Items: 41 - 60 of 119

[41] 91k:13012 Heinzer, William; Lantz, David Integral domains that lose ideals in overrings. Pacific J. Math. 145 (1990), no. 2, 223--238. (Reviewer: Muhammad Zafrullah) 13G05 (13A15)

[42] 91j:13015 Abhyankar, Shreeram S.; Heinzer, William; Wiegand, Sylvia On the compositum of two power series rings. Proc. Amer. Math. Soc. 112 (1991), no. 3, 629--636. (Reviewer: Paul M. Eakin) 13J05 (13J10 13J15)

[43] 90i:13026 Heinzer, William; Lantz, David Exceptional prime divisors of two-dimensional local domains. Commutative algebra (Berkeley, CA, 1987), 279--304, Math. Sci. Res. Inst. Publ., 15, Springer, New York-Berlin, 1989. (Reviewer: Sarah Glaz) 13H99 (13C99)

[44] 90h:13017 Gilmer, Robert; Heinzer, William; Lantz, David; Smith, William The ring of integer-valued polynomials of a Dedekind domain. Proc. Amer. Math. Soc. 108 (1990), no. 3, 673--681. (Reviewer: Jean-Luc Chabert) 13F20 (11R09 13B25 13F05)

[45] 90c:13009 Gilmer, Robert; Heinzer, William On ${\rm Pic}(D[\alpha])$ for a principal ideal domain $D$. Canad. Math. Bull. 32 (1989), no. 1, 114--116. (Reviewer: J. W. Brewer) 13B99 (13F10)

[46] 90b:13010 Heinzer, William; Wiegand, Sylvia Prime ideals in two-dimensional polynomial rings. Proc. Amer. Math. Soc. 107 (1989), no. 3, 577--586. (Reviewer: Stephen McAdam) 13B25 (13A17 14A05)

[47] 90b:13002 Heinzer, William J.; Papick, Ira J. Remarks on a remark of Kaplansky. Proc. Amer. Math. Soc. 105 (1989), no. 1, 1--9. (Reviewer: Sarah Glaz) 13A15

[48] 89m:13005 Gilmer, Robert; Heinzer, William On the imbedding of a direct product into a zero-dimensional commutative ring. Proc. Amer. Math. Soc. 106 (1989), no. 3, 631--636. (Reviewer: James A. Huckaba) 13B99

[49] 89e:13017 Heinzer, William; Lantz, David Jónsson extensions of one-dimensional semilocal domains. J. Algebra 117 (1988), no. 1, 179--197. (Reviewer: W. V. Vasconcelos) 13F05 (13B20)

[50] 89a:13004 Gilmer, Robert; Heinzer, William On Jónsson algebras over a commutative ring. J. Pure Appl. Algebra 49 (1987), no. 1-2, 133--159. (Reviewer: Marco Fontana) 13B02 (13E05 13E15)

[51] 88k:13018 Heinzer, William J.; Papick, Ira J. The radical trace property. J. Algebra 112 (1988), no. 1, 110--121. (Reviewer: Daniel D. Anderson) 13F05 (13A15 13E05 13G05)

[52] 88h:13007 Eakin, Paul M., Jr.; Heinzer, William; Katz, Daniel; Ratliff, L. J., Jr. Note on ideal-transforms, Rees rings, and Krull rings. J. Algebra 110 (1987), no. 2, 407--419. (Reviewer: J. W. Brewer) 13C15 (13E05)

[53] 88g:12004 Gilmer, Robert; Heinzer, William Jónsson $\omega\sb 0$-generated algebraic field extensions. Pacific J. Math. 128 (1987), no. 1, 81--116. (Reviewer: Dan Haran) 12F05

[54] 87k:13034 Heinzer, William; Huneke, Craig; Sally, Judith D. A criterion for spots. J. Math. Kyoto Univ. 26 (1986), no. 4, 667--671. (Reviewer: Ira J. Papick) 13H05

[55] 87d:13005 Gilmer, Robert; Heinzer, William On the cardinality of subrings of a commutative ring. Canad. Math. Bull. 29 (1986), no. 1, 102--108. (Reviewer: J. T. Arnold) 13B02 (13C99)

[56] 87b:13025 Brewer, James; Heinzer, William; Lantz, David The pole assignability property in polynomial rings over GCD-domains. J. Algebra 97 (1985), no. 2, 461--466. (Reviewer: W. V. Vasconcelos) 13F20 (93B55)

[57] 87b:13023 Heinzer, William; Lantz, David When is an N-ring Noetherian? J. Pure Appl. Algebra 39 (1986), no. 1-2, 125--139. (Reviewer: Daniel D. Anderson) 13E05 (13B99)

[58] 86m:13006 Gilmer, Robert; Heinzer, William Finitely generated intermediate rings. J. Pure Appl. Algebra 37 (1985), no. 3, 237--264. (Reviewer: Ira J. Papick) 13B02 (13E05)

[59] 86h:13014 Heinzer, William; Lantz, David Artinian modules and modules of which all proper submodules are finitely generated. J. Algebra 95 (1985), no. 1, 201--216. (Reviewer: Alberto Facchini) 13E10 (13C12)

[60] 85i:13012 Heinzer, William J. Polynomial rings over a Hilbert ring. Michigan Math. J. 31 (1984), no. 1, 83--88. (Reviewer: Robert Gilmer) 13B25 (13C05 13F20)

Items: 41 - 60 of 119