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Abstract.

1. Introduction

In [Gottlieb (1998)] and [Gottlieb (2000)] we launched a study of Lorentz trans-
formations. We find that every Lorentz transformation can be expressed as an ex-
ponential eF where F is a skew symmetric operator with respect to the Minkowski
metric 〈 , 〉 of form −+++. We provided F with the notation of electromagnetism.

Thus we can describe boosts as pure ~E fields and rotations as pure ~B fields. An
important class of Lorentz transformations corresponding to radiation made its ap-
pearance. We have yet to see a description of these “radiation” transformations in
the Physics literature.

The complexification of the Lorentz Transformations yield very beautiful algebra
which is related to Clifford Algebras as well as Lie Algebra theory.

The purpose of this paper is to confront the basic part of Statistical Mechan-
ics with the Lorentz transformation formalism and see how much of Statistical
Mechanics can be described in this alternative language.

Using our Lorentzian picture, we identify the central exponentials of Statistical
Mechanics, e−βε, as the eigenvalues of suitable Lorentz transformations. Since we
can have complex eigenvalues, we have a natural scheme which gives Fermions with
half integers and Bosons with whole integers and naturally produces the formulas.

〈nk〉 =
1

eβ(εk−µ) ∓ 1

for the mean state occupations numbers 〈nk〉 for bosons, with the −1 and fermions
with the +1. The same qualities play a role in the description of the Maxwell-
Boltzman, Bose-Einstein, and Fermi-Dirac statistics.

Finally, we can also give a count of the energy density, in a manner analogous
to Rayleigh-Jeans, but not counting by squares of integers because of the wave
equation, instead using an argument analogous to the appearance of the sum of
squares using Pauli matrices in spin arguments.
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2. Lorentz Transformations

Here we follow [Gottlieb (1998)] and [Gottlieb (2000)] and recall the notation
for Lorentz transformations. Let M be Minkowski space with inner product 〈 , 〉
of the form − + ++. Let e0, e1, e2, e3 be an orthonormal basis with e0 a time-like
vector. A linear operator F : M →M which is skew symmetric with respect to the
inner product 〈 , 〉 has a matrix representation of the form

F =

(
0 ~ET

~E × ~B

)

where × ~B is a 3× 3 matrix such that (× ~B)~v = ~v × ~B, the cross product of ~v with
~B. The dual F ∗ of F is given by

F ∗ =

(
0 − ~BT
− ~B × ~E

)
We complexify F by cF := F − iF ∗. Its matrix representations is

F =

(
0 ~AT

~A ×(−i ~A)

)
where ~A = ~E + i ~B

These complexified operators satisfy some remarkable Properties:

a) cF1cF2 + cF2cF1 = 2〈 ~A1, ~A2〉I where 〈 , 〉 denotes the complexification of the
usual inner product of R3. Note, 〈 , 〉 is not the Hermitian form, that is our
inner product satisfies i〈~v, ~w〉 = 〈i~v, ~w〉 = 〈~v, i ~w〉.

b) The same property holds for the complex conjugates cF 1 and cF 2 of course. But
also, they commute, cF 1cF 2 = cF 2cF 1

c) cFcF = 2TF where TF is proportional to the stress-energy tensor of electro-
magnetic fields.

Now eF = I +F +
F 2

2!
+
F 3

3!
+ . . . : M →M is a proper Lorentz transformation.

It satisfies eF = e
cF
2 e

cF
2 . The algebraic properties of cF give rise to a simple

expression for its exponential:

ecF = cosh(λcF )I +
sinh(λcF )

λcF
cF

where λcF is an eigenvalue for cF . There are only, at most, two values for the
eigenvalues of cF , namely λcF and −λcF .

Now every proper Lorentz transformation L ∈ SO(3, 1)+ is equal to the exponen-
tial of some skew symmetric linear operator. That is, L = eF where F ∈ so(3, 1).
This was proved by Mitsuru Nishikawa in [1983] for SO(p, 1)+. I will prove it below
(Theorem 4.1), since the proof is novel even though it only works for p = 3. In
general, it is unusual that a non-compact connected Lie group such as SO(3, 1)+

has every element expressed as an exponential. But it is true for SO(3, 1)+.
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On the other hand, L can be the exponential of more than one F , that is L =
eF = eG where F 6= G. An important example is the fact that the identity is the
exponential of an infinite number of skew operators. In fact, I = eF for F 6= 0 if
and only if λcF = 2πni where n is an integer. Thus we may say that a Lorentz
transformation has “internal states” corresponding to integers. We will identify the
odd n with fermions and the even n with bosons for reasons seen below.

This multiplicity of internal states holds for all proper Lorentz transformations
L, except for the “radiative” L. That is those L = eN where N is a radiative, or
what we shall now call a null skew symmetric operator. That is, eF = eN implies
F = N if N is null.

3. Occupation Numbers

We will choose [Tolman (1938)] as our text. It is very carefully written classic
exposition of Statistical Mechanics. In that text some equations (141.1-3) give the
equations for a key concept of Statistical Mechanics: The mean numbers of elements
〈nk〉 in a given energy state k with energy εk at equilibrium. They read:

〈nk〉 =
1

eα+βεk
(Maxwell-Boltzmann)

〈nk〉 =
1

eα+βεk − 1
(Bose-Einstein)

〈nk〉 =
1

eα+βεk + 1
(Fermi-Dirac)

Here α is a constant depending on the chemical potential of the particles, and

β =
1

kT
where k is Boltzmann’s constant and T is the temperature of the equilib-

rium.

Let us consider the postulate that the exponentials in these equations should
be represented as the eigenvalue of a proper Lorentz transformation. Then a first
guess would be that L = eF where λF = α+ βε and λF∗ = 2πn. Thus

λcF = λF − iλF∗ = (α+ βεk)− 2πni

Let s be a null eigenvector of L. There are only two of them generically. Let s be
the eigenvector corresponding to λF = α+ βεk > 0. Then

L−1s = e−F s =
1

eα+βεk
s = 〈nk〉s

for Maxwell-Boltzmann particles, and

(L − I)−1s = (eF − I)−1s =
1

eα+βεk − 1
s = 〈nk〉s

for Bose-Einstein particles, and

(L+ I)−1s = (eF + I)s =
1

eα+βεk + 1
s = 〈nk〉s
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for Fermi-Dirac particles.

Now to present “Physical arguments” that such a choice is reasonable (aside from
the fact that it gives the right answer), we follow the history of the “derivation”
the three formulas for 〈nk〉.

Boltzmann generalizing Maxwell’s distribution of velocities in a gas, counted
the number of distributions of n particles in k states. Then he used the method
of Lagrangian multipliers to find the distribution of maximum probability. This
method produces the constants α and β arising in the exponentials as Langrangian
multipliers.

Gibbs realized that identical particles should be counted as indistinguishable
elements in order to get the right answer to what is called the Gibbs’ Paradox.
Then to obtain Bose-Einstein and the Fermi-Dirac occupation numbers, one used
Boltzmann’s procedures based on two different methods of counting identical par-
ticles. These methods of counting are called the Einstein-Bose and the Fermi-Dirac
statistics. Though they gave the right answers, they did violence to the idea of
particle. Eventually with the discovery of Schrodinger’s Equation, it was asserted
that what was really being counted were the numbers of different combinations of
basic eigen-solutions of Schrodinger’s equation whose eigenvalues added up to the
energy εk. For Fermi-Dirac statistics, one counts only anti-symmetric combina-
tions of basic solutions, whereas for Bose-Einstein statistics, one counts only the
symmetric combinations.

We can give a count of appropriate Lorentz Transformations which will naturally
give the same statistics. Let us observe that the three types of statistics arise from
the following methods of counting. Suppose G is a free group with k generators
α1, . . . , ak and we want to count the number of words of length N which can be
formed out of these generators such that we have ni copies of ai for each i between
1, . . . , N . Thus we have n1 + . . .+nk = N . For example, if we have 2 generators a
and b and we want to look at the words of length N = 4 made out of 3 = n1 a’s and
1 = n2 b’s we get {ba3, aba2, a2ba, a3b}. This count will give us Maxwell-Boltzmann
Statistics.

For Bose-Einstein Statistics, we let G be a free abelian group on k generators
b1, . . . , bk and we count the number of words of length N for which there are ni
of the bi. Thus if a and b commute, the set of words with N = 4 and n1 = 3 and
n2 = 1 is {a3b}.

For Fermi-Dirac Statistics, we consider the elementary abelian 2-group G ∼=
Z2⊕Z2⊕ . . .⊕Zk with generators c1, . . . , ck and we count the number of words of
length n. Since c2i = 1 we see that ni is either 0 or 1.

We take advantage of this group theoretical count to use the fact that the Lorentz
transformations form a group. To each particle of energy Ei, we assign a Lorentz
transformation eF where F has eigenvalue Ei. If we insist that one of the two null-
eigenvectors of F coincide with a fixed null-vector s, then eF = eF1eF2 . . . , eFk and
so the eigenvalue of eF for s is eE1+...+Ek , so E = E1 + . . .+Ek. This corresponds
to the fact that the product of eigenfunctions of basic particle states give rise to the
sum of eigenvalues under a suitable Hamiltonian, as in [Tolman (1938), equation
87.7].
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Now I conjecture (but I have not proved mathematically) that a generic set of
Lorentz transformations eFi all of whose positive eigenvalue’s eigenvector coincide
with the null vector s, but whose other eigenvectors are distributed randomly, will
look like a free group. These should correspond to Maxwell-Boltzmann statistics.

If our particles are not distinguishable, they cohere in a way, so we will let them
be represented by Lorentz transformations both of whose null-eigenvectors agree.
This implies that the Lorentz transformation eFi as well as their exponents Fi,
commute. For λFi > 0, the set {eF1 . . . , eFk} should behave like the generators of
an abelian free group and thus give rise to Bose-Einstein statistics.

For Fermi-Dirac statistics, we let the particles be represented by eFi where λcF :=
e(2ni+1)Fi . This represents a rotation around 180◦, so (eFi)2 = I. So we have at
least a central element in the count of words for Z2 ⊕ Z2 ⊕ . . .⊕ Z2.

Boltsmann’s method arose from an argument by Maxwell in which particles are
moving and colliding at statistical equilibrium. We can use Lorentz transformations
to describe some features of a kinetic equilibrium which will make the choice of eF−I
natural.

We consider particles at equilibrium in Minkowski space. They are at equilibrium
with respect to an observer u. We let u denote a time-like vector of unit length
< u, u >= −1. We consider a particle at rest which its excited into motion. Its new
four-velocity will be denoted by u′. Then u′ − u represent a space-like component
of the velocity. We consider more particles at rest. Then the average length of the
vectors ||u′i−u||must be a descriptor of the equilibrium process. Now we can choose
a skew operator Fi, so that eFi is a Lorentz transformation, so that eFiu = u′i. Thus
we can describe the u′i − u as (eFi − I)u. If we restrict ourselves to those Fi, all
of which have the null vector s as an eigenvector corresponding to λFi > 0, then

we should expect properties of the average
1

N
(F1 + . . . ,+FN ) to be a descriptor

of the equilibrium. An example would be the average of the eigenvalues λcFi of the
Fi. Thus we should expect an average F so that (eF − I)u has average length.

We may do the same argument with 4-momenta pi for appropriate classes of
particles. Now eFipi = p′i has the same length. So we should get 〈eFip0 − p0, u〉 =
energy difference for ith particle. Then 〈

∑
(eFi − I)p0, u〉 = total energy difference

Then 〈
∑ (eFi − I)

N
p0, u〉 = Average energy difference.

Let eF be Lorentz transformation so that eλF =
eλF1+...+λFN

N
and so that s is

a null-eigenvector of F . Then (eF − I)s = (eλF − 1)s = s where s is the average
energy times s. So (eλF − 1)−1s = 〈nk〉s.

4. Mathematics

Theorem 4.1. The exponential map Exp: so(3, 1)→ SO(3, 1)+ given by F → eF

is onto. That is, for every proper Lorentz transformation L, there exists an F ∈
so(3, 1) so that L = eF .

To prove the above theorem, we need to consider the complexification S :=
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so(3, 1) ⊗ C operating on R3,1 ⊗ C. This is isomorphic to C4 and has an inner
product which is of the type − + ++ on R3,1 and extends to the complex vectors
by 〈i~v, ~w〉 = 〈~v, i ~w〉 = i〈~v, ~w〉. See [Gottlieb (2000), p 2] for more details.

Now let c : so(3, 1) → S by cF = F − iF ∗. The image of c, denoted cS, is a
three dimensional complex vector space. The set of operators of the form aI + bcF
will be denoted by D. Note that D is a vector space isomorphic to R3,1 ⊗ C, and
that D is closed under multiplication.

Lemma 4.2. Let F and G ∈ cS denote cF and cG. Then (aI + βF )(αI + G) =

(aα+ bβ〈F,G〉)I + (bαF + aβG+
bβ

2
[F,G])

Now we say that L ∈ D is a complex Lorentz transformation if 〈Lu,Lv〉 = 〈u, v〉.
Any complex Lorentz transformation L must have the form L = aI + bF , where
F ∈ cS, such that a2 − b2λ2

F = 1.

That is, L−1 = aI − bF .

Theorem 4.3. Every complex Lorentz transformation L is an exponential, that is
L = eF for some F ∈ cS, except for L = −I + N where N ∈ cS is null, that is
N2 = 0.

Proof. Recall [Gottlieb (2000), Theorem 8.5] where F ∈ cS that

(**) eF = cosh(λF )I +
sinh(λF )

λF
F

Now L = aI + H where H ∈ cS and a2 − λ2
H = 1. So the first obstruction to

showing that L is an exponential is solving the equation cosh(λ) = a. We shall

show below that such a λ always exists. Next, if
sinh(λ)

λ
6= 0, then

L = aI +H = cosh(λ)I +
sinhλ

λ

(
λ

sinhλ
H

)
= cosh(λ)I +

sinhλ

λ
D = eD

Hence L may not be an exponential if
sinh(λ)

λ
= 0.

Now
sinhλ

λ
= 0 exactly when λ = πni for n a non-zero integer. (Note that

sinh(0)

0
= 1). Then

a = cosh(λ) = cosh(πni) = cos(πn) = (−1)n.

If n is even, then L = I +N = eN where N must be null.

If n is odd, then a = (−1)n = −1, so L = −I +N where N must be null or zero.
Now eB = −I where B ∈ cS has eigenvalue (2k+1)πi. But −I+N = −e−N cannot
be an exponential, however N must be null. This proves Theorem 4.3 except for
the following lemma.
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Lemma 4.4.

a) cosh(λ) = a always has a solution over the complex numbers.

b) sinh(λ) = 0 if and only if λ = πni.

Proof. First we show b). sinh(λ) =
eλ − e−λ

2
= 0

Thus e2λ = 1, hence 2λ = 2πni so λ = πni.

Next we show a). cosh(λ) =
eλ + e−λ

2
= a. Hence (eλ)2 − 2aeλ + 1 = 0

Hence eλ =
2a±

√
4a2 − 4

2
= a±

√
a2 − 1.

Now eλ = b has a solution for all b except b = 0. But a±
√
a2 − 1 cannot equal

zero, hence we have shown there is a solution for each a.

Proof of Theorem 4.1. We show the exponential map is onto SO(3, 1)+ by show-
ing the products of two exponentials is an exponential. That is eF eG = eD for

F,G,D ∈ so(3, 1). Now eF = e
1
2 cF e

1
2 cF where cF = F + iF ∗. This follows

since cF and cF commute. Also for this reason, ecF and ecG commute. Thus

eF eG = e
1
2 cF e

1
2 cGe

1
2 cF e

1
2 cG. Now e

1
2 cF e

1
2 cG is a complex Lorentz transformation

in D. So either it is an exponential ecD, or it has the form −I + cN = −ecN
by Theorem 4.3. Now Theorem 4.3 also holds for D ∈ cS ⊗ C. Hence we have
eF eG = e2D or eF eG = (−ecN )(−ecN ) = e2N .

Corollary 4.5. The exponential map Exp : S → SO(R3,1 ⊗ C) is not onto. If
N ∈ so(3, 1) is null, then −eN is not an exponential even though −ecN is an
exponential.

Proof. As explained in [Gottlieb (2000)], we can extend duality F ∗ to skew symmet-

ric matrices

(
0 ~E
~E × ~B

)
where ~E and ~B are complex vectors. Then cF = F − iF ∗

and cF = F + iF ∗ satisfy the same properties as in the complexification of the
real case. Now consider eF eG where F , G ∈ S. Then cF = 1

2 cF + 1
2 cF , so

eF eG = e
1
2 cF e

1
2 cF e

1
2 cGe

1
2 cG. Now cF = cA for some A ∈ so(3, 1), and cF = cA′ for

A′ ∈ so(3, 1)

eF eG = ecAecA
′
ecBecB

′
= (ecAecB)(ecA

′
ecB

′
)

and so ecAecB equals either ecD or −ecN . But (−I)ecN = e(2n+1)πicEecN =
e(2n+i)πicE+cN where E has eigenvalue equal to 1. So in both cases ecAecB is
an exponential.

Now −ecN is an exponential since −ecN = eπicEecN = eπicE+cN where E has
eigenvalue λcE = 1. On the other hand −eN , where N is null and real, cannot be
an exponential, since if −eN = eF , then s, the unique eigenvector for eN , applied
to this equation gives −s = eF s = eλF s, so λF = (2n + 1)πi for some n. Thus F
has another eigenvector, which contradicts −eN having only one. �



8 DANIEL HENRY GOTTLIEB

5. Lorentz transformations sharing eigenvectors

Suppose that we have a set of complex Lorentz transformations Li ∈ cS so that
there is a null vector s which is an eigenvector for all the Li. Let N be a null
operator in cS. Then each Fi can be expressed as Fi = λiE+αiN where E and N
share the eigenvector s and has λE = 1, and Li = eFi ; or else Li = −eαiN .

Now FiN = λiN . So eFiN = eλiN and NeFi = e−λiN . This follows since N
and Fi share an eigenvector, so NFi = −FiN .

Lemma 5.1. If F , N ∈ cS and N2 = 0 and FN = λN , then eF eN = eF + eλN =

eH where H = F +
λF e

λF

sinhλF
N . The last equality holds only if λF 6= nπi for non

zero integers n.

Proof.

eF eN = eF (I +N) = eF + eFN = eF + eλN = coshλI +
sinhλ

λ
F + eλN

= coshλI +
sinhλ

λ
H,

provided
sinhλ

λ
6= 0.

Theorem 5.2. Let L1L2 . . . Lk be a product of complex Lorentz transformations
Li ∈ cS all sharing a common eigenvector s. Assume that none of the Li have
eigenvalues of the form λi = nπi for n 6= 0, and that the sum of the eigenvalues∑k

1 λi is not equal to nπi for nonzero n. So each Li = eλiE+αiN or else −eαiN .

Then L1 . . . Lk = ±
(
e(
∑k

1 λi)E +

(
k∑
i=1

eλ1+···+λi−1−λi+1+···+λkαi
sinhλi
λi

)
N

)
.

Proof.

L1 . . . Lk = ±
k∏
1

eλiE+αiN = ±
k∏
1

(eλiE + αi
sinhλi
λi

N)

= ±

e(∑k
1λi)E +

k∑
j=1

e(
∑j−1

1 λi)αj
sinhλj
λj

Ne(
∑k
j+1 λi)E + 0 + 0 + · · ·+ 0


= ±

e(∑k
1 λi)E +

 k∑
j=1

e(
∑j−1

1 λi−
∑k
j+1 λi)

sinhλj
λj

αj

N


= ±eH

where

H :=

∑k
1 λi

sinh(
∑k

1 λi)

( k∑
1

λi

)
E +

k∑
j=1

(
e
∑j−1

1 λj−
∑k
j+1 λj

) sinhλj
λj

αjN


assuming

k∑
1

λi 6= nπi for n 6= 0.
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Corollary 5.3. Suppose the Li commute. Then Li = eλi(E+N), or else Li =

±eαiN for all i. Then
∏k

1 Li = eaE + bN where a =
∑k
i λi and

b =
∑k

1 exp
[∑j−1

1 λi +
∑k
j+1(−λi)

]
sinhλj
λj

. Hence
∏
Li = e(

∑k
1 λi)(E+N).

Let F ∈ cS and let suppose N+ and N− are null operators in cS so that FN+ =
λFN

+ and FN− = −λFN−. Then F + aN+ has the same eigenvalue as F with
N+ as the same “eigenvector”. Here a ∈ C. The question we pose is: What is the
“eigenvector” N ′ corresponding to −λF ?

Theorem 5.4.

a) Suppose (F + aN+)N ′ = −λN ′. Then a =
−〈F,N ′〉
〈N+, N ′〉 .

b) The N ′ for F + aN+ is given by any complex multiple of

N ′ =
−a
2λ2

F +
1

2
N− − a2

2λ2
N+

We are choosing N− so that 〈N+, N−〉 = 2.

Proof of a). Expand (F + aN+)N ′ = −λN ′ and use the equation FG = 〈F,G〉I +
1
2 [F,G] found in [Gottlieb (2000), Lemma 5.5] to arrive at the equation

(〈F,N ′〉+ a〈N+, N ′〉)I +
1

2
[F + aN+, N

′] = −λN ′.

The coefficient of I must be zero since skew operators have zero trace. The unique
a so that the coefficient is zero is the required result.

Proof of b). Let u be an observer. Then Fu completely determines F ∈ cS. So
choose a basis in R3,1 ⊗ C so that Fu = (0, 0, λ), N+u = (1, i, 0) and N−u =
(1,−i, 0). Let N ′u = (r, s, t). We can choose N ′ so that 〈N+, N ′〉 = 1. Then
〈F,N ′〉 = −a. Also 〈N ′, N ′〉 = 0. From these three equations we obtain three
equations

r + si = 1

λt = −a
r2 + s2 + t2 = 0.

The solution is N ′u =

(
λ2 − a2

2λ2
,− (λ2 + a2)i

2λ2
,−a

λ

)
. We can write this as

N ′u = − a

2λ
(0, 0, 1) +

1

2
(1,−i, 0)− a2

2λ2
(1, i, 0)

= − a

2λ2
Fu+

1

2
N−u− a2

2λ2
N+u.

This gives us the general equation since it holds for all vectors if it holds for u. �

A simple method to calculate the real eigenvector s′ is to calculate the complex

3 vector N ′u =: ~E + i ~B. Then s′ = E2u+ ~E × ~B.



10 DANIEL HENRY GOTTLIEB

We see from this process that F+aN+ has a different eigenvectors s′ correspond-
ing to −λF and they are in 1− 1 correspondence with the points in C, assuming F
is not null.

Another way to calculate the other eigenvector is to note that F + N+ =

e−
N+

2 Fe
N+

2 . Now e−
N+

2 N− is an eigen-operator for F +N+ associated with −λF .
It follows that a real eigenvector can be obtained by s− = e−Ns− where the N
denotes the real null operator of N+ .

Now there is a cononical equation for an eigenvector s corresponding to the λF
eigenvalue of F ∈ so(3, 1). For a given observer u, F is determined by ~E and
~B. Then the canonical eigenvector s is given by the following equation, [Gottlieb
(1998), Corollary 6.8].

s :=
1

2
(λcF I + cF )(λcF I − cF )

=

(
λT +

E2 +B2

2

)
u+ ~E × ~B + λF ~E − λF∗ ~B.

Theorem 5.5. Let F0 + N = F , where F0, N , and F ∈ so(3, 1) and suppose N
is null whose eigenvector, s1, lies along the eigenvector, s0, of F0 corresponding to
the eigenvalue λcF0 . Then s = s0 + s1, where s is the canonical eigenvector of F ,

if we assume that F0 has linearly dependent ~E and ~B for observer u.

Proof. Now in u’s rest space, F0 is composed out of ~E0 and ~B0 where λF0
~E0 −

λF∗ ~B0 =: ~k, and ~E0 × ~B0 = 0. N1 is determined by ~E1 and ~B1 where E1 = B1,
~E1 · ~B1 = 0 and ~E1 · ~k = ~B1 · ~k = 0. Then F is determined by ~E = ~E0 + ~E1 and
~B = ~B0 + ~B1. Under these conditions,

(a) s =

(
λT +

E2 +B2

2

)
u+ ~E × ~B + λF ~E − λF∗ ~B

(b) s0 =

(
λT +

E2
0 +B2

0

2

)
u+ λF ~E0 − λF∗ ~B0

(c) s1 = E2
1u+ ~E1 × ~E2.

Now we eliminate ~E and ~B in equation (a), use the fact that

E2 +B2

2
=
E2

0 +B2
0

2
+
E2

1 +B2
1

2
= λT + E2

1

and then that ~E × ~B = ~E1 × ~B1 + ~E0 × ~B1 + ~E1 × ~B0 and equations b) and c) to
obtain s = s0 + s1 + space-like vectors. But the space-like vectors must add up to
a light-light vector which implies that they must add up to ~0. This implies that
s0 + s1 = s.
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6. Bosons and Fermions

Now recall that the mean occupation number 〈nk〉 of states of a particle at
equilibrium at a temperature T is given by

〈nk〉 =
1

eβ(εk−µ) ∓ 1

depending on whether the particle is a boson or a fermion. Here εk is the energy
of the kth state, β = 1

kT
and µ is the chemical potential.

Our first approximation to describing this was to postulate that there was a
Lorentz transformation eF so that λF = β(εk − µ). However, there are different
F ’s which give rise to this Lorentz transformation. So we can consider F with
eigenvalues λcF = β(εk − µ) + 2πsi where s is a half integer n

2 . Then

1

eλcF − 1
= (−1)2s〈nk〉.

We then should correspond the integers s to bosons and the half integers s to
fermions in order to get the correct formulas.

We can associate a cF to an equilibrium as easily as F . The (ecF−I) will give us a
real vector which describes a mean change of direction, and a complex vector which
describes some sort of mean rotation or spinning. Then λcF = β(εk − µ) + 2πsi.
Hence

(ecF − I)−1cN = (−1)2s〈nk〉cN

where cN is the null eigen-operator for cF , that is cFcN = λcF cN .

Now suppose ecF represents some mean description of a system in equilibrium at
temperature T . We expect λcF to remain constant in time. But ecF distinguishes
different directions, so we would expect ecF to vary in time so that eλcF remains
constant.

There is a beautiful formula, due to Helgason, which gives the differential of the
exponential map. See [Gottlieb (2000), §4] or [Helgason (1978), p.105, Theorem
7.1].

Theorem 6.1. (Helgason). Let g be the Lie Algebra for a Lie group G. Then
∇GeF : = d

dt(e
F+tG)|t=0 = eF · (g[adF ](G)) where ad F : g → g sends X 7−→ [F,X ]

and g[ξ] is the power series of the function g(ξ) =
e−ξ − 1

−ξ .

Now cF has two eigen-operators, cN+ and cN− so that cFcN+ = λcF cN
+ and

cFcN− = −λcF cN−. Hence we get

∇cNecF = eλcF
(
e−2λcF − 1

−2λcF

)
cN =

eλcF − e−λcF
2λcF

=
sinh(λcF )

λcF
cN.

This also holds for cN− and so it is true for any linear combination of cN and cN−.
This subspace is characterized by cG such that 〈cG, cF 〉 = 0. This G 7−→ ∇GeF is
completely characterized by the following theorem.
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Theorem 6.2. ∇cGecF =
sinhλcF
λcF

cG if 〈cF, cG〉 = 0, and ∇cF ecF = eF ◦ F .

Now if eF ∈ SO(3, 1)+ represents the process in equilibrium, we saw that λcF =

β(εk − µ) + 2nπi was a reasonable choice of eigenvalue. Since eF = e
1
2 cF e

1
2 cF ,

the choice for a complexified cF representing the process should have eigenvalue
λcF = 1

2β(εk − µ) + nπi. Hence

(*)

sinhλcF
λcF

= e−λcF
[
e+2λcF − 1

+2λcF

]
=
e−

1
2β(εk−µ)−nπi

(
1
〈nk〉

)
β(εk − µ) + 2nπi

=
1

〈nk〉
· (β(εk − µ)− 2nπi)

β2(εk − µ)2 + 4n2π2
· (−1)ne−

1
2β(εk−µ).

Scholium 6.3 Let cF represent an equilibrium process then

a) ∇GecF =
(−1)n

〈nk〉
e−

1
2β(εk−µ) (β(εk − µ)− 2nπi)

β2(εk − µ)2 + 4n2π2
cG if 〈cG, cF 〉 = 0.

b) ecF = cosh(
1

2
β(εk − µ) + nπi)I +

(−1)n

〈nk〉
e−

1
2β(εk−µ) (β(εk − µ)− 2nπi)

β2(εk − µ)2 + 4n2π2
cF .

Proof. We prove a) by substituting (*) into the previous theorem. We prove b) by
substituting (*) into equation (**) in proof of Theorem 4.3.

Now we take the differential of eF for F ∈ so(3, 1) and N null with a common
eigenvalue.

Theorem 6.4. If N , F ∈ so(3, 1) Where N and F both share an eigenvector and

N is null, then e−F∇NeF =
e−λcF − 1

−λcF
·N where the dot is electromagnetic duality.

Proof.

[F,N ] =

[
1

2
cF +

1

2
cF,

1

2
cN +

1

2
cN

]
=

1

4
([cF, cN ], [cF, cN ])

=
2

4
Re[cF, cN ] = Re

(
1

2
(2λcF cN)

)
= λcF ·N.

Now e−F ◦ ∇NeF = g([F,N ]) =
e−λcF − 1

−λcF
·N .

Scholium 6.5. Let F represent an equilibrium at temperature T with null N shar-

ing eigenvector and λcF = β(εk − µ) + 2πni. Then e−F ◦ ∇NeF =
e−λcf

〈nk〉λcF
·N .

7. The Rayleigh-Jeans Factor

The main use of the mean occupations numbers is in the establishment of useful
differential formulas. These comprise the Planck radiation law, [Tolman (1938),
(93.6)]

du =
8πhv3

c3
1

ehv/kT − 1
dv.
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The number of particles in a Bose-Einsten gas [Tolman (1938), 93.11]

dn =
4πvg

h3
m
√

2m
ε

1
2 dε

eα+βε − 1

The number of particles in a Fermi-Dirac gas [Tolman (1938),94.6]

dn =
4πvg

h3
m
√

2m
ε

1
2 dε

eα+βε + 1

The coefficients
4πvg

h3
m
√

2mε of the last two equations are derived in [Tolman

(1938), §7]. They arise from solutions of the stationary Schrodinger’s equation

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= −8π2m

h2
E.

The appropriate solutions are characterized by triples of non-negative integers
(n1, n2, n3) which lie in a small spherical shell in the first octant. This gives the num-

ber of eigen-solutions as G =
4πv

h3
m
√

2mE∆E, which is [Tolman (1938), (71.16)].

We may produce the same lattice of integers by using skew symmetric operators.
Let Ex, Ey, Ez be skew symmetric real operators such that Exu = ~ex, the unit
vector in the x direction. Similarly for Ey and Ez. Let cEx, cEy, cEz be their
complexifications. Then cE2

x = cE2
y = cE2

z = I and they all anticommute with
each other, i.e. cExcEy = −cEycEx.

Now consider cE = n1cEx+n2cEy+n3cEz. Then λ2
cEI = cE2 = (n2

1+n2
2+n2

3)I.

Now λcE is real, so λ2
cE = |λcEλcE | = 2λT . We can identify λT with energy since

T = 1
2cEcE corresponds to the stress energy tensor and so 2EV (where V is volume)

should be the energy. This necessitates letting
h

2m
cEx,

h

2m
cEy ,

h

2m
cEz be our

basic set of skew operators. Counting the number of allowable triples (n1, n2, n3)
as in the usual argument gives us the same formula as in the standard argument.

If we are in a situation where the opposite eigenvector s-corresponding to λcEx =

− h

2m
is distinguished, as by an opposite spin, then we want to count

h

2m
cEx

twice and so we multiply by two the factor to get the number of eigenstates G
corresponding to the energy range E to E + ∆E. That is

G =
8πV

h3
m
√

2mE∆E

for spin.

Multiplying the mean occupation numbers by the number of particles gives us
the formulas above .

For the black body radiation formula, we have

du = 2 · 4πV
2

c3
dν · kT ·

hν
hT

ehν/kT − 1
.
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Now the factor
8πν2

c2
kTdν gives the Rayeigh-Jeans Law. So

ehν/kT − 1
hν
kT

=
8πν2

c3
kT

dν

du
.

Now let cN− be the eigen-operator corresponding to cFcN− = −λcF = − hν
kT .

Then

e−cF∇cN−ecF =
8πV 2

c3
kT

dν

du
cN−.
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