω)c = k ◦ (IndV )sc = kτ
Ṽ
c = kc′τ

Ṽ
= kc′′jk = ∗
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since jk is homotopic to a constant map. Now c∗ : {S(X), S(F )} →
{S(X)+, S(F )} given by c∗{f} = {f ◦ c} is injective. Hence

IndV {S(ω)} = 0, proving the theorem.
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